
Experimental Studies on SAT-Based Test Pattern Generation
for Industrial Circuits

Junhao Shi Görschwin Fey Rolf Drechsler Andreas Glowatz Jürgen Schlöffel Friedrich Hapke
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Philips Semiconductors GmbH
22502 Hamburg, Germany

drechsle@informatik.uni-bremen.de

Abstract

Due to the ever increasing size of integrated circuits
classical methods for Automatic Test Pattern Generation
(ATPG) reach their limits. On the other hand recent
advances in algorithms to solve the Boolean
Satisfiability (SAT) problem allow the application to
large instances. This suggests to exploit modern SAT
techniques for ATPG.
Here, we discuss the SAT-based ATPG tool PASSAT that
is applicable to large industrial circuits. The performan-
ce of different SAT solvers is experimentally evaluated
and the potential for problem specific heuristics is
shown. Further experiments show that most of the faults
can be classified very efficiently independently of the
circuit size.

1. Introduction

Due to the exponentially increasing size of integrated
circuits tools for computer aided design have to cope
with problems of rapidly growing complexity. This is
especially true in the area of Automatic Test Pattern
Generation (ATPG). Here, often a complete system of
up to several million gates has to be considered.
Therefore classical algorithms for ATPG, such as FAN
[FS83] reach their limits.
On the other hand algorithms for Boolean Satisfiability
(SAT) have been dramatically improved in the recent
past. This is due to the use of several advanced
techniques in SAT solvers:
• the DLL procedure [DLL62],
• dynamic learning [MS99],
• efficient implementation techniques [MZZ+01], and
• robust search heuristics [GN02].
These modern SAT solvers have been applied with
success to search problems in different areas, e.g. artifi-
cial intelligence or formal verification. Also preliminary
results have been presented for SAT-based ATPG. These
tools transform the problem of ATPG into a SAT pro-
blem. This SAT instance is then solved by a dedicated
SAT solver. The solver either proves unsatisfiability, i.e.
the fault is redundant, or generates a satisfying
assignment, i.e. a test pattern.
Here, we compare different SAT solvers with respect to
ATPG and present experimental results for an improved
version of the tool PASSAT [SFD+05] on large
industrial circuits. So far mainly results for the ISCAS
benchmarks and first promising results for larger circuits
have been published. The modern SAT solver Zchaff
[MZZ+01] is the core engine of PASSAT. A problem

specific variable selection strategy is applied during the
search process. Furthermore, structural information is
embedded into the SAT problem in form of additional
implications to aid the solver. Compared to the previous
version of PASSAT the memory management during
generation of the SAT instance for a given fault has been
improved. As a result the SAT problem can be generated
much more efficiently.

2. SAT-based ATPG

In the following we briefly review basic notations and
definitions for the tool PASSAT [SFD+05]: the D-
algorithm, its application to SAT-based test pattern
generation in TEGUS [SBS96], and the improvements of
PASSAT over TEGUS. The technique to handle circuits
with tri-state elements and the use of unknown values is
introduced. Then, different decision schemes for variable
selection are explained.

A. D-Algorithm

The D-Algorithm [Rot66] was originally proposed for
combinational test generation in classical ATPG. The
basic ideas of the algorithm can be summarized as
follows:
• An error is observed due to differing values at a line in

the circuit with or without failure. Such a divergence is
denoted by values D or D to mark differences 1/0 or
0/1, respectively.

• Instead of Boolean values, the set },,1,0{ DD is
used to evaluate gates and carry out implications.

• A gate that is not on a path between the error and any
output does never have a D-value.

• A necessary condition for testability is the existence of
a path from the error to an output, where all
intermediate gates either have a D-value or are not
assigned yet. Such a path is called a potential D-chain.

• A gate is on a D-chain, if it is on a path from the error
location to an output and all intermediate gates have a
D-value.

On this basis an ATPG algorithm can focus on
propagating D-values and applying the error. The above
observations have been exploited to implement the SAT-
based test pattern generator TEGUS [SBS96]. Besides
the structural information, also additional implications as
proposed in the D-algorithm are encoded in the SAT
instance. Additionally, the initial circuit is transformed
into a circuit of AND gates to benefit from the resulting
simplification during generation of the SAT problem and
fault simulation.

This conversion of the test problem into an equation in
Conjunctive Normal Form (CNF) is also facilitated by
PASSAT. Then, the integrated SAT solver is used to
solve the generated CNF formula.

B. Advances in SAT

Recently, SAT solvers based on the DLL procedure
[DLL62] have been greatly improved due to three main
techniques:
• Conflict analysis [MS99] allows to prune parts of the

search space that do not yield solutions. Similar but
often less powerful techniques for classical ATPG are
often referred to as “learning”.

