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Abstract

Automatic Test Pattern Generation (ATPG) is one of the
core algorithms in testing of digital circuits and systems.
Due to recent advances in algorithms to solve Boolean Sat-
isfiability (SAT), there is a renewed interest in SAT-based
ATPG. While the early approaches only used two-valued
logic, modern tools have to use multiple values to model
unknown values and tri-state elements for buses.

In this paper we present a detailed study on how to chose
the multi-valued encoding for SAT-based ATPG. The tech-
niques have been implemented and evaluated on large in-
dustrial benchmarks.

1. Introduction

Ensuring that a circuit functions correctly when being
delivered is crucial for any circuit design company. For this
reason a post-production test is carried out in the production
flow. By applying a set of test patterns the correctness of
a circuit is checked. These test patterns are calculated by
dedicated algorithms for Automatic Test Pattern Generation
(ATPG).

Due to the exponentially increasing number of gates in-
tegrated on a single chip the time needed for ATPG grows
rapidly. As a result classical algorithms such as FAN [6]
and PODEM [7] reach their limits.

An alternative approach is ATPG based on Boolean Sat-
isfiability (SAT) as first proposed in [9]. Significant im-
provements in the transformation of the problem have been
made in [16, 17] by including structural information in the
SAT instance to aid the reasoning on the circuit. These
first SAT-based approaches suffered from the hardness of
the SAT problem. Meanwhile powerful engines for solv-
ing instances of the SAT problem have been developed
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[10, 11, 8, 5]. These solvers apply conflict-based learning,
efficient implementation techniques and effective search
heuristics. The SAT-based ATPG tool PASSAT [14] uses
such a fast SAT solver to calculate test patterns for the
stuck-at fault model. The efficiency on industrial bench-
marks has been shown in [15].

While early approaches were very simple and only used
a two-valued encoding to keep the SAT instance small, for
practical purposes there is a need to model multiple val-
ues. This is for example necessary to take unknown values
coming from the environment of a circuit into account or
to model buses and tri-state elements. To use an efficient
(Boolean) SAT solver for ATPG on such a multi-valued
model a Boolean encoding is needed.

The way the encoding is done has a significant influence
on the generated SAT instance and by this also influences
the time needed to solve the problem [1]. Thus, SAT-based
ATPG strongly depends on the encoding regarding memory
requirement and run time.

In this paper we discuss alternative encodings for a SAT-
based ATPG algorithm. The possible encodings are classi-
fied and the properties of the classes are discussed. Two
representative encodings have been implemented and in-
tegrated in the ATPG tool PASSAT. Studies on industrial
benchmarks show the significant influence of the chosen
multi-valued encoding.

The paper is structured as follows: The next section ex-
plains how SAT-based ATPG is carried out in the tool PAS-
SAT. In Section 3 the four-valued logic used for ATPG
in PASSAT is introduced. The different encodings in the
Boolean SAT instance are analyzed. Experimental results
are given in Section 4. Conclusions are presented in the last
section.

2. SAT-based ATPG

In the following the framework for SAT-based ATPG as
used in the tool PASSAT [14] for the stuck-at fault model
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Figure 1. Miter-circuit for test-pattern genera-
tion

[3] is briefly reviewed. First, the general transformation of
the ATPG problem into a SAT problem is considered. Then,
the improvements by including structural information are
discussed. Finally, the advanced SAT techniques that lead
to the overall performance of PASSAT are explained.

2.1. SAT Formulation

For a given fault the problem of generating a test pattern
is transformed into a Boolean SAT problem represented in
Conjunctive Normal Form (CNF), i.e. a set of clauses. The
fault is modeled in the gate-level circuit. Then, the faulty
circuit and a non-faulty version are joined to form a miter
circuit [2] as shown in Figure 1. This circuit is mapped into
a CNF and the output is constrained to the value one. This
constraint ensures that at least one output of the correct and
faulty circuit differ. A satisfying assignment to this SAT
instance exists if and only if the modeled fault is testable.
This assignment also determines a test-vector for the fault.
If the SAT instance is unsatisfiable the fault is redundant.

