SWORD: A SAT like Prover Using Word Level Information

Robert Wille ~ Gorschwin Fey

Daniel Grofle

Stephan Eggersgliill ~ Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{rwille,fey,grosse,segg,drechsle } @informatik.uni-bremen.de

Abstract— Solvers for Boolean Satisfiability (SAT) are
state-of-the-art to solve verification problems. But when
arithmetic operations are considered, the verification
performance degrades with increasing data-path width.
Therefore, several approaches that handle a higher level
of abstraction have been studied in the past. But the
resulting solvers are still not robust enough to handle
problems that mix word level structures with bit level
descriptions.

In this paper, we present the satisfiability solver
SWORD - a SAT like solver that facilitates word level
information. SWORD represents the problem in terms
of modules that define operations over bit vectors. Thus,
word level information and structural knowledge become
available in the search process. The experimental results
show that on our benchmarks SWORD is more robust
than Boolean SAT, K¥BMDs or SMT.

I. INTRODUCTION

The number of elements integrated within digital
circuits grows exponentially and this trend is going
to continue for at least another 10 years. Already
today millions of gates are integrated in a single
circuit. Throughout the design flow for such complex
systems, techniques to represent and manipulate the
function are needed. In particular, to formally verify
the correctness of a circuit with respect to all design
states and input sequences, techniques for symbolic
function manipulation are applied.

Current state-of-the-art tools for formal verification
use Boolean techniques like Binary Decision Diagrams
(BDDs) [1], AND-Inverter-Graphs [2] and provers for
Boolean Satisfiability (SAT) [3], [4]. No word level
information such as knowledge about arithmetic op-
erations or structural knowledge is directly used for
function manipulation. As a result, the performance
of verification tools degrades with increasing data-path
width.

For this reason, approaches to exploit such high
level information have been proposed in the past [5],
[6], [7]. But pure word level approaches suffer from
complexity problems when irregularities in the word
level structure occur, e.g. bit slicing [8]. The recent
concept of Satisfiability Modulo Theories (SMT) [9],
[10], [11], [12] is more powerful since multiple provers
are combined, but still structural information is not
available. Related work is discussed in more detail in
Section II and empirically compared in Section V.

In this paper, we propose SWORD - a SAT-like
prover that uses word level information and also re-
sembles the structure of the original problem. Inter-
nally, the problem is represented as a composition of
modules; each module is defined over bit vectors and
enforces the constraints for a word level operation

on the corresponding Boolean variables. The main
advantages of this approach are the following:

o Compact problem representation: The composi-
tion of word level modules is a much more
compact representation than the transformation to
Boolean constraints.

o Knowledge about structure and semantics: This
knowledge is determined by the position of a
module within the problem instance and the type
of a module. Such information helps to predict
the impact of a decision or of learned information
during the search process more accurately.

o Efficient reasoning: Different types of modules
require different reasoning procedures and deci-
sion heuristics to allow for an efficient search
procedure. These procedures are designed for
each type of module individually in the proposed
framework.

Thus, SWORD combines the advantages of a Boolean
proof procedure with the power of word level know-
ledge. The proposed solver is empirically compared to
K*BMDs [6] as a word level decision diagram, the
Boolean SAT solver MiniSat [4] and the SMT solver
Yices [12].

II. RELATED WORK

Several approaches to incorporate word level infor-
mation in the proof process have been proposed so far.
BDDs have been generalized to the word level quite
early [5] resulting in K*¥BMDs [6] as a very general
form. These diagrams can represent word level mul-
tiplications very efficiently, but whenever bit nibbling
occurs — as is common practice in circuit descriptions
— the performance degrades. In fact, ¥ BMDs may be
exponentially large for certain functions [8].

A different approach is the transformation of the
problem into Integer Linear Programming (ILP) con-
straints [7]. But the same limitations to pure word level
descriptions have been observed. A pure ILP-based
approach is often too slow for real world applications.

Combining Boolean provers and word level provers
seems to be more promising. The framework proposed
in [13] is based on an ATPG engine that is enhanced
by arithmetic word level primitives. An arithmetic con-
straint solver is applied to validate bit level assignments
on the circuit. But the powerful learning concepts
known from Boolean SAT are not incorporated.

Due to the tremendous improvements in the per-
formance of provers for Boolean SAT in the recent
past [14], [15], [16], several researchers investigated
the combination of SAT with other proof techniques,
i.e. Satisfiability Modulo Theories (SMT) [9], [10],



[11], [12]. An SMT solver integrates a Boolean SAT
solver with another solver (or multiple solvers) for
specialized theories. Usually, the SAT solver works on
an abstract representation of the problem and steers
the overall search process. Each satisfiable assignment
for the Boolean SAT problem has to be validated
on the concrete problem using the theory solver. The
solver proposed in [17] can be seen as a specialized
SMT solver for bit vector logic. Tightly coupling the
different solvers, especially to enforce learning due
to conflicts resulting from partial assignments and to
efficiently carry out implications, is a challenge in
this area. Usually, validating a given SAT assignment
by using the theory solver is very time consuming.
Therefore the overall performance is limited by the
performance of the theory solver. In our framework
no theory solvers are needed. Moreover, structural
information about the original problem is available.

