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Abstract. We present an efficient, fully automatic approach to fault localiza-
tion for safety properties stated in linear temporal logic. We view the failure as a
contradiction between the specification and the actual behavior and look for com-
ponents that explain this discrepancy. We find these components by solving the
satisfiability of a propositional Boolean formula. We show how to construct this
formula and how to extend it so that we find exactly those components that can be
used to repair the circuit for a given set of counterexamples. Furthermore, we dis-
cuss how to efficiently solve the formula by using the proper decision heuristics
and simulation based preprocessing. We demonstrate the quality and efficiency
of our approach by experimental results.

1 Introduction

When a design does not fulfill its specification, debugging begins. There is little tool
support for fault localization and correction, although industrial experience shows that
it takes more time and effort than verification does.

In this paper we propose an approach for automatic localization of fault candidates
for sequential circuits at the gate or HDL level for safety properties. The diagnosis
uses a set of counterexamples that is obtained from either a formal verification tool or
a simulator with functional checkers. Our approach builds on model based diagnosis
[21]. A failure is seen as a discrepancy between the required and the actual behavior of
the system. The diagnosis problem is then to determine those components that explain
the discrepancy, when assumed that they are incorrect.

In [12], it is shown that for certain degenerate cases of sequential circuits, model
based diagnosis marks all components as possible faults. Perhaps for this reason, there
is little work on model-based diagnosis for sequential circuits, with the exception of
[19], which does not take properties into account and has a different fault model than we
do. Our experimental results show, however, that such degenerate cases rarely happen
and that model based diagnosis can be used successfully in the sequential case.

Previous work in both the sequential and combinatorial case has assumed that a
failure trace is given and the correct output for the trace is provided by the user. In our
approach, instead of requiring a fixed error trace, we only assume that a specification
is given in Linear Temporal Logic (LTL) [20]. Counterexamples to a specification can
be extracted automatically and the user does not need to provide the correct output: the
necessary constraints on the outputs are contained in the specification.
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We formulate the diagnosis problem as a SAT problem. Our construction is closely
related to that used in Bounded Model Checking (BMC) [5]. In our setting, a counterex-
ample of length k is given. As in BMC, we unroll the circuit to length £ and build a
propositional formula to decide whether the LTL property holds. If we fix the inputs in
the unrolled circuit to the values given in the counterexample and assert that the prop-
erty holds, we arrive at a contradiction. The problem of diagnosis is the problem of
resolving this contradiction.

To resolve the contradiction, we extend the model of the circuit. We introduce a set
of predicates which assert that a component functions incorrectly. If an abnormal predi-
cate is asserted, the functional constraints between inputs and outputs of the component
are suspended. The diagnosis problem is to find which abnormal predicates need to be
asserted in order to resolve the contradiction.

We can further restrict the set of satisfying assignments by requiring that the output
of a gate must depend functionally on the inputs and the state of the circuit. Thus, we re-
quire the existence of a combinatorial correction. This allows us to extract a suggestion
of the proper behavior of the suspect component from the satisfying assignments.

To improve the performance of the algorithm, we have experimented with decision
heuristics for the SAT solver. In our setting a small set of decision variables suffices
to imply the values of all other variables. Restricting the decision variables to this set
leads to a considerable speedup and allows us to handle large and complex designs.

The search space can be further pruned by applying a simulation based preprocess-
ing step. By calculating sensitized paths, the set of candidate error sites is pruned first.
Only those components identified as candidates during the preprocessing step have to
be considered during SAT based diagnosis.

The paper is structured as follows. In Section 2, we give an overview of related
work. Section 3 gives the foundation of our approach and presents how we perform
fault localization. The applicability of the approach on the source level is shown in
Section 4. Then, Section 5 gives experimental evidence of the usability of our approach
and we conclude in Section 6.

2 Related Work

There is a large amount of literature on diagnosis and repair. Most of it is restricted to
combinatorial circuits. Also, much of it is limited to simple faults such as a forgotten
inverter, or an AND gate that should be an OR. Such faults are likely to occur, for
example, when a synthesis tool makes a mistake when optimizing the circuit. The work
in [25] and [7] on diagnosis on the gate level, for example, combine both limitations.