• Boolean constraint propagation [MMZ+01] corres-
ponds to implications carried out in classical ATPG.
But SAT solvers only use simple implications to
maintain efficiency.

• Variable selection strategies [GN02] have been tuned
for robustness with respect to a wide range of problem
instances. While decisions in ATPG are usually based
on structural criteria, SAT solvers often collect run
time statistics to carry out decisions.

To benefit from these advances PASSAT relies on the
advanced SAT solver Zchaff [MMZ+01]. The basic
clause generation is the same as proposed in the TEGUS
approach. This clause generation has been interfaced
with Zchaff. As a result the clause database can directly
be accessed during clause generation to provide an
efficient ATPG flow even for a large number of test
patterns.

C. Four-Valued Logic

So far only circuits working with Boolean logic have
been considered. But due to environment restrictions in
practice often three-state elements and unknown values
have to be considered. Both is handled by PASSAT.
Instead of only encoding each signal with one Boolean
variable, two variables are used. This allows to encode
the four values ‘0’, ‘1’, ‘Z’ and ‘U’.

D. Variable Selection

Decisions based on variable selection also occur in
classical test pattern generation. Here, usually structural
methods are employed to determine a good choice for
the next selection. Besides the default variable selection
strategy from Zchaff PASSAT provides two strategies
similar to strategies known from classical ATPG:
selecting primary inputs only or selecting fanout points
only.
Making decisions on primary inputs only was the
improvement of PODEM [Goe81] over the D-algorithm.
Any other internal value can be implied from the
primary inputs. This yields a reduction of the search
space and motivates to apply the same strategy for SAT-
based test pattern generation as well. This is done by
restricting the variable selection of the SAT solver to
those variables corresponding to primary inputs or state
bits of the circuit. Within these variables the VSIDS
strategy [MMZ+01] is applied to benefit from the
feedback of conflict analysis and current position in the
search space.
Restricting the variable selection to fanout gates only has
been proposed in FAN [FS83] for the first time. Again,
the idea is to restrict the search space while getting a
large number of implications from a single decision.
Conflicts resulting from a decision are often due to a

small region within the circuit. If fanout gates and
primary inputs are selected instead of only primary
inputs, conflict detection due to local inconsistencies
becomes possible. Thus, internal conflicts are detected
with less effort. PASSAT applies the VSIDS strategy to
select fanout gates or primary inputs.
The experiments in Section 4 show that some heuristics
are quite robust, i.e. they can classify all faults, while
others are fast for some faults but abort on others.
Therefore an iterative approach turned out to be most
effective:

1. One strategy is run with a given time out.
2. If the first strategy does not yield a test pattern a

second, more robust, strategy is applied.
This approach ensures, that a fast test pattern generation
is carried out where possible, while a more sophisticated
search is done for the remaining faults.

3. Memory Management

The main improvement of the advanced version of
PASSAT over the one presented in [SFD+05] is the
memory management.
The naive way to register clauses in the clause database
of the solver is to produce them one by one while
traversing the circuit structure. When clauses are
generated for a particular gate the corresponding
memory has to be allocated.
More efficient is the allocation of large blocks of
memory for the storage of clauses as implemented in the
new version of PASSAT. When storage space for
clauses is needed, a block of 64KB is allocated. Clauses
in this block are stored in dynamic lists, the management
of these lists is done by PASSAT instead of the
operating system. While traversing the circuit the
clauses are stored in the current memory block. If no
more space is available a new block is allocated.
This memory is not freed between runs for different
faults, i.e. in successive runs often no additional memory
has to be allocated.
In summary, only a few system calls for memory
allocation are necessary. This memory management does
not directly improve the SAT solving process, but
reduces the time needed for CNF generation.

4. Experimental Results

So far only experimental data for the ISCAS benchmarks
and first promising results for industrial circuits have
been reported for PASSAT [SFD+05]. Further
experimental studies on large industrial benchmarks
from Philips Semiconductors GmbH are presented in the
following. These studies open new insights in properties
specific to SAT-based ATPG. A set of industrial circuits
has been used for benchmarking. The name of each
circuit indicates the number of gates of the
corresponding circuit, e.g. circuit p44k has more than
44.000 gates. The experiments were carried out on an
AMD Athlon 3300+ (2.2GHz, 1GB, Linux).