2.2. Structural Information

In practice some optimizations are done to improve the
performance of such a SAT-based ATPG tool. First, only
the output-cone and the input-cone of the modeled fault are
included in the SAT instance. The input-cone is also shared
between the correct and the faulty circuit, because values in
this part can not differ.

Another important improvement is the inclusion of struc-
tural information in the SAT instance as suggested in [16].
This information is derived from arguments originally pro-
posed for the D-algorithm in [12]:

• A gate G is on a potential D-chain, if there exists a path
between the error location and an output.

• For each gate G on a potential D-chain a Boolean at-
tribute Gp is introduced. The attribute Gp is 1 if and
only if the error is propagated to a primary output via
G.

• If the error is propagated via a gate G it must also be
propagated via at least one successor H1, . . . ,Hm of
G. This is included as the following implication in the
SAT instance:

Gp → ∪m
i=1H

i
p

• If the error is propagated via a gate G the value Gc of
the gate in the correct circuit and the value Gf in the
faulty circuit differ:

Gp → (Gc 6= Gf )

2.3. Advanced SAT Techniques

PASSAT is based on TEGUS [16]. An important im-
provement of PASSAT is the use of a modern SAT solver.
Such a solver essentially enhances the backtrack search of
the DLL procedure [4] by several techniques. This dras-
tically improves the performance on large and difficult in-
stances. The key techinques in modern SAT solvers are the
following:

• Learning based on conflict analysis [10]: Each time
a partial assignment is found not to satisfy the SAT
instance this conflict is analyzed. The learned infor-
mation is stored in form of a conflict-clause. Thus,
the space without solutions is not reentered during the
search.

• Efficient implementation techniques for fast implica-
tions [11]: Each time a value is assigned to a variable
during the search resulting implications must be de-
rived. Due to a watching scheme only those clauses
have to be touched where an implication might occur.

• Efficient decision strategies [8]: The decision which
variable and which value are assigned next during the
search relies on decision strategies. These algorithms
efficiently keep statistics that help to exploit previously
learned information.

Additionally, PASSAT includes modified decision strate-
gies that are adjusted to the problem of ATPG [14]. Essen-
tially this allows to reduce the search space by using infor-
mation about primary inputs or fanout points in the circuit
similar to the classical ATPG-algorithms PODEM [7] and
FAN [6], respectively.

Finally, PASSAT uses a multi-valued encoding scheme
to handle ATPG problems that occur in practice. Only
one fixed encoding was chosen in [14]. In the remaining
sections the influence of different encodings on the perfor-
mance of PASSAT is systematically analyzed.



Table 1. Boolean encodings
(a) Set 1

s x x
0 a b

1 a b
U a b

Z a b

(b) Set 2

s x x
0 a b

1 a b

U a b
Z a b

(c) Set 3

s x x
0 a b

1 a b
U a b

Z a b

(d) Example: Set 1,
a = 0, b = 0,
x = cs

s cs c∗s
0 0 0
1 0 1
U 1 0
Z 1 1

3. Multi-Valued Encoding

In this section the techniques to handle non-Boolean val-
ues in PASSAT are discussed. First, the use of multi-valued
logic during ATPG is motivated and the four-valued logic
is introduced. Then, different possibilities to encode the
multi-valued problem in a Boolean SAT instance are dis-
cussed.

3.1. Four-Valued Logic

For practical purposes it is not sufficient to consider only
the Boolean values 0 and 1 during test pattern generation as
it has been done in [16]. This has mainly two reasons.

At first, industrial circuits usually have tri-state elements.
From a modeling point of view the tri-state elements could
be transformed into a Boolean structure with the same func-
tionality, e.g. by inserting multiplexers. But during test
pattern generation additional constraints apply to signals
driven by tri-state elements. For example, no two drivers
must drive the signal with opposite values or if all drivers
are in the high impedance state the driven signal has an un-
known value. The value Z is used to properly model these
constraints and the transition function of tri-state elements.

Environment constraints that apply to a circuit are an-
other problem. Usually the circuit is embedded in a larger
environment. As a result some inputs of the circuit may not
be controllable. Thus, the value of such a non-controllable
input is assumed to be unknown during ATPG. The logic
value U is used to model this situation. This has to be
modeled explicitly in the SAT instance, because otherwise
the SAT solver would also assign Boolean values to non-
controllable inputs.