Wahba and Borrione [26] treat sequential circuits on the gate level, but limit them-
selves to simple faults. The fault model of [13] is more general, and it addresses se-
quential circuits, but assumes that the correct outputs are given. Its technical approach
is also quite different from ours.

Ali et al. proposed a SAT based diagnosis approach for sequential equivalence
checking [3] and debugging combinational hierarchical circuits [2]. But the technique
was only applied on the gate level and under the assumption that correct output values
for counterexamples are given.



Both [10] and [29] work on the source code level (for hardware and programs,
respectively). Both are based on the idea of comparing which parts of the code are
exercised by similar correct and incorrect traces.

Only a few approaches have been proposed that are dedicated to fault localization or
correction for property checking. In [9] a simulation based approach is presented which
is less accurate than ours. Also, they do not consider functional consistency constraints.
We use this simulation based technique as a preprocessing step to prune the number
of components considered during diagnosis. In [14,23] a game based approach is pre-
sented which locates a fault and provides a new function as a correction for a faulty
component. Because it computes a repair, this approach is far less efficient than the one
presented here.

3 Diagnosis for Properties

In this section we describe our approach. In 3.1 we give a description of the basic algo-
rithm, We describe extensions of the algorithm for runtime and accuracy improvements
in Section 3.2, 3.3, and 3.4. We conclude this section with a discussion in 3.5.

3.1 Computing Fault Candidates

In this section, we describe how to find fault candidates in a sequential circuit. To sim-
plify our explanation, we assume that the components of the circuit are gates, that is, a
fault candidate is always a single gate. We will return to the question of the proper defi-
nition of components in Section 4. We furthermore assume that the correct specification
is given as a (single) LTL formula.

We proceed in four steps:

1. Create counterexamples,

2. build the unrolling of the circuit, taking into account that some components may be
incorrect,

. build a propositional representation of the property, and

4, use a SAT solver to compute the fault candidates.

w

The counterexamples to the property can be obtained using model checking or using
dynamic verification. It is advantageous to have many counterexamples available as this
increases the discriminative power of the diagnosis algorithm. Techniques for obtaining
multiple counterexamples in model checking have been studied in [8,11]. We will,
however, first focus on the case where one counterexample (of length k) is present. We
assume that the counterexamples are finite, that is, we ignore the liveness part of the
specification.

The purpose of steps 2 and 3 is to construct a propositional formula v such that
the fault candidates can easily be extracted from the satisfying assignments for 7). As
explained before, the procedure is closely related to BMC, and we will pay attention
specifically to the differences.



Unrolling the Circuit We will assume that the reader knows how a propositional logic
formula is obtained by unrolling the circuit. Let n be the number of gates in the circuit
(before unrolling) and let ¢; ; be the propositional representation of the behavior of
gate ¢ attime frame t. Then, Ay 11} Aiego,...,n—1} it is the (standard) length-k
temporal unrolling of the circuit.

In order to perform diagnosis, we introduce n new propositional variables, abg
through ab,,_;. We replace the description of gate ¢ at time frame ¢ by the formula
cpg,t = (—ab; — ;). Intuitively, if ab; is asserted, gate + may be incorrect, and we do
not make any assumptions on its behavior at any time frame. If ab; is not asserted, the
gate works as required. Now assume that we have just one counterexample and we use
the formula £ to represent that the inputs of the unrolled circuit are as prescribed by our
counterexample. Then the description of the unrolling is given by

@' =E&N /\ /\ 90;',t'

te{0,...,k—1} i€{0,...,n—1}

Building the Property Next, we explain how to construct the propositional formula
representing the specification.

Suppose a partial specification of the system is given in a LTL formula f. For each
subformula g of f and for every time frame ¢ we introduce a new propositional vari-
able v, ;. These variables are related to each other and to the variables used in the un-
rolling of the circuit as follows. For the temporal connectives, we use the well-known
expansion rules [15], which relate the truth value of a formula to the truth values of its
subformulas in the same and the next time frame. For instance, G f = f A XG f and
F f = f Vv XF f. The Boolean connectives used in LTL are trivially translated to the
corresponding constructs relating the propositional variables. Finally, the truth value of
atomic proposition p at time frame ¢ is equal to the value of the corresponding variable
in the unrolling of the circuit. The final requirement is that the formula is not contra-
dicted by the behavior of the circuit. That is, vy, the variable corresponding to the
specification in time frame 0, is true.

