
An Integrated Approach for Combining BDD and SAT Provers

Rolf Drechsler Görschwin Fey Sebastian Kinder

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{drechsle,fey,kinder}@informatik.uni-bremen.de

Abstract

Many formal verification tools today are based on
Boolean proof techniques. The two most powerful ap-
proaches in this context are Binary Decision Diagrams
(BDDs) and methods based on Boolean Satisfiability (SAT).
Recent studies have shown that BDDs and SAT are orthog-
onal, i.e. there exist problems where BDDs work well, while
SAT solvers fail and vice versa. Beside this, the techniques
are very different in general. E.g. SAT solvers try to find a
single solution and BDDs represent all solutions in parallel.

In this paper the first integrated approach is presented
that combines BDDs and SAT within a single data structure.
This hybrid approach combines the advantages of the two
techniques, i.e. multiple solutions can be computed while
the memory requirement remains small. First experimental
results demonstrate the quality of the approach in compari-
son to BDDs and SAT solvers.

1. Introduction

Many problems in circuit design can easily be formu-
lated in terms of Boolean variables. E.g. in verification
or automatic test pattern generation a satisfying assign-
ment for a Boolean formula has to be determined (see
e.g. [28, 2, 25]). Several Boolean techniques to solve this
problem have been proposed in the past. Between them are
simulation based approaches, like random pattern simula-
tion. But with increasing design complexity pure simulation
is not sufficient to find solutions in huge search spaces. For
this, complete methods based on formal proof techniques
have been proposed.

The two most frequently used methods are Binary De-
cision Diagrams (BDDs) and provers for Boolean Satisfi-
ability (SAT). Experimental studies have shown that these
techniques are orthogonal, i.e. there exist problems where
BDDs work well, while SAT solvers fail and vice versa.
This trade-off can even be formally proven [9].

BDDs and SAT provers are very different in nature.
While BDDs compute all solutions in parallel, they require
a large amount of memory. In contrast SAT is very efficient
regarding memory consumption, but only gives a single so-
lution. There are many applications where multiple solu-
tions are needed (see e.g. [7, 12]). Motivated by this, many
authors tried to combine the best of the two approaches, by
applying SAT solvers and BDDs alternatively or iteratively.

Even though remarkable results have been obtained, so far
none of the approaches considered an integration of the two
methods within a single data structure. (A more detailed
discussion of related work is given in the next section.)

In this paper we present the first approach that allows
to tightly combine BDDs and SAT. Even though the over-
all principle of the two techniques is very different, there
are also some similarities. In both concepts, starting from a
Boolean description the problem is decomposed by assign-
ing a Boolean value to a variable. This has already been
observed in [22]. For this, we introduce the concept of ex-
pansion nodes. The given Boolean problem is initially rep-
resented by a single expansion node that is recursively ex-
panded. If this is done in a strict Depth First Search (DFS)
manner, the resulting algorithm is close to a SAT proce-
dure. But if all operations are carried out symbolically, the
algorithm computes a BDD. The relation between the two
approaches is discussed in more detail later. Experimental
results demonstrate the efficiency of the approach.

The paper is structured as follows: Related work is dis-
cussed in Section 2. SAT and BDDs are briefly reviewed
in Section 3 to make the paper self-contained. Then, the
relation between the two is considered. The new approach
is presented in Section 4. In Section 5 experiments are pre-
sented. Finally the results are summarized and directions
for future work are given.

2. Related Work

In this section we discuss earlier work that is related to
our approach.

In the context of extensions of the classical BDD concept
introduced by Bryant [5], some approaches have been pre-
sented that make use of different types of functional nodes.
These nodes have been used to speed up the construction
process [13, 1] or to reduce the size of the graph [14, 17]. To
reduce the memory requirement also streaming BDDs have
been proposed [18]. But all these approaches only consid-
ered BDDs.

The approach in [23] keeps control of the memory
needed for the BDD construction by projecting some parts
of the graph to a new terminal node U (=unknown), but by
this gives up exactness.