Therefore a four-valued logic over {0, 1, Z, U} is con-
sidered in PASSAT.

Table 2. AND-gate over {0, 1, Z, U}
(a) 4-valued

t u s
0 − 0
− 0 0
1 1 1
U 6= 0 U
Z 6= 0 U
6= 0 U U
6= 0 Z U

(b) Encoded

ct c∗t cu c∗u cs c∗s
0 0 − − 0 0
− − 0 0 0 0
0 1 0 1 0 1
1 0 6= 0 0 1 0
1 1 6= 0 0 1 0
6= 0 0 1 0 1 0
6= 0 0 1 1 1 0

3.2. Boolean Encoding

The multi-valued ATPG problem has to be transformed
into a Boolean problem to make use of a modern Boolean
SAT solver on the four-valued logic. Therefore each sig-
nal of the circuit is encoded by two Boolean variables. One
encoding out of the 4! = 24 mappings of four values onto
two Boolean values has to be chosen. The chosen encod-
ing determines which clauses are needed to model particu-
lar gates. This, in turn, influences the size of the resulting
SAT instance and the efficiency of the SAT search.

All possible encodings are summarized in Tables 1(a)-
1(c). The two Boolean variables are denoted by x and x,
the letters a and b are placeholders for Boolean values. The
following notations define the interpretation of the tables
more formally:

• A signal s is encoded by the two Boolean variables cs

and c∗s .

• x ∈ {cs, c
∗
s}, x ∈ {cs, c

∗
s} \ {x}

• a ∈ {0, 1}, a ∈ {0, 1} \ {a}

• b ∈ {0, 1}, b ∈ {0, 1} \ {b}

Example 1 Consider Table 1(a) and the following assign-
ment: a = 0, b = 0, x = cs. Then, the encoding in Table
1(d) results.

Thus, a particular encoding is determined by choosing
values for a, b and x. Each table defines a set of eight en-
codings.

Note, that for encodings in Set 1 or Set 2 one Boolean
variable is sufficient to decide, if the value of s is in the
Boolean domain, i.e. in {0, 1}, or in the non-Boolean do-
main, i.e. in {U,Z}. In contrast encodings in Set 3 do not
have this property. This observation will be important when
the efficiency of a particular encoding for SAT solving is
determined.



Table 3. Number of clauses for each encoding
Set x a b NAND NOR AND BUS BUS0 BUS1 BUSDR. XOR NOT OR All

1 cs 0 0 8 9 9 10 11 10 9 5 5 8 100
cs 0 1 8 9 9 10 11 10 9 5 5 8 100
cs 1 0 8 9 9 10 11 10 9 5 5 8 100
cs 1 1 8 9 9 10 11 10 9 5 5 8 100
c∗s 0 0 8 9 9 10 11 10 9 5 5 8 100
c∗s 0 1 8 9 9 10 11 10 9 5 5 8 100
c∗s 1 0 8 9 9 10 11 10 9 5 5 8 100
c∗s 1 1 8 9 9 10 11 10 9 5 5 8 100

2 cs 0 0 9 8 8 10 10 11 9 5 5 9 100
cs 0 1 9 8 8 10 10 11 9 5 5 9 100
cs 1 0 9 8 8 10 10 11 9 5 5 9 100
cs 1 1 9 8 8 10 10 11 9 5 5 9 100
c∗s 0 0 9 8 8 10 10 11 9 5 5 9 100
c∗s 0 1 9 8 8 10 10 11 9 5 5 9 100
c∗s 1 0 9 8 8 10 10 11 9 5 5 9 100
c∗s 1 1 9 8 8 10 10 11 9 5 5 9 100

3 cs 0 0 11 11 11 8 9 9 11 5 6 11 108
cs 0 1 11 11 11 8 9 9 11 5 6 11 108
cs 1 0 11 11 11 8 9 9 11 5 6 11 108
cs 1 1 11 11 11 8 9 9 11 5 6 11 108
c∗s 0 0 11 11 11 8 9 9 11 5 6 11 108
c∗s 0 1 11 11 11 8 9 9 11 5 6 11 108
c∗s 1 0 11 11 11 8 9 9 11 5 6 11 108
c∗s 1 1 11 11 11 8 9 9 11 5 6 11 108

3.3. Transformation to SAT Instance

The clauses to model a particular gate type can be de-
termined when a particular encoding and the truth-table of
the gate are given. This set of clauses can be reduced by
two-level logic-optimization. The tool Espresso contained
in SIS [13] was used for this purpose. Espresso is capa-
ble of calculating a minimal representation. The following
example illustrates this flow.