Propositional Formula Note that if we combine the description of the counterexample,
the circuit, and the specification and we assume that all abnormal predicates are false,
we arrive at a contradiction. Let {; = /\?:_01 —ab;, then ¢’ A x A (o is contradictory.

A diagnosis is obtained by asking which abnormal predicates can resolve the contra-
diction. For instance, for single fault candidates, let (; = V?:_(]l A ji Tabj guarantee
that at most one abnormal predicate is true and let 1) = ' A x A (1. If a is a satisfying
assignment for 1, and a asserts ab;, then i is a fault candidate.

Multiple counterexamples can be used to reduce the number of diagnosed compo-
nents: only an explanation that resolves the conflict for all counterexamples is a fault
candidate. The propositional formula corresponding to this problem consists of one un-
rolling of the circuit for each counterexample. All sets of variables are disjoint, the
abnormal predicates, which are shared, are an exception.
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Fig. 1. Circuit with gate G2 as diagnosis (g = —req V ack V Xack, f = —ack vV = Xack).

Example In the following we illustrate the process using a simple arbiter with input
req and output ack. The arbiter is supposed to acknowledge each request either instan-
taneously or in the next clock tick, but it may not emit two consecutive acknowledge-
ments. In LTL, the specification reads

G((—req V ack V X ack) A (—ack V = X ack)).

Let DO and D1 be latches. Latch DO remembers whether there is a pending request,
and D1 remember whether an acknowledge has occurred in the last step. The arbiter is
defined by the following equations: ack = (DO V req) A D1, nezt(D0) = req A —ack,
and nezt(D1) = ack. Furthermore, the initial values of DO and D1 are 0. Note that the
circuit contains a fault: ack should be G1 A —=D1 (see Figure 1).

The shortest counterexamples to the property have length two. For example, if we
have requests in the first two time frames, ack is O in both frames, which violates the
specification.

Figure 1 shows the unrolled circuit combined with the unrolled LTL specification.
The abnormal predicates can remove the relation between the input and the output of
a gate. For instance, the clauses for gate G2 are equivalent to —aby — (G2 < (G1 A
D1)). Nothing is ascertained about the case where ab, is true.

The gates below the horizontal dashed line correspond to the unrolled formula. The
signal corresponding to the truth of the specification is labeled “valid”. For every time



frame, the outputs of the gates in the unrolled formula correspond to a subformula of
the specification. In the figure, the labels on the dashed horizontal lines indicate which
subformula is represented by a gate output.

It is easily seen that valid is zero when two requests occur and all abnormal signals
are set to zero. (Please ignore the gray numbers.) Note that signals corresponding to the
valuation of ack and G (f A g) in time frame 2 are inputs (bottom right). The fact that
the specification is false can be derived regardless of the values of these signals, since
the counterexample is finite.

The question we pose the SAT solver is whether there is a consistent assignment to
the signals that makes the specification true and sets only one of the abnormal predicates
to true. One solution to this question is shown in gray in the figure. Gate G2 is assumed
to be incorrect (as expected). For the circuit to be correct, it could return 1 in time
frame O and O in time frame 1. The corresponding value suggested by this satisfying
assignment is that G2 should be O when G1is 1 and D1 is 0, and O when both inputs to
the gate are 1.

The contradiction cannot be explained by setting ab; or abs to true, which means
that G2 is our only fault candidate.

3.2 Functionality Constraints

There is another satisfying assignment to the example just discussed: let G2 be 0 in
the first step and 1 in the second. Note that there is no combinational correction to the
circuit that implements this repair, as the inputs and states in both steps would be the
same, but the output of G2 is required to be different.

In fact, the approach may find diagnoses for which there is no combinational re-
pair. It may even find diagnoses when the specification is not realizable as a circuit. (A
similar observation is made in [28] for multiple test cases). We will now show that by
adding Ackermann constraints to our propositional formula we can guarantee that for
any diagnosis there is a fix that makes the circuit correct for at least the given set of
counterexamples.

Let us say that a gate g is repairable if there is a Boolean function b(%, s) in terms of
the inputs and the state such the circuit adheres to the specification when g is replaced
by b(%, s). That is, a gate is repairable if we can fix the circuit by replacing the gate by
some new cone of combinational logic.