A. Different SAT solvers

In the first series of experiments different SAT solvers
have been applied: Berkmin (v5.61) [GN02], Grasp
(v2004) [MS99], Minisat (v1.13) [ES03], Walksat (v45)
[JT96], and Zchaff [MMZ+01]. The SAT problem has
been written into a data-file, then the different SAT
solvers were applied to this problem. For all SAT solvers
the default heuristics for variable selection, clause

deletion etc. have been used. In Zchaff the branching
variables have been restricted to inputs only in one run.
All variables were allowed for branching in a second
run. The results are shown in Table 1. The SAT solver
Walksat that is based on random search can not handle
the problem or takes too long to return the result. The
other SAT solvers, that are based on the DLL procedure
are similar in performance. When the other SAT solvers
are ranked by considering the default strategy, the
number of abortions, and the run times, the order would
be: Minisat, Berkmin, Zchaff, Grasp – this corresponds
to the publication dates, i.e. Minisat is the newest solver.
On the other hand Zchaff performs best, when only input
variables are allowed for branching. This shows the
potential for improvements that can be gained by
adopting problem specific heuristics.

B. Improved Clause Allocation

An important improvement over the earlier version of
PASSAT is the memory management as introduced in
Section 3. The speed-up gained from the memory
management can be seen in Table 2. All faults of the
given benchmarks have been considered. Given are the
run times to generate the problem instances in CNF and
the run times to solve all the SAT instances in columns

Eqn and SAT, respectively. Already for the small ISCAS
benchmarks a significant speed-up was achieved. The
time for SAT solving only varies slightly. The speed-up
is due to the faster generation of the CNF descriptions.
The same effects as for the small circuits are also
observed for the industrial benchmark p88k. For such
large circuits an improvement in generating the CNF is
of even more importance. But also speeding up the SAT
solver itself is desirable.

C. Run Time Spectrum

Table 3 shows the run time spectrum for sets of faults.
The faults considered in this experiment were aborted by
the industrial FAN-based ATPG tool AMSAL from
Philips Semiconductors GmbH using the default settings.
Therefore these faults can be considered as being hard to
classify. The table shows the number of faults that were
handled within a given amount of time. The run time
comprises the time for generating and solving the SAT
problem. Each column gives the number of faults that
were handled within a given time interval. After 20
seconds the process was aborted. In most cases the faults
were classified very efficiently. The only exception is
circuit p49k. In this case a large number of faults could
not be handled within 20 seconds. For all other circuits
most of the faults were classified within 1 second.
Especially remarkable is the largest circuit p1330k,
where 79% of the faults that are hard for classical ATPG
were classified within less than 0.1 second.

D. Decision Strategies

Based on the previous results adapted decision strategies
for variable selection have been investigated. The four
decision strategies introduced in Section 2.D are

Table 2: Blockwise clause allocation

No MM MM
Circuit Eqn SAT Eqn SAT

Speed-
up

c0432 1.48 1.64 1.19 1.82 1.04
c0499 5.03 13.00 3.57 11.10 1.23
c0880 1.36 0.31 1.04 0.36 1.19
c1355 8.97 9.25 6.36 9.51 1.15
c1908 9.08 16.30 7.53 16.30 1.07
c2670 6.83 7.83 5.24 8.09 1.10
c3540 39.60 16.50 31.10 14.70 1.22
c6288 691 643 697 638 1.00
c7552 50.50 24.30 41.20 26.70 1.10
s01494 1.38 0.52 1.03 0.52 1.22
s05378 4.30 1.48 3.42 1.47 1.18
s09234 7.18 2.48 5.71 2.48 1.18
s13207 49.90 45.60 40.00 43.60 1.14
s15850 61.30 20.10 51.30 20.90 1.13
s35932 31.70 5.74 28.30 6.26 1.08
s38417 83.40 34.20 68.80 35.70 1.13
s38584 43.30 16.40 36.50 17.50 1.11
p88k 16142 4726 11215 4639 1.32

Table 1: Run times of different SAT solvers

Time(s) Method

Fault

Zchaff
(inputs)

Zchaff
(all)

Berkmin Minisat Grasp Walksat Result

p49k, no. 1 14.78 Abort 6078.00 101.00 Abort Too large SAT
p49k, no. 2 14.54 Abort 6215.00 100.00 Abort Too large SAT
p49k, no. 3 0.85 Abort Abort 644.00 Abort Too large SAT
p49k, no. 4 0.88 Abort Abort 891.00 Abort Too large SAT
p44k, no. 1 1.38 0.11 0.29 0.15 24.95 10.08 undec. UNSAT
p44k, no. 2 0.65 0.29 90.63 3.19 4361 10.06 undec. SAT

Table 3: Time to classify faults

Time for classification Circuit
<0.1 0.1-1 1-10 10-20 abort

p44k 0 57 19 0 0
p49k 0 0 385 0 1581
p80k 9 207 0 0 0
p88k 106 167 7 0 0
p177k 137 119 58 5 13
p565k 961 440 8 0 0
p1330k 2053 486 21 34 8

considered. Table 4 shows the experimental results for
two sets of faults (A and B) of circuit p49k. Shown are
the number of faults (cnt), the number of faults classified
as redundant (red) and the number of aborted faults (ab).
The run times for creating (Eqn) and solving (SAT) all
CNF instances as well as the total run time (All) are
given. Set A contained only a few “hard” faults, i.e.
faults that are difficult to classify using the SAT
approach. In contrast all the faults in Set B were too hard
to be classified. In general the strategies Input or Fanout
were the fastest. But only the default strategy of Zchaff
was robust enough to classify one of the redundant faults
efficiently. This leads to the good results of the
combined strategy Input+All. Branching only on the
inputs for a short time efficiently filters and classifies
“simple” faults. Afterwards the “harder” faults are
classified by the default strategy that branches on all
variables.