Another recent direction of research are efficient all-
solution SAT solvers, that do not stop after reaching the
first satisfying assignment, but calculate all possible satis-
fying solutions, e.g. [15]. A drawback of these approaches

x1

x2

3x =0

x =02

x =11
x =01

x4

0

x =14

1
4x =0

x3

0
(a) SAT search tree

x3

10

x4 x4

x1

x2 x2

x3

(b) BDD

x3

10

x4

x1

x2E

(c) Hybrid representation

E

xi

xj

E

xh

(d) Sketch of the hybrid approach

Figure 1. Different approaches

is the potentially large representation of all solutions usually
as cubes or as BDDs. In contrast our approach targets appli-
cations where not all but a set of good solutions is needed.

Recently, several techniques have been proposed to com-
bine BDDs and SAT solvers (see e.g. [10, 6, 24]), but no real
integration is done. Instead, the proof engines are started
one after the other, or alternating. By this, often good ex-
perimental results have been obtained, demonstrating the
potential of an integrated approach.

3. Proof Techniques

In this section we briefly review BDDs and SAT. Then
the relation between the two is discussed to provide a bet-
ter understanding and a motivation for the hybrid approach
presented below.

3.1. BDD

As well-known each Boolean function f : Bn → B can
be represented by a Binary Decision Diagram (BDD) [5],
i.e. a directed acyclic graph where the Shannon decomposi-
tion with respect to a variable xi is carried out in each node:

f = xifxi=0 + xifxi=1

A BDD is called ordered if each variable is encountered
at most once on each path from the root to a terminal and if
the variables are encountered in the same order on all such
paths. A BDD is called reduced if it does not contain ver-
tices either with isomorphic subgraphs or with both edges
pointing to the same node.

Reduced, ordered BDDs are a canonical data structure
for Boolean functions and allow efficient manipulations [5].
In the following only reduced, ordered BDDs are consid-
ered and for briefness these graphs are called BDDs.

3.2. SAT

Let f be a Boolean function in Conjunctive Normal Form
(CNF), i.e. in a product-of-sum representation. Then, the
problem of Boolean Satisfiability (SAT) is to determine an

assignment of the variables of f such that f evaluates to 1
or to prove that such an assignment does not exist.

Example 1. Let f = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then x1 = 1, x2 = 1 and x3 = 1 is a satisfying assignment.
The values of x1 and x2 ensure that the first sum becomes
1, while x3 = 1 ensures this for the remaining sums.

In many applications, like formal verification and auto-
matic test pattern generation, the problem is initially given
in the form of a circuit. This circuit can be transformed to a
CNF by a simple transformation.

Recently, several very powerful tools have been devel-
oped that make use of e.g. Boolean constraint propaga-
tion and clause recording to speed up the proof process
[16, 20, 8].

3.3. Discussion

Both techniques have advantages and disadvantages.
While BDDs represent all solutions in parallel at the cost
of large memory requirements, A SAT solver only provides
a single solution, while the memory needed is very low. In
[22] the relation between BDDs and SAT has been studied
from a theoretical point of view. It has been proven that the
BDD corresponds to a complete representation of the SAT
backtrack tree, if a fixed variable order is assumed.

As a motivation for the next section, where our approach
is described in more detail, an example is given to show
the main difference between SAT and BDDs. We will later
come back to this example.

Example 2. Consider a Boolean function f over four vari-
ables given by

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x2 + x4)
(x1 + x2 + x3)(x1 + x2 + x3 + x4)

A sketch of the search tree, if the function is processed by
a SAT solver is shown in Figure 1(a). The corresponding
BDD is given in Figure 1(b). As can be seen, the SAT solver
by construction only gives a single solution, while the BDD
represents all satisfying assignments in parallel at the cost
of a larger number of nodes.

4. Hybrid Approach

In this section we describe our approach for BDD and
SAT integration. First, the overall idea is given. Then the
concept of expansion nodes is introduced followed by a dis-
cussion of expansion heuristics. Finally, we comment on
some issues related to an efficient implementation.