We say that g is repairable with respect to C, where C' is a set of sequences of
inputs, if there is a Boolean function b(i, s) such that none of the sequences in C' are a
counterexample to the property when g is replaced by b(%, ).

Given a set of counterexamples C, the Ackermann constraint for a gate g says that
for any (not necessarily distinct) pair of counterexamples c;,co and any pair of time
steps i, 7, if the state and the inputs of the circuit in time step ¢ of counterexample ¢;
equal the state and the inputs in time step j of counterexample c,, then the output of g
is the same in both steps.

Ackermann constraints can easily be added to the propositional formula by adding
a number of clauses that is quadratic in the cumulative length of the counterexamples
and linear in the number of gates.

We have the following result.



1 function staticDecision

2 for i := 1 to A.size

3 let ab be the variable A[i];
4 if ab == UNDECIDED then

5 ab := 1;

6 return DECISION_DONE;

7 else if ab == 1 then

8 for t := 0 to k—1

9 if H(ab)[t] == UNDECIDED
10 H(ab)[t] := 0;

11 return DECISION_.DONE;
12 return SATISFIED ;

Fig. 2. Pseudocode of the static decision strategy

Theorem 1. In the presence of Ackermann constraints, given a set of counterexamples
C, any gate that is a diagnosis is repairable for C.

It can be argued that our choice of what constitutes a repairable gate is somewhat
arbitrary. Alternative definitions, however, are handled just as easily. For instance, one
could require that a fix is a replacement by a single gate with the same inputs. The
Ackermann constraints would change correspondingly. On the other extreme, one could
allow any realizable function, in which case the Ackermann constraints would require
that the output is equal if all the inputs in the past have been equal.

3.3 SAT Techniques

In practice, one wants all fault candidates, not just one. This can be achieved efficiently
by adding blocking clauses [17] to the SAT instances stating that the abnormal predi-
cates found thus far must be false. Note that we do not add the full satisfying assignment
as a blocking clause, but just the fact that some abnormal predicates must be false, to
exclude all other valuations of this assignment.

The efficiency of the SAT solver can be drastically improved using a dedicated
decision strategy similar to [24]. By default, the solver performs a backtrack search on
all variables in the SAT instance. In our case all variable values can be implied when the
abnormal predicates and the output values of gates asserted as abnormal are given, since
the inputs of the unrolled circuit are constraint to values given by the counterexample.
Therefore, we apply a static decision strategy that decides abnormal predicates first and
then proceeds on those gates that are asserted abnormal starting at time frame 0 up to
time frame k£ — 1.

Figure 2 shows the pseudo code for this decision strategy. The vector A contains
all abnormal predicates. This vector is searched until a predicate ab with an undecided
value is found. If no value was assigned, the predicate is set to 1 (Lines 4-6). Due to
the construction of the SAT instance, this assignment implies the value O for all other
abnormal predicates. If the first assigned predicate has value 1, the output variable of
the gate influenced by ab is considered (Lines 7-11). The hash H maps abnormal pred-
icates to output variables of gates. H (ab) returns a vector of k propositional variables.
Variable H (ab)[t] represents the output of the gate that is asserted abnormal by ab at
time frame ¢. Thus, the first gate with unknown output value that is asserted abnormal



is set to the value 0. Gates in earlier time frames are considered first. If no unassigned
variable is found, a satisfying assignment was found (Line 12). Note that only one value
of each variable has to be assigned in the decision strategy because the other value is
implied by failure driven assertions [16]. Note also that H (ab)[t] is a list in the general
case because we consider multiple counterexamples and components instead of gates,
i.e. each abnormal predicate may correspond to multiple gates as explained in Section
4. In our implementation this list is searched for the first gate that is undecided.

The experiments show a significant speed up when this strategy is applied. We have
not yet experimented with constraint replication, but this can obviously be used in our
setting, especially when multiple counterexamples are present.

3.4 Simulation Based Preprocessing

When all gates or components of a circuit are considered as potential diagnoses the
search space is very large. A first obvious method to reduce this search space is a cone-
of-influence analysis or the calculation of a static slice. As a result, only those compo-
nents that drive signals considered in the property are contained in the SAT instance.

