
Introduction

Rolf Drechsler

With increasing design complexity, verification becomes a more and
more important aspect of the design flow. Modern circuits contain up
to several million transistors. In the meantime it has been observed that
verification becomes the major bottleneck, i.e. up to 80% of the overall
design costs are due to verification. This is one of the reasons why re-
cently several methods have been proposed as alternatives to classical
simulation, since it cannot guarantee sufficient coverage of the design.
E.g. in [2] it has been reported that for the verification of the Pentium
IV more than 200 billion cycles have been simulated, but this only cor-
responds to 2 CPU minutes, if the chip is run with 1 GHz.

Formal verification techniques have gained large attention, since they
allow to prove the correctness of a circuit, i.e. they ensure 100% func-
tional correctness. Besides being more reliable, formal verification ap-
proaches have also shown to be more cost effective in many cases, since
test bench creation - usually a very time consuming and error prone task
- becomes superfluous.

In this introduction, we first briefly describe some of the application
domains, where formal techniques have successfully been used. We give
some links to further literature where the interested reader can get more
information. Then, a list of “challenging problems” is given, i.e. a list of
topics that need further investigation in the context of formal hardware
verification. Finally, the contributions to this book are briefly described.

1. Formal Verification

The main idea of formal hardware verification is to prove the func-
tional correctness of a design instead of simulating some vectors. For
the proof process different techniques have been proposed. Most of them

xix



xx ADVANCED FORMAL VERIFICATION

work in the Boolean domain, like Binary Decision Diagrams (BDDs) or
SAT solvers.

The typical hardware verification scenarios where formal proof tech-
niques are applied are

Equivalence Checking (EC) and

Property Checking (PC), also called Model Checking (MC).

The goal of EC is to ensure the equivalence of two given circuit descrip-
tions. These circuits might be given on different levels of abstraction,
i.e. register transfer level or gate level. The main steps of an equivalence
checker are as follows (see e.g. [12]):

1. Translate both designs to an internal format.

2. Establish the correspondence between the two designs in a match-
ing phase.

3. Prove equivalence or inequivalence.

4. In case of an inequivalence a counter-example is generated and the
debugging phase starts.

Notice that the circuit is considered as purely combinational by model-
ing the state elements as additional primary inputs and outputs. This
modeling may result in counter-examples that are not reachable during
normal circuit operation.

In contrast to EC, where two circuits are considered, for PC a single
circuit is given and properties are formulated in a dedicated “verification
language”. It is then formally proven whether these properties hold
under all circumstances. While “classical” CTL-based model checking
[6] can only be applied to medium sized designs, approaches based on
Bounded Model Checking (BMC) as discussed in [4] give very good results
when used for complete blocks with up to 100k gates.

Nevertheless, all these approaches can run into problems caused by
complexity, e.g. if the circuit becomes too large or if the function being
represented turns out to be “difficult” for formal methods. The second
problem often arises in cases of complex arithmetics, like multipliers.

Motivated by this, hybrid methods have been proposed, like e.g. sym-
bolic simulation and assertion checking. These methods try to bridge
the gap between simulation and correctness proofs. But these techniques
also make use of formal proof techniques.

For more information on basics on formal verification techniques the
reader is referred to [22].



INTRODUCTION xxi

2. Challenges

Even though formal verification techniques are very successfully ap-
plied and have become the state-of-the-art in many design flows, still
many problems exist. In this section a list of these problems is given.
The list is not complete in the sense that all difficulties are covered, but
many important ones are mentioned. This gives a better understanding
of current problems in hardware verification, motivates for the following
chapters of the book and shows directions for future research.

Complexity: According to Moore’s law the complexity of the circuits
steadily increases. For this, the underlying data structures are
very important. For EC and BMC often dedicated data structures
are used. For representation of the state space BDDs have shown
to work well, but if the size of the circuit becomes too large the
BDDs often suffer from “memory explosion”.

Proof technology: While BDDs and SAT are the most popular tech-
niques in hardware verification and have also been applied to many
domains, there is still a lot of research going on (see also Chapter
1 and 2). Besides the classical monolithic approaches modern EC
tools make use of multi-engine approaches that combine different
techniques, like SAT, BDD, term rewriting, ATPG, and random
pattern simulation. How to successfully combine these - often or-
thogonal - approaches is not fully understood today.