E. Industrial Benchmarks

The individual techniques that were empirically
validated in the previous sections yield a robust SAT-
based ATPG tool. The performance of PASSAT on
industrial benchmarks is shown in Table 5. The data
columns are the same as explained previously.
Furthermore, the peak memory requirements (Mem), the
number of clauses (Cls) and variables (Var) are reported.
As can be seen all faults of most circuits are classified
efficiently. Even for the largest circuit p565k more than
97% of the faults were classified. Run times and
memory requirements were moderate in all cases. In our
experiments no direct relation between run time and
circuit size can be observed. The run time is subject to
the inherent complexity of the individual fault
classification problems circuit. In contrast in the
experiments the memory requirements are directly
related to the circuit size.

5. Conclusions

An improved version of the SAT-based ATPG tool
PASSAT has been presented. Techniques to improve the
performance of CNF generation and SAT solving have
been proposed and empirically validated. The overall
performance of the tool even on large industrial
benchmarks is remarkable.

References

[DLL62] M. Davis, G. Logeman, D. Loveland: A

machine program for theorem proving,
Comm. of the ACM, Vol. 5, No. 7, pp. 394-
397, 1962.

[ES03] N. Eén, N. Sörensson: An extensible SAT
solver. In. Proc. of SAT 2003, LNCS, Vol.
2919, pp. 502-518, 2004.

[FS83] H. Fujiwara and T. Shimono. On the
acceleration of test generation algorithms.
IEEE Trans. on Computers, Vol. 32, No. 12,
pp. 1137-1144, 1983.

[GN02] E.Goldberg, Y.Novikov: BerkMin: A fast
and robust SAT solver. In Proc. of DATE,
pp. 142-149, 2002.

[Goe81] P. Goel. An implicit enumeration algorithm
to generate test for combinational logic.
IEEE Trans. on Computers, Vol. 30, No. 3,
pp. 215-222, 1981.

[JT96] D. S. Johnson, M. A. Trick, ed.: Appendix
summarizing results of walksat on challenge
instances, in DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science, Vol. 26, AMS, 1996.

[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao,
L. Zhang, S. Malik: Zchaff: Engineering an
efficient SAT solver. In Proc. of Design
Automation Conference, pp. 530-535, 2001.

[MS99] J. P. Marques-Silva, K. A. Sakallah :
GRASP: A search algorithm for propositio-
nal satisfiability. In IEEE Trans. on Com-
puters, Vol. 48, No. 5, pp. 506-521, 1999.

[Rot66] J. Roth. Diagnosis of automata failures: A
calculus and a method. IBM J. Res. Dev.,
Vol. 10, pp. 278-281, 1966.

[SBS96] P. Stephan, R. Brayton, and A. Sangiovanni-
Vincentelli. Combinational test generation
using satisfiability. IEEE Trans. on CAD,
Vol. 15, No. 9, pp. 1167-1176, 1996.

[SFD+05] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J.
Schlöffel, F. Hapke: PASSAT: Efficient
SAT-based test pattern generation for
industrial circuits. In Proc. of ISVLSI, pp.
212-217, 2005.

Table 4: Decision strategies (on p49k)

Heuristic cnt red ab Eqn SAT All
Set A
Input+All 187 68 1 1288 795 2084
All 0 1 255 1075 2770 3847
Input 187 67 2 1184 601 1787
Fanout 0 0 256 1295 1272 2568
Set B
Input+All 0 0 171 26 6798 6826
All 0 0 171 28 8713 8745
Input 0 0 171 27 7463 7496
Fanout 0 0 171 25 4749 4781

Table 5: All stuck-at faults

Circuit cnt red ab Eqn SAT All Mem Cls Var
p44k 61230 823 0 17821 30797 49515 171.7M 330770 102085
p77k 126338 0 0 1156 334 1491 211.4M 815921 240910
p80k 176159 5 9 7420 5591 13012 279.6M 1308017 396964
p88k 126929 2354 169 2985 9044 12030 231.2M 499783 150628
p99k 131913 759 4548 4364 36965 41327 526.4M 522160 160026
p565k 1175605 26372 28343 1456 3073 4546 691.6M 3378721 1039140