Furthermore, we apply a simulation based preprocessing step [25,9] to further re-
duce the number of components that have to be considered during diagnosis. Given a
counterexample, all values are simulated on the unrolled circuit and the property in a
linear time traversal. Then, starting at the output of the property, sensitized paths are
traced towards the inputs and state at time frame O of the circuit [1]. This relies on the
notion of controlling values of inputs for gates that determine the value of the output,
e.g. the value 0 (1) is the controlling value for an AND gate (OR gate). First, the out-
put is marked. Then, inputs with controlling values are marked recursively. If no input
is controlling all inputs are marked recursively. Only components on a sensitized path
are candidates for diagnoses. When using multiple counterexamples only components
marked by each counterexample are candidates. Under a single failure assumption this
procedure does not change the solution space for diagnosis, because changing a com-
ponent that is not on a sensitized path cannot change the output value of the property.

The experimental results show that the overhead of this linear time preprocessing
step is low. This step can prune the search space and, by this, reduces the overall run
time.

3.5 Discussion

Just like multiple counterexamples, stronger specifications reduce the number of diag-
noses. When more properties are considered, the constraints on the behavior are tight-
ened. This observation is supported by our experiments.

In practical applications a hint how to repair the faulty behavior at a particular com-
ponent is useful. The satisfying assignments not only provide diagnoses, but also the
values that the faulty components should have. Thus, a correction is determined for the
scenarios defined by the counterexamples.

Debugging the property — that might be faulty in practice — is also possible using
the same approach. In this case abnormal predicates are associated to components of
the property instead of the circuit.



The extension to liveness properties does not seem to be simple. In model checking,
the counterexample to a liveness property is “lasso-shaped”: after some initial steps,
it enters an execution that repeats infinitely often. It is very easy to remove such a
counterexample by changing any gate that breaks the loop without violating the safety
part of the property. The recent observation that liveness properties can be encoded as
safety [4] does not seem to affect this observation as it merely encodes the loop in a
different way. Note however, that on an implementation level one probably has bounds
on the response time and liveness can thus be eliminated from the specification, at least
for the purpose of debugging.

4 Source Level Diagnosis

The previous section describes our approach by means of sequential circuits on the gate
level. In this section we show the applicability of the approach on the source level. An
expression on the source level may correspond to multiple gates. Therefore a single
fault on the source level may correspond to multiple faults on the gate level. To avoid
multiple fault diagnosis on the gate level, we can shift the diagnosis process to the
source level and do not care about the gate level representation. Another possibility is
to keep the information between source level and gate level and use it for the diagnosis
process.

We present two principal techniques to calculate diagnoses at the source code level,
discuss their advantages and point out the differences between them. Both techniques
have been implemented for an evaluation.

4.1 Instrumentation Approach

The instrumentation approach directly includes the abnormal predicates in the source
code of the design, this means components and reported diagnoses are parts of the
source code.

We modify the design by introducing new primary inputs for abnormal predicates.
Then, each component is enclosed by an if-statement that allows to override the value
that is internally calculated by an arbitrary value from another new primary input. For
example, when we consider the assignment ¢ = (a && !b) as a component, we
replace it by

c = if(ab) then new_input else (a && !Db).

In this implementation the mapping between source and gate level is not important.
This makes the approach very easy to implement on top of an existing model checker.

The choice of components only depends on the instrumentation of the source code
and can be adjusted to meet particular needs. Our choice regards any expression as a
component, including right-hand sides of assignments and branching conditions.

We implemented the instrumentation approach on top of the VIS model checker [6].
We used two Perl scripts to instrument the Verilog design and the LTL property. We used
the BMC package of VIS to generate counterexamples. As SAT solver for computing
the diagnoses, we used zchaff [ 18] enhanced with the static decision heuristic discussed
in Section 3.5. In the current version of the implementation multiple counterexamples
need multiple calls to the SAT solver.
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Fig. 3. Source code link in the Hierarchical Approach

4.2 Hierarchical Approach

In the second approach, the hierarchy that is induced by the syntactical structure of the
source code is included in the gate level representation of the design and the property.
This allows us to link the gate level to the source code.