Example 2 Table 2(a) shows the truth-table of an AND-
gate s = t · u over {0, 1, Z, U}. The truth-table is mapped
onto the Boolean domain using the encoding from Exam-
ple 1. The encoded truth-table is shown in Table 2(b) (for
compactness the notation “6= 0 0” is used to denote that at
least one of two variables must be different from 0). A CNF
is extracted from this truth-table and optimized by Espresso.

Results for all possible encodings are presented in Table
3. For each gate type the number of clauses needed to model
the gate are given. Besides the well-known Boolean gates
(AND, OR, . . . ) also non-Boolean gates are considered. The
gate BUSDRIVER is a tri-state buffer that assumes the value
Z when not being driven and propagates the input value
otherwise. A BUS resolves the value coming from several
tri-state buffers. If no buffer has a value different from Z the

bus also assumes the value Z. Similarly, BUS0 and BUS1
are buses that assume values 0 and 1, respectively, when not
being driven. The last column All in the table gives the sum
of the numbers of clauses for all gate types.

All encodings of a given set lead to clauses that are iso-
morphic to each other. By mapping the polarity of liter-
als and the choice of variables the other encodings of the
set are retrieved. Particularly, Boolean gates are modeled
efficiently by encodings from Set 1 and Set 2. The sum
of clauses needed for all gates is equal for both sets. The
difference is that for example the encodings of one set are
more efficient for NAND-gates, while the encodings of the
other set are more efficient for NOR-gates. In our bench-
marks both gate types occur with a similar frequency (see
next section). The same observation is true for the other
gates where the efficiency of the encodings differs. There-
fore no significant trade-off for the encodings occurs on the
benchmarks.

In contrast more clauses are needed to model Boolean
gates when an encoding of Set 3 is used. At the same time
this encoding is more efficient for non-Boolean gates. In
most practical circuits the number of non-Boolean gates is
much smaller than the number of Boolean gates. Therefore
more compact SAT instances will result when an encoding
from Set 1 or Set 2 is used. The behavior of the SAT solver



Table 4. Number of gates for each type
circ. IN OUT FANO. NOT AND NAND OR NOR BUS BUSDR.
p44k 2356 2232 6845 16869 12365 528 5484 1128 0 0
p88k 4712 4565 14560 20913 27643 2838 16941 5883 144 268
p177k 11273 11031 33605 48582 49911 5707 30933 5962 0 560

Table 5. Memory and run time for different encodings
circ. no. enc. clauses cls. % variables memory mem. % CNF CNF % solve solve %
p44k 1 A 173,987 56,520 13,713 41 14

B 220,375 127 56,520 14,087 103 49 120 78 557
p44k 2 A 174,083 56,542 13,713 43 16

B 220,493 127 56,542 14,088 103 51 119 79 494
p44k 3 A 174,083 56,542 13,713 43 15

B 220,493 127 56,542 14,088 103 52 121 79 527
p88k 1 A 33,406 10,307 2,824 8 4

B 41,079 123 10,307 3,410 121 10 125 7 175
p88k 2 A 33,501 10,328 2,824 9 4

B 41,188 123 10,328 3,411 121 9 100 8 200
p88k 3 A 33,517 10,289 2,825 8 8

B 41,321 123 10,289 3,412 121 9 113 8 100
p177k 1 A 96,550 34,428 8,900 23 23

B 119,162 123 34,428 9,082 102 25 107 247 1074
p177k 2 A 96,536 34,425 8,900 25 28

B 119,145 123 34,425 9,082 102 29 116 234 836
p177k 3 A 96,550 34,428 8,899 25 20

B 119,162 123 34,428 9,082 102 29 116 237 1185

does not necessarily depend on the size of the SAT instance,
but when the same problem is encoded in a much smaller in-
stance also a better performance of the SAT solver can be
expected. These hypotheses are strengthened by the exper-
imental results reported in the following section.