4.1. Basic Idea

In our approach we start the processing by symbolic op-
erations analogously to BDDs. For the operations the ITE
operator [3] has been modified. During the starting phase,
the constructed graphs are simply BDDs. But when com-
posing BDDs a heuristic is used to decide, which parts of
the solution space are explored.

To guarantee that the algorithm is exact, i.e. no solution
is missed, a node is introduced where the computation can
be resumed. These nodes are called expansion nodes in the
following. By this, our approach stores all necessary infor-
mation resulting in a complete proof method.

A sketch of a configuration during the run is shown in
Figure 1(d). In this case the upper part is “SAT-like” while
the lower part is a complete symbolic representation as it oc-
curs in BDDs. The expansion nodes are denoted by E. The
decomposition nodes are labeled by variables, these vari-
ables occur in the same order on all paths. In the following
we refer to such graphs that allow a smooth transition be-
tween SAT and BDDs as hybrid structure.

Remark 1. Several expansion nodes in a hybrid structure
may represent the same function. This cannot be detected
before completely expanding the node. Thus, a hybrid struc-
ture is not a canonical representation of Boolean functions.

4.2. Expansion Nodes

The hybrid approach makes use of three types of nodes
(see Figure 2):

(a) Terminal nodes
(b) Decomposition nodes
(c) Expansion nodes

The first two can also be found in BDDs. Terminal nodes
represent the constant functions 0 and 1. In decomposition
nodes the Shannon decomposition is carried out.

Expansion nodes are labeled by a Boolean operation op
and have two successors f and g, that represent Boolean
functions (which are also denoted by f and g for simplicity).
The expansion node represents the function f op g.

Example 3. Consider again the function from Example 2
and Figures 1(a) and 1(b). A possible hybrid structure is
shown in Figure 1(c). This one results if the top variable
is only decomposed in one direction, while on the other
branch an expansion node is placed. As can be seen the
structure is more memory efficient. Compared to the BDD
five instead of seven nodes are needed. At the same time
three solutions are represented in contrast to the SAT ap-
proach that only returns a single solution.

1

(a) Terminal

x

low high

i

(b) Decomposition node

f
opE

g
(c) Expansion node

Figure 2. Overview over different node types

This simple example demonstrated that the approach
combines the two proof techniques SAT and BDD. A cru-
cial point to address is where to place the expansion nodes.
For this, we propose a heuristic in the next section.

4.3. Expansion Heuristics

Inserting expansion nodes at suitable locations is crucial
for the approach to work. If too many expansion nodes are
inserted, no solutions can be found. Only structures without
a path to a terminal will be constructed and the expansion of
partial trees will take most of the run-time until computing a
solution. On the other hand not inserting enough expansion
nodes will lead to a memory blow-up as known from BDDs.

In a BDD-based approach the final solutions are com-
puted by composing intermediate BDDs. This is similar for
the new approach. The following steps are necessary to re-
trieve solutions:
(1) Build BDDs for basic functions without any expansion

nodes.
(2) Compose the basic functions and insert expansion

nodes according to a predetermined heuristic.
(3) Select expansion nodes to calculate the final solutions.

Which functions are considered as basic functions in step
(1) depends on the problem and the input format, e.g. pro-
jection functions and cubes were chosen in our experiments.
Building BDDs for these basic functions is not necessary for
the approach to work, but having the basic functions com-
pletely represented improves the performance drastically by
reducing the number of necessary expansions.

So far the following two heuristics to limit the size of the
resulting hybrid structure in step (2) have been evaluated:
(S1) A fast procedure is to directly limit the memory con-

sumption. This limit can be detected efficiently. Once
the limit is reached no further decomposition nodes are
created, but only expansion nodes. Therefore, prior to
performing an expansion the memory limit is increased
by a user defined value.

(S2) The second procedure is to limit the number of nodes
in a subgraph to a certain threshold. Tracking this limit
is computationally more expensive. But allowing more
than n nodes in a subgraph guarantees that there is at
least one path to a terminal node. I.e. for at least one
assignment the function can directly be evaluated.