The link between source code and gate level model is established during synthe-
sis. Figure 3 shows this procedure. An Abstract Syntax Tree (AST) is created from the
source code at first. Then, the AST is traversed and directly mapped to gate level con-
structs. During this mapping, the gates that correspond to certain portions of the source
code can be identified. Thus, the AST induces regions at the gate level. These regions
are grouped hierarchically.

Components are identified based on this representation. Each region corresponds to
a component. E.g., the expression (a==1) && (b==0) corresponds to three compo-
nents: (a==1), (b==0), and the complete expression. We introduce a single abnormal
predicate for each region. All gates that do not belong to a lower region in the hierarchy
are associated to this abnormal predicate. In the example the predicates aby, abs, and
abs are introduced.

Although this approach requires a modified synthesis tool, the diagnosis engine can
take advantage of the hierarchical information. For instance, a correction of a single
expression may not be possible but changing an entire module may rectify all coun-
terexamples. When this hierarchy information is encoded in the diagnosis problem, a
single fault assumption still returns a valid diagnosis.

The granularity of the diagnosis result can also be influenced. For example, we may
choose only source level modules as components to retrieve coarse diagnoses, or, in
contrast, we may consider all subexpressions and statements as components for a fine
grained diagnosis result.

Finally, hierarchical information can be used to improve the performance of the
diagnosis engine [2]. First, a coarse granularity can be used to efficiently identify pos-
sibly erroneous parts of the design. Then, the diagnosis can be carried out at a finer
granularity with higher computational cost to calculate more accurate diagnoses for the
previously diagnosed components.

The implementation of the hierarchical approach uses a modified version of the
synthesis tool vI2mv from VIS and an induction-based property checker. The design
and the property were described in Verilog. As a result, each can be considered during
diagnosis. This environment can use multiple counterexamples for diagnosis and simu-



Table 1. Results for weak vs. strong specification (Columns 1,2, and 3: name of the design, number of gates and registers in
design; Columns 4 and 5: length of the counterexample and time in seconds to calculate it; Column 6: number of components
on source level; Column 7 and 8: results for static slice (percentage numbers are the ratio of the result to the total number
of components); Columns 9 and 10: diagnosis results with weak specification; Columns 11 and 12: diagnosis results with
strong specification, Column 13 time to solve SAT instance for a single and all diagnoses

Circuit BMC Diagnosis
slice weak strong

Prop gates registers len time #cmp #cmp % #cmp % #emp % time

bO1_el, pOverfl 98 7 5 001 40 32 80 8 20 5 13 0.04,0.10
b02_el, pAltOut 46 4 5002 20 20 100 6 30 5 25 001,002
b03_el, pGrantlnv 387 30 4 001 50 49 98 10 20 7 14 001,014
b09.el, pLoadOld 398 28 21 013 33 22 67 14 42 6 18 0.38,0.83
b10-el, pRx2Tx 318 20 7 002 61 53 8 16 26 10 16 0.73,0.96
bll_el, pRsum 770 31 6 017 44 39 8 16 36 9 20 0.11,0.39
bl3_el, pRelease 505 53 5011 9% 72 75 6 6 3 3 1.88,1.94
VsaR_el, pInv 2956 154 15 05 56 S50 8 14 25 8 14 1.99,5.87

lation based preprocessing. The property checker is based upon a version of zchaff that
supports incremental SAT [27] and is enhanced with the static decision heuristic. Dur-
ing diagnosis, one SAT instance is created that includes a copy of the design for each
counterexample. We use the incremental interface of zchaff to calculate all diagnoses.

5 Experimental Results

For the experimental data, we used benchmarks provided with VIS. We manually in-
troduced a bug in each of the designs by changing an operator or a constant. In the
following, we will show how specific the diagnosis is and we will show the benefit of
the modified decision heuristics and simulation based preprocessing. We are currently
using two implementations, one for the instrumentation approach and one for the hi-
erarchical approach. This is the reason that the designs in the two tables are not the
same.

5.1 Accuracy

Diagnosis Results and Strong Specification For the analysis of the accuracy of the
diagnosis we first consider the results of the instrumentation approach. We used a Pen-
tium IV (Hyperthreading, 2.8 GHz, 3GB, Linux) for the experiments.