Word-level approaches: Even though most proof techniques today work
on the bit-level, many studies have shown that significant improve-
ments can be achieved if the proof engine makes use of high-level
information or even completely works on a higher level of abstrac-
tion. In this context also ILP solvers showed promise (see also
Chapter 4).

Matching in EC: As described above, before the proof process starts the
correspondence between the circuits has to be established. Here,
several techniques exist, like name-based, structural or prover-
based, but still for large industrial designs these methods often
fail. This results in very time consuming user defined matching.

Reachability of counter-examples: In EC and BMC the generated
counter-example might not be reachable in normal circuit opera-
tion. This results from the modeling of the circuit, i.e. instead of a
FSM only the combinational part is considered. Thus, it has to be
checked that the counter-example is “valid” after it has been gen-
erated, or the prover has to ensure that it is reachable. Techniques



xxii ADVANCED FORMAL VERIFICATION

have to be developed how this can be ensured without a complete
reachability analysis of the FSM, that is usually not feasible due
to complexity reasons.

Arithmetic: Industrial practice has shown that today’s proof tech-
niques, like BDD and SAT, have difficulties with arithmetic cir-
cuits, like multipliers. Word-level approaches have been proposed
as an alternative, but these methods turned out to often be difficult
to integrate in fully automatic tools. For this, arithmetic circuits
- often occurring in circuit design - are still difficult to handle (see
Chapter 4).

System integration: PC works best on the module level, i.e. for blocks
with up to 100k gates. But in multi-chip modules many of these
blocks are integrated to build a system. Due to complexity the
modules cannot be verified as one large block and for this models
and approaches are needed.

Hybrid approaches: For complex blocks or on the system level PC might
be a very complex task and for this simpler alternatives have been
studied, i.e. techniques that are more powerful than classical sim-
ulation but need less resources than PC. Techniques, like symbolic
simulation or assertion-based verification, in this context also make
use of formal verification techniques (see also Chapter 5).

Checker synthesis: The specified properties can also be synthesized and
added to the design. In this way, they can also be used for on-line
test after the circuit has been fabricated.

Analog/mixed signal: Most EC and PC models assume that the circuit
is purely digital, while in modern system-on-chip designs many
analog components are integrated. For this, also models and proof
mechanisms need to be developed for analog and mixed signal de-
vices (see Chapter 6).

Retiming: For EC retimed circuits are still difficult to handle, since
in this case the state matching cannot be performed. Thus, the
problem remains sequential and by this becomes far too complex.

Multiple clocks: Many circuits have different clocking domains, while
verification tools can often only work with a single clock.

Coverage: To check the completeness of a verification process cover-
age metrics have to be defined. While typical methods, like state
coverage, are much too weak in the context of formal verification,



INTRODUCTION xxiii

there still does not exist a good measure that is comfortable to use
for PC.

Diagnosis: After a fault has been identified by a formal verification tool
a counter-example is generated. The next step is to identify the
fault location or a reason for the failing proof process. Here, also
formal proof techniques can be applied.

Most solutions to these problems are still in a very early stage of devel-
opment, but these fields have to be addressed to make formal hardware
verification successful in industrial applications. To orient the reader,
some recent references are provided to give a starting point for further
studies: [25, 17, 22, 16, 9, 26, 13, 1, 7, 23, 21, 15, 5, 19, 24, 20, 11, 18,
27, 3, 14, 10, 8]

3. Contributions to this Book

The book consists of six chapters that cover most of the aspects de-
scribed above. Examples of proof technology are described and the latest
developments in this field are presented. But also contributions from in-
dustrial practice show the importance of formal verification approaches
in today’s design flows. Each chapter provides experimental results and
for each application domain open problems and directions for future
work are outlined.

In Chapter 1, Eugene Goldberg analyses the core problem in formal
techniques, i.e. the satisfiability problem. Resolution-based SAT solvers
are analyzed and a new way of testing satisfiability is proposed.

Properties of SAT and BDDs are studied in Chapter 2 by Gianpiero
Cabodi and Stefano Quer. Based on this analysis, the integration of the
two currently most successful proof techniques is discussed.

As mentioned above, formal proof techniques often have difficulties
in handling arithmetic circuits. This issue is addressed in Chapter 3 by
Dominik Stoffel, Evgeny Karibaev, Irina Kufareva and Wolfgang Kunz,
where EC approaches are presented.

New innovative proof techniques that make use of word-level infor-
mation are described by Raik Brinkmann, Peer Johannsen and Klaus
Winkelmann, and an industrial property checking flow is presented in
Chapter 4.