The selection of nodes to expand in step (3) has also been
done using two different heuristics:

(E1) Randomly
(E2) Heuristically (using the algorithm in Figure 3): The

hybrid structure is traversed in a depth first manner un-
til an expansion node is reached. This node is selected
and then expanded by carrying out the stored opera-
tion. The same scheme is applied recursively if further
selections are necessary.

1 Node∗ DFS(N) {
2 i f (i s T e r m i n a l (N)) re turn NULL;
3 tmp = DFS(Nhigh) ;
4 i f (tmp) re turn tmp ;
5 i f (i sFuncNode (N)) re turn N;
6 tmp = DFS(Nlow) ;
7 re turn tmp ;
8 }

Figure 3. Depth first traversal

1 s t r u c t Node {
2 HalfWord i n d e x ;
3 HalfWord r e f ;
4 Node ∗ n e x t ;
5 union {
6 T e r m i n a l v a l u e ;
7 C h i l d r e n k i d s ;
8 ExpNode func;
9 }

10 }
11
12 s t r u c t ExpNode{
13 Node ∗F ;
14 Node ∗G;
15 }

Figure 4. Modified node structure

Here, (E2) also heuristically ensures a moderate growth of
the memory needs. Experimental studies showed that the
combination of a hard limit on memory consumption (S1)
with deterministic DFS (E2) gives the best results, i.e. small
run-times and a large number of solutions. From a more
general point of view this combination of heuristics leads to
a SAT-like search tree in the upper part of the hybrid struc-
ture which is enriched by a BDD-like lower part.

Remark 2. When using heuristics (S1) and (E2) in combi-
nation the search space is traversed similar as with “BDDs
at SAT leaves” in [10, 11]. But the proposed hybrid struc-
ture is more general in the sense that switching between
SAT-like and BDD-like behavior is subject to heuristics.

Remark 3. During expansion canonicity is also an issue.
When expanding a node, a function that is already repre-
sented by another node may be the result. The hybrid struc-
ture can be reduced at a computational cost linear in the
number of nodes using an algorithm similar to [26]. In our
implementation no reduction was carried out to save run-
time.

4.4. Implementation

The technique described above has been integrated into
the CUDD package [27], where the core data structures are
taken from. To store the expansion nodes, the structure for
storing nodes has been extended (see line 8 in Figure 4).
The structure for the new type is given in lines 12-15.

In case of an expansion node, also the operation has to
be stored. For reasons of efficiency we restrict ourselves to
store only operations of type AND and XOR. Negation is

Table 1. Index of node types (32-bit)
Node type Index
decomposition nodes 0 - 65532
XOR-node 65533
AND-node 65534
terminal node 65535

Figure 5. Solution for the 5-Queens problem
realized by complemented edges [3]. All other Boolean op-
erators are mapped accordingly. The information is stored
in the index of each node. The complete encoding is given
in Table 1, i.e. three indices have a special meaning, while
all the remaining ones are used for decomposition variables.

5. Experimental Results

In the following we present two types of experiments.
The well-known n-Queens problem is considered as an ex-
ample of a combinational problem where BDDs are known
to perform poorly on large instances while a large number
of solutions is available. The synthesis problem of minimiz-
ing EXOR-Sum-Of-Product (ESOP) representations is stud-
ied as an optimization problem that is known to be hard.
All experiments have been carried out on an Intel Pentium
4 processor with 3 GHz and 1 GByte of main memory run-
ning Linux.

5.1. n-Queens

The n-Queens problem is a well-known combinational
problem. The objective is to place n queens on an n × n
board such that no queen can be captured by another one.
An example for a solution of the 5-Queens problem is
shown in Figure 5. This game problem is encoded using
n2 binary input variables, each one deciding, if a queen is
placed on the corresponding field of the chess board or not.
Obviously the constraints are to place one queen per row
and column and at most one queen per diagonal.