Table 1 contains the obtained experimental results. Since a verification engineer
would only consider the expressions for debugging that are in the cone of influence of
the failing property, we have calculated a static slice. For the diagnosis process we first
used a weak specification, namely only the property which failed during bounded model
checking. As shown in the table, the diagnosis results with the weak specification are
far better than the slicing results. We repeated the experiments with a stronger specifi-
cation. We added between three and ten additional properties to the property that failed
during bounded model checking. With a stronger specification the number of diagnoses
were reduced for every example, and for some examples results were significantly bet-
ter. The small number of diagnoses underlines the usefulness of our approach to fault
localization.



Table 2. Diagnosis results for multiple counterexamples and Ackermann constraints

Circuit Diagnosis
slice single four  Ackermann
Prop gates registers len #cmp #cmp % #cmp % #cmp % #cmp %
am2910_p1_el,pEntry5 2257 102 5 227 20590 66 29 36 15 36 15

am2910_p2_el, pStackPointer 2290 102 230 87 37 37 16 26 11 26 11

5
bpbs_pl_el, pValidTransition 1640 39 2 127 102 80 1511 13 10 13 10
bpbs_pl.e2, pValidTransition 1640 39 2 127 102 80 15 11 4 3 4 3
counter_el, pCountValue 25 7 3 11 10 90 4 36 4 36 1 9
FPMult_el, pLegalOperands 973 69 4 119 10588 32 32 3 2
FPMult_e2, pLegalOperands 973 69 4 119 10588 54 45 47 39 47 39
ged-el, pReadyIn22Cyc 634 51 22 87 6878 45 51 35 40 35 40
ged-e2, pReadyIn22Cyc 634 51 22 87 6878 34 39 32 36 32 36
ged-el, pBoth 634 51 23 87 7181 46 52 36 41 36 41
ged_e2, pBoth 634 51 23 87 7181 33 37 33 37 33 37
ged-el, pThree 634 51 23 87 7181 3337 23 26 23 26
ged_e2, pThree 634 51 23 87 71 81 39 44 22 25 22 25

Case Study This example shows the difference in accuracy between two specifications
for example b09.

The original functionality of example b09 is a serial to serial converter. As a fault,
we negated the condition of an if-statement. The resulting circuit violates the property
that describes that in a certain state an input register must be zero. When we perform
diagnosis using only the failing property, 14 components are identified.

The converter has four states: INIT, RECEIVE, EXECUTE, and LOAD_OLD. There
are specific transitions that are possible between the states, for example from the INIT
mode we must only reach the RECEIVE mode. If the permitted transitions between the
states are included in the specification, the number of diagnoses is only six.

For the diagnosis corresponding to the actual fault we can conclude out of the new
value that we have to invert the if-condition. One diagnosis is located in the branch
of the if assignment that is executed because of the faulty if-condition. The suggested
value for the input register is zero, as it is required in the property. The property that
failed is an implication. In four of the six remaining diagnoses, the new values for the
suspended components set the antecedent of the implication to false and therefore the
property is satisfied.

Multiple Counterexamples and Ackermann Constraints Table 2 shows the influ-
ence of multiple counterexamples and Ackermann constraints on the diagnosis results.
The implementation of these features demands full access to the generation of the SAT
instance. We therefore integrated them in the hierarchical environment as explained in
Section 4.2. Experiments were carried out on an AMD Athlon 3500+ (Linux, 2.2GHz,
1 GB, Linux).

The columns provide the same data as the previous table. Besides diagnosis results
for static slicing, we report results for using a single counterexample, four counterexam-
ples and four counterexamples together with Ackermann constraints. The use of multi-
ple counterexamples can significantly improve the diagnosis result. In all but two cases
the number of diagnoses was reduced.