4. Experimental Results for ATPG

Benchmark results for some industrial benchmarks from
Philips Semiconductors GmbH, Hamburg, Germany are re-
ported in the following. All experiments were carried out
on an AMD Athlon 3000 (2.1GHz, 1GB, Linux).

Table 4 shows some information about the circuits. The
first column reports the name of the circuit. Here, p44k
means that the circuit contains about 44k gates. The suc-
ceeding columns give the numbers of different types of
gates in the circuit. Inputs, outputs and fanout gates are
reported for completeness. In the SAT instance an input
is modeled as an unconstrained signal. An output is not
explicitly modeled, but the output signal of the preceding
gate is used instead. Similarly, no additional constraints
are necessary in the SAT instance for fanout gates. These
gates mark fanout points in the circuit. If no error is mod-
eled on one of the branches the whole gate is modeled by

a single signal. All other gate types are explicitly modeled
using clauses as discussed in Section 3. As can be seen the
Boolean gates make up the vast majority of all gates. Only a
few or no tri-state elements are contained in the benchmark
circuits.

In the following we compare two representative encod-
ings in detail. Encoding A belongs to Set 2 with param-
eters x = c∗s , a = 0, and b = 0. Encoding B belongs
to Set 3 with the same parameters. Thus, for Encoding A
a single Boolean variable “naturally” differentiates between
Boolean and non-Boolean values. In contrast this is not pos-
sible for Encoding B.

Detailed results are given in Table 5. Considered are in-
dividual faults in the previously introduced circuits with re-
spect to the two encodings. Reported are the number of
clauses and the number of variables in the SAT instance.
The memory needed is reported in KB. Then, the run times
to create the SAT instance and the run time to solve the SAT
instance are shown in columns “CNF” and “solve”, respec-
tively. All run times are given in 1/100 seconds. The ratio
of clauses, memory, and run time needed by Encoding B
compared to Encoding A is always given in percent in the
column following the absolute values.

The number of variables remains the same for both en-



codings. But the number of clauses increases significantly
when Encoding B is used instead of Encoding A. In the
same way the memory needed is significantly larger for En-
coding B. But the overhead is not as large as for the clauses.
This is due to the additional memory needed to store the
circuit, test-patterns, learned information, etc. Also the run
time to generate the CNF is always larger for Encoding B,
again because more clauses have to be produced for this
case.

Finally, the most significant overhead occurs for the time
needed to solve the SAT instances. In case of p44k and
p177k no tri-state elements are needed. Thus, the more
complex representation of such gates in Encoding A does
not produce any overhead in the SAT instance. In con-
trast Encoding B leads to more complex representations for
Boolean gates. As a result the run time increases usually by
5 times for p44k and up to 11 times for p177k. But when
p88k is considered the run time overhead for Encoding B
is reduced. Here, also tri-state elements are contained and
therefore the improved representation of those gates in En-
coding B can be exploited during the solving process. The
run time increases by at most two times for the considered
faults. In one case both run times are the same.

In summary, Encoding A performed significantly better
on the benchmarks than Encoding B with respect to mem-
ory consumption and run time. Moreover, the same behav-
ior can be expected for most circuits as usually many more
Boolean than non-Boolean gates are contained in the cir-
cuits.

5. Conclusions

The encoding of a four-valued ATPG problem into a
Boolean SAT instance has been studied in detail. All dif-
ferent encodings have been considered and classified into
three groups. For two groups one Boolean variable allows to
“naturally” differentiate between Boolean and non-Boolean
values of the original four-valued logic. Such encodings
lead to a more compact CNF representation of the ATPG
problem. Experimental studies show that the natural encod-
ing also outperforms the other encoding with respect to run
time on the considered industrial benchmarks. The same
behavior can be expected in general when the number of
Boolean gates in the circuit is much larger than the number
of tri-state elements and unknown input values.
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