In a first experiment the heuristics to limit the size
were considered. For all experiments the limits were loose
enough to retrieve all solutions. Therefore the overhead
of the heuristics to limit the size can directly be measured
in comparison to BDDs. Results are reported in Table 2.
Given are the number of solutions for increasing values of
n and run-times in CPU seconds for BDDs and the two
heuristics introduced in Section 4.3, respectively. The re-
source requirements for BDDs increase rapidly and no fur-
ther solutions beyond n = 13 could be retrieved. Also the

Table 2. Heuristics to limit the size of the hy-
brid structure

Limit for the size
BDD Memory (S1) Subgraph (S2)

n #sol. sec. sec. overhead sec. overhead
6 4 0.00 0.00 - 0.01 -
7 40 0.01 0.01 0.00 % 0.03 200.00 %
8 92 0.05 0.06 20.00 % 0.18 260.00 %
9 352 0.37 0.37 0.00 % 1.30 251.35 %

10 724 1.56 1.59 1.92 % 8.20 425.64 %
11 2680 7.81 7.82 0.13 % 62.39 698.84 %
12 14200 48.12 48.54 0.87 % 490.33 918.97 %
13 73712 352.11 353.21 0.31 % 4566.75 1196.97 %

computational overhead of limiting the size of subgraphs
using heuristic (S2) is too large. But directly limiting the
memory consumption according to heuristic (S1) does in-
troduce almost no overhead. This heuristic has been used in
all remaining experiments to restrict the size.

The performance of heuristics to select nodes for expan-
sion has been investigated in the next experiment. Expan-
sion was carried out until a total memory limit of 750 MB
was reached. Due to the expansion of subfunctions more
than one solution can be contained in the final representa-
tion. The results are shown in Table 3. Up to n = 13 all
solutions were obtained with both heuristics.

Then, the random selection performs very poorly. When
expanding the last node in a cascade of expansion nodes
new decomposition nodes are created. But the next expan-
sion will often occur at an expansion node in a different sub-
graph. Thus, the previously created decomposition nodes
cannot be utilized for the next step.

In contrast the deterministic DFS starts the next expan-
sion where new decomposition nodes have been constructed
previously. As a result the new approach yields solutions up
to n = 21 in a moderate amount of time.

5.2. ESOP Minimization

Compared to a SOP-representation of a function the
ESOP-representation can be exponentially smaller. But
most algorithms for ESOP minimization only apply local
transformations to improve from an initial solution, e.g.
[4, 19]. In [21] the problem to compute an ESOP for a given
Boolean function f over n variables has been formulated
using the Helliwell equation. The Helliwell equation Hf
for function f has 3n input variables, each input variable
corresponds to a cube and is 1, iff this cube is chosen for
the ESOP of f . A satisfying assignment to Hf determines
an ESOP for f and vice versa. The hybrid structure was
built for the Helliwell equation. By additional constraints
the number of cubes was limited to be at most k. The exper-
imental results for applying this method to f =

⊕4
i=1 xi are

shown in Table 4. Given are results for using BDDs, the hy-
brid structure, and the SAT solver zchaff [20]. We modified
the SAT solver zchaff to calculate more than one solution:
For each solution a blocking clause is added and the solve
process is continued. For the hybrid structure results are re-
ported when different numbers of solutions are calculated:
more than 1, more than 103 and more than 106 solutions,

Table 3. Selection of expansion nodes
Randomly (E1) DFS (E2)

n #var #sol. sec. #sol. sec.
3 9 0 0.00 0 0.00
4 16 2 0.00 2 0.00
5 25 10 0.00 10 0.00
6 36 4 0.00 4 0.00
7 49 40 0.02 40 0.01
8 64 92 0.06 92 0.06
9 81 352 0.37 352 0.37

10 100 724 2.10 724 1.83
11 121 2680 16.54 2680 10.30
12 144 14200 158.86 14200 73.34
13 169 73712 2062.39 73712 578.54
14 196 0 384.45 56672 1836.93
15 225 0 289.01 33382 1669.50
16 256 0 652.64 20338 2555.35
17 289 0 1366.25 5061 2055.97
18 324 0 693.13 204 2238.79
19 361 0 529.37 1428 3357.97
20 400 0 1923.07 38 1592.94
21 441 0 1957.39 111 1972.60

respectively. For different values of k the CPU time in sec-
onds, the memory requirements in kB and the number of
nodes in the BDD or the hybrid structure, respectively, are
reported. For zchaff the CPU time is given. The number of
available solutions is not reported, but grows rapidly. While
there are only 38 valid solutions for k = 4, there are more
than 5000 for k = 6 and more than 4 · 106 for k = 9.