In Chapter 5, Claudionor Nunes Coelho Jr. and Harry D. Foster fo-
cus on assertion-based verification and in this context introduce a formal
property language. The underlying methodology is introduced and im-
plications for the user are addressed.



xxiv ADVANCED FORMAL VERIFICATION

Finally, an approach to formal verification of analog circuits is pro-
posed in Chapter 6 by Walter Hartong, Ralf Klausen and Lars Hedrich.
MC and EC techniques for nonlinear analog systems are discussed.

References

[1] L. Bening and H. Foster. Principles of Verifiable RTL Design.
Kluwer Academic Publishers, 2001.

[2] B. Bentley. Validating the Intel Pentium 4 microprocessor. In De-
sign Automation Conf., pages 244–248, 2001.

[3] J. Bergeron. Writing Testbenches: Functional Verification of HDL
Models. Kluwer Academic Publishers, 2003.

[4] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Design
Automation Conf., pages 317–320, 1999.

[5] R. Brinkmann and R. Drechsler. RTL-datapath verification using
integer linear programming. In ASP Design Automation Conf.,
pages 741–746, 2002.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequen-
tial circuit verification using symbolic model checking. In Design
Automation Conf., pages 46–51, 1990.

[7] H. Chockler, O. Kupferman, R. Kurshan, and M. Vardi. A prac-
tical approach to coverage in model checking. In Computer Aided
Verification, volume 2102 of LNCS, pages 66–77. Springer Verlag,
2001.

[8] F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. Efficient
debugging in a formal verification environment. Software Tools for
Technology Transfer, 4:335–348, 2003.

[9] R. Drechsler. Formal Verification of Circuits. Kluwer Academic
Publishers, 2000.

[10] R. Drechsler. Synthesizing checkers for on-line verification of
system-on-chip designs. In Int’l Symp. Circ. and Systems, pages
IV:748–IV:751, 2003.

[11] R. Drechsler and N. Drechsler. Evolutionary Algorithms for Em-
bedded System Design. Kluwer Academic Publisher, 2002.

[12] R. Drechsler and S. Höreth. Gatecomp: Equivalence checking of
digital circuits in an industrial environment. In Int’l Workshop on
Boolean Problems, pages 195–200, 2002.

[13] R. Drechsler and D. Sieling. Binary decision diagrams in theory and
practice. Software Tools for Technology Transfer, 3:112–136, 2001.



REFERENCES xxv

[14] H. Foster, A. Krolnik, and David J. Lacey. Assertion-Based Design.
Kluwer Academic Publishers, 2003.

[15] S. Hassoun and T. Sasao. Logic Synthesis and Verification. Kluwer
Academic Publishers, 2001.

[16] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long. Smart simulation using collaborative formal
and simulation engines. In Int’l Conf. on CAD, pages 120–126, 2000.

[17] Y. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage estimation
for symbolic model checking. In Design Automation Conf., pages
300–305, 1999.

[18] Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai. Advanced tech-
niques for RTL debugging. In Design Automation Conf., pages
362–367, 2003.

[19] P. Johannsen and R. Drechsler. Formal verification on register
transfer level – utilizing high-level information for hardware veri-
fication. In IFIP Int’l Conf. on VLSI, pages 127–132, 2001.

[20] R. Jones. Symbolic Simulation Methods for Industrial Formal Ver-
ification. Kluwer Academic Publishers, 2002.

[21] A. Kölbl, J. Kukula, and R. Damiano. Symbolic RTL simulation.
In Design Automation Conf., pages 47–52, 2001.

[22] Th. Kropf. Introduction to Formal Hardware Verification. Springer,
1999.

[23] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean
reasoning. In Design Automation Conf., pages 232–237, 2001.

[24] J. Mohnke, P. Molitor, and S. Malik. Limits of using signatures for
permutation independent Boolean comparison. Formal Methods in
System Design: An International Journal, 2(21):167–191, 2002.

[25] D. Moundanos, J. Abraham, and Y. Hoskote. Abstraction tech-
niques for validation coverage analysis and test generation. IEEE
Trans. on Comp., pages 2–14, January 1998.

[26] P. Rashinkar, P. Paterson, and L. Singh. System-on-a-Chip Verifi-
cation. Kluwer Academic Publishers, 2000.

[27] A. Veneris, A. Smith, and M. S. Abadir. Logic verification based
on diagnosis techniques. In ASP Design Automation Conf., 2003.