Table 3. Run times for the different approaches (using four counterexamples)

BMC Diagnosis
zchaff default static simulation+static
Circuit, Property time time #cmp #dec time #cmp #dec time #cmp #dec
am2910_pl_el, pEntryS 0.54 11.87 205 165,247 2.63 205 8,047 1.62 69 7,855
am2910_p2_el, pStackPointer ~ 0.01 040 87 3,848 031 87 989 028 52 916
bpbs_pl_el, pValidTransition 0.06 0.19 102 2,819 0.20 102 302 0.13 19 266
bpbs_pl_e2, pValidTransition 0.03 0.16 102 1,805 0.14 102 110 0.11 5 87
counter_el, pCountValue <0.01 0.01 10 259 0.01 10 131  <0.01 9 130
FPMult_el, pLegalOperands 0.04 041 105 397 0.19 105 60 0.15 5 60
FPMult_e2, pLegalOperands 0.04 227 105 17,540 1.14 105 8,440 095 76 7,320
ged-el, pReadyIn22Cyc 18.7 1057.21 68 3,271,957 5398 68 479,526 5435 67 479,525
ged-e2, pReadyIn22Cyc 22.07 351.16 68 1,022,573 19.65 68 115,519 18.59 63 112,833
ged_el, pBoth 3224 221335 71 3,468,162 91.74 71 425,438 90.08 67 425,436
ged_e2, pBoth 2420 45383 71 1,058,165 5523 71 237,104 50.19 59 232,334
ged_el, pThree 4274 1626.07 71 2,617,354 201.76 71 723,180 198.44 65 730,191
ged_e2, pThree 35.50 498.99 71 1,278,064 1306.90 71 3,586,181 1307.80 71 3,586,181

In contrast, Ackermann constraints do not yield the same improvement. Only in
one case the number of diagnoses was reduced and the algorithm returned exactly the
real error site. The overhead in runtime is quite high for Ackermann constraints. We
observed an increase by up to a factor of 60 especially on large instances. Thus, Acker-
mann constraints should only be applied in a second stage of the diagnosis process due
to their low influence on the accuracy.

5.2 Runtime

In Section 3 we suggested two techniques to improve the runtime of the overall algo-
rithm: a static decision strategy for the SAT solver and the use of a simulation based
preprocessing step. Both techniques were implemented within the hierarchical frame-
work. Due to page limitation, we only report experimental results for the use of four
counterexamples without Ackermann constraints in Table 3. The table shows runtimes
for the different approaches. Additionally, the number of components considered during
SAT based diagnosis (this is not the number of components returned as diagnoses that
is shown in Table 2) and the number of decisions made by the SAT solver are reported.

The runtime decreases drastically when the static decision heuristic is applied. This
is due to the reduction of the number of decisions that have to be done by the SAT solver.
The only exception is the last benchmark, but when using only one counterexample the
runtime was only 9.91 seconds at the cost of a lower accuracy (see above). Usually, the
runtime does not exceed the time for BMC much — even when four counterexamples
are applied for diagnosis. Here, incrementally applying more and more counterexam-
ples as suggested in [22] can yield an even shorter runtime. The use of the simulation
based preprocessing step also saves some runtime in those cases were the number of
components considered during SAT based diagnosis can be reduced significantly. On
the other hand the overhead is quite low when no components can be pruned.

The creation of counterexamples dedicated for diagnosis may improve the diagnosis
results. This hypothesis is strengthened by following experimental results. We did 1000
diagnosis runs with 4 randomly chosen counterexamples on am2910_e1 for the property



pEntry5. The number of diagnoses varied from 28 to 90 and the runtime varied between
1.75 and 3.75 seconds. Usually, a better diagnosis accuracy also had a shorter runtime.

In summary, the runtime was reduced drastically by the proposed techniques and
makes the effort of diagnosis comparable to that of BMC.

6 Conclusions

We have presented an approach to automatically locate design faults at the gate level
or the source code level. The approach handles safety properties written in LTL. A
propositional logic formula is built in such a way that diagnoses can be derived from its
satisfying assignments. We have shown how to extend the formula to make sure that a
diagnosed component is actually repairable for the given input sequences.

We have proposed two techniques to implement the approach. One is easy to im-
plement on top of an existing model checker, the other allows the diagnosis engine to
exploit hierarchical information. We have shown that the use of multiple counterexam-
ples and more comprehensive specifications provides a more accurate diagnosis result.
We have drastically improved the efficiency of the approach by using a dedicated search
strategy for the SAT solver and shown its applicability with experimental results.

Some ideas for future work have been discussed already. Furthermore, we would
like to further investigate in how far the techniques presented here can be used to find
faults in the specification rather than the system. Finally, we would like to attempt to
use these ideas on models of a C program, and we would like to try the approach for
all possible counterexamples, thus making it complete, by using quantified Boolean
formulas.
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