The results show the superiority of the hybrid approach
compared to BDDs. For a tightly restricted solution space
(k < 25) BDDs are feasible. But after that the memory
and especially the run-time requirements grow prohibitively
fast. In contrast the hybrid approach exhibits a rather sta-
ble performance as CPU time and memory requirements re-
main in the same order for all runs. The increased run-time
for k = 10, 15 when calculating more than 106 solutions is
due to the small number of possible solutions. In this case a
large part of the BDD has to be recreated using the expan-
sion technique without retrieving more solutions. In this
case BDDs are faster. But usually even calculating a large
number of solutions does not degrade the performance of
the new approach.

When calculating a single solution the SAT solver is
faster. But even for calculating 103 solutions the compu-
tation time increases significantly. Finally, when calculat-
ing a large number of solutions the added blocking clauses
lead to a memory blow-up even for the SAT solver. Using a
more sophisticated approach the blocking clauses could be
compacted, but only at the expense of CPU time for logic
optimization. By this the new approach provides a good
compromise between a SAT-based approach and a BDD-
based approach.

6. Conclusions and Future Work

We introduced a new approach to handle satisfiability
problems. This approach can be seen as an integrated tech-
nique using BDDs and SAT solvers and incorporates bene-
fits of both: The memory consumption can be limited while

Table 4. ESOP minimization
BDD hybrid structure zchaff

all solutions ≥ 1 solution ≥ 103 solutions ≥ 106 solutions 1 sol. 103 sol. 106 sol.
k sec. kB #nodes sec. kB #nodes sec. kB #nodes sec. kB #nodes sec. sec. sec.
4 0.55 16433 628 0.50 16449 568 0.53 16466 1108 0.53 16466 1108 <0.01 0.07 0.07
5 0.58 16483 4075 0.53 16450 638 0.60 16534 4729 0.61 16534 4729 <0.01 0.09 0.09

10 1.75 23610 420655 0.47 16450 145 0.70 16728 11597 51.28 19140 155018 <0.01 0.14 -
15 4.96 49270 1428139 0.48 16468 352 0.61 16744 11634 10.17 19420 172422 <0.01 0.11 -
20 53.96 65539 2444782 0.47 16484 112 0.54 16670 7459 1.13 19516 177708 <0.01 0.32 -
25 1945.01 84280 3449866 0.48 16500 490 0.52 16582 5465 0.98 18732 133396 <0.01 0.37 -
30 9985.37 99752 4441463 0.49 16500 495 0.49 16534 2618 0.66 17395 48107 <0.01 0.12 -
35 13900.22 113883 5361182 0.52 16500 544 0.51 16516 878 0.75 16931 21608 <0.01 0.16 -
39 13913.44 123635 5906441 0.44 16500 217 0.45 16516 1241 0.53 16662 5910 <0.01 0.09 -

calculating a large number of solutions in a single run. First
heuristics have been proposed and evaluated to increase the
performance of the new technique. Experiments show the
efficiency of the hybrid technique in contrast to classical ap-
proaches.

Future work is the introduction of powerful learning
techniques as known from the SAT domain and the appli-
cation to formal verification. Suitable heuristics for such
applications have to be developed.

References

[1] H. Andersen and H. Hulgaard. Boolean expression dia-
grams. In Logic in Computer Science, pages 88–98, 1997.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1579
of LNCS, pages 193–207. Springer Verlag, 1999.

[3] K. Brace, R. Rudell, and R. Bryant. Efficient implementa-
tion of a BDD package. In Design Automation Conf., pages
40–45, 1990.

[4] D. Brand and T. Sasao. Minimization of AND-EXOR
expressions using rewrite rules. IEEE Trans. on Comp.,
42:568–576, 1993.

[5] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[6] G. Cabodi, S. Nocco, and S. Quer. SAT-based bounded
model checking by means of BDD-based approximate
traversals. In Design, Automation and Test in Europe, pages
898–903, 2003.

[7] G. Fey and R. Drechsler. Finding good counter-examples
to aid design verification. In MEMOCODE, pages 51–52,
2003.

[8] E. Goldberg and Y. Novikov. BerkMin: a fast and robust
SAT-solver. In Design, Automation and Test in Europe,
pages 142–149, 2002.

[9] J. F. Groote and H. Zantema. Resolution and binary decision
diagrams cannot simulate each other polynomially. Discrete
Applied Mathmatics, 130(2):157–171, 2003.

[10] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based im-
age computation with application in reachability analysis.
In Int’l Conf. on Formal Methods in CAD, volume 1954 of
LNCS, pages 354–371, 2000.

[11] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik.
Partition-based decision heuristics for image computation
using SAT and BDDs. In Int’l Conf. on CAD, pages 286–
292, 2001.

[12] C. Haubelt, J. Teich, R. Feldmann, and B. Monien. SAT-
based techniques in system synthesis. In Design, Automa-
tion and Test in Europe, volume 1, pages 11168–11169,
2003.

[13] A. Hett, R. Drechsler, and B. Becker. MORE: Alternative
implementation of BDD packages by multi-operand synthe-
sis. In European Design Automation Conf., pages 164–169,
1996.

[14] S. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Extended
BDD’s: Trading of canonicity for structure in verification
algorithms. In Int’l Conf. on CAD, pages 464–467, 1991.

[15] B. Li, M. Hsiao, and S. Sheng. A novel SAT all-solutions
solver for efficient preimage computation. In Design, Au-
tomation and Test in Europe, pages 272–277, 2004.

[16] J. Marques-Silva and K. Sakallah. GRASP – a new search
algorithm for satisfiability. In Int’l Conf. on CAD, pages
220–227, 1996.

[17] C. Meinel and H. Sack. ⊕-OBDDs - a BDD Structure
for Probabilistic Verification. In Workshop on Probabilis-
tic methods in Verification, pages 141–151, 1998.

[18] S. Minato. Streaming BDD manipulation. IEEE Trans. on
Comp., 51(5):474–485, 2002.

[19] A. Mishchenko and M. Perkowski. Fast heuristic minimiza-
tion of exclusive-sums-of-products. In Int’l Workshop on
Applications of the Reed-Muller Expansion in Circuit De-
sign, pages 242–250, 2001.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conf., pages 530–535, 2001.

[21] M. Perkowski and M. Chrzanowska-Jeske. An exact algo-
rithm to minimize mixed-radix exclusive sums of products
for incompletely specified Boolean functions. In Int’l Symp.
Circ. and Systems, pages 1652–1655, 1990.

[22] S. Reda, R. Drechsler, and A. Orailoglu. On the relation
between SAT and BDDs for equivalence checking. In Int’l
Symp. on Quality Electronic Design, pages 394–399, 2002.

[23] D. Ross, K. Butler, R. Kapur, and M. Mercer. Fast func-
tional evaluation of candidate OBDD variable ordering. In
European Conf. on Design Automation, pages 4–9, 1991.

[24] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler. Utiliz-
ing don’t care states in SAT-based bounded sequential prob-
lems. In Great Lakes Symp. VLSI, pages 264–269, 2005.

[25] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and
J. Schlöffel. PASSAT: Effcient SAT-based test pattern gen-
eration for industrial circuits. In IEEE Annual Symposium
on VLSI, pages 212–217, 2005.

[26] D. Sieling and I. Wegener. Reduction of BDDs in linear
time. Information Processing Letters, 48(3):139–144, 11
1993.

[27] F. Somenzi. Efficient manipulation of decision diagrams.
Software Tools for Technology Transfer, 3(2):171–181,
2001.

[28] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.
Combinational test generation using satisfiability. IEEE
Trans. on CAD, 15:1167–1176, 1996.