A very general theoretical framework for hierarchi-
cal SAT solving was presented in [18]. There, the
problem is also decomposed into modules, where each
module may have different implication procedures. But
no experimental evidence was given and no hints for
an implementation were provided.

Nonetheless our solver works similar to such a hi-
erarchical solver. Besides specialized implication pro-
cedures also dedicated decision heuristics are applied
for different types of modules.

III. BOOLEAN SAT SOLVING

Our algorithm inherits the basic structure of a clas-
sical algorithm to solve a problem instance of Boolean
Satisfiability (SAT) [14]. Therefore we briefly review
the techniques applied in Boolean SAT solvers.

A. Basic Algorithm

The SAT instance is represented as a Boolean for-
mula in Conjunctive Normal Form (CNF), which is
given as a set of clauses; each clause is a set of
literals and each literal is a propositional variable or
its negation.

The basic search procedure to find a satisfying
assignment is shown in Figure 1 and has the structure
of the DPLL algorithm [3]. Instead of simply traversing
the complete space of assignments, intelligent decision
heuristics, conflict based learning and sophisticated
engineering of the implication algorithm lead to an
effective search procedure. The description follows
the implementation of the procedure in modern SAT
solvers. While there are free variables left (a), a de-
cision is made (c) to assign a value to one of these
variables. Then, implications are determined due to
the last assignment by Boolean Constraint Propagation
(BCP) (d). This may cause a conflict (e) that is
analyzed. If the conflict can be resolved by undoing
assignments from previous decisions, backtracking is
done (f). Otherwise the instance is unsatisfiable (g).
If no further decision can be done, i.e. a value is
assigned to all variables and this assignment did not
cause a conflict, the CNF is satisfied (b). In the
following the decision level d denotes the number of

variables assigned by decisions in the current partial
assignment, i.e. neglecting variable assignments due to
implications.

B. Limits of Boolean SAT

Due to the translation of the problem into CNF,
the power of BCP as an implication engine and the
efficiency of learning are limited. In the verification
domain, the original problem is usually given at the
word level. Operations are defined over bit vectors.
Each Boolean variable that is visible in a bit vector at
this level is called module variable in the following.
The translation of word level operations over bit vec-
tors of module variables into CNF involves the creation
of a large number of auxiliary variables [19]. The
dependencies between these variables are modeled by
constraints in terms of clauses.

Example 1. Consider an n x n-multiplier. On the
word level, 4n module variables are needed for the
bit vectors of the operands and the result.

On the other hand, the multiplier can be represented
by n® AND gates [20], i.e. the number of auxiliary
variables is in 0(n?). A single gate can be modeled by
three clauses for each element. Therefore the multiplier

can be represented by a CNF with 0(n?) clauses'.

Simplified, all these auxiliary variables have to be
considered during BCP; but implications on auxiliary
variables do not yield a reduction of the search space
for the original problem. Moreover, conflict clauses
may be derived, that are defined over auxiliary vari-
ables only — again without pruning the search space of
the original problem. In principle, this problem can
be prevented by introducing additional clauses, that
describe the implications on module variables directly,
but then the translation becomes inefficient due to a
large number of clauses.

IV. USING WORD LEVEL INFORMATION

In this section we describe the architecture of
SWORD and how word level information can be used
during the solve process. Therefore, we first explain the
representation of the problem and present the overall
algorithm. Afterwards the utilization of word level
information in decision making, the implication engine
and conflict analysis are explained in more detail.

A. Representation

SWORD represents the problem in terms of so called
modules. Each module defines an operation over bit
vectors of module variables. Each module variable is
a Boolean variable.

Example 2. Figure 2 shows an equivalence checking
problem in terms of a miter circuit. A multiplier is
compared to a realization that sums up the partial
products.

"More efficient translations may be available, but the problem
instance still grows.



(a) free var. left?
yes

global local
(solver) (modules)
"{ (a) free var. left? ‘
yes no
(b) SAT

(c) decision

(d) propagation
(e) conflict ?

yes
(f) resolve conflict

failed

okK|

DPLL

Fig. 1. Fig. 2.

SWORD represents this problem by using one mod-
ule representing a multiplier, n — 1 modules represent-
ing an adder, n modules representing a multiplexor and
one module representing a comparator. No auxiliary
variables are needed.

B. Overall Algorithm

The overall algorithm of SWORD is shown in Fig-
ure 3. This algorithm is similar to the DPLL procedure
as applied in standard SAT solvers: While free vari-
ables remain (a) a decision is made (c), implications
resulting from this decision are carried out (d), and
if a conflict occurs, it is analyzed (f). The important
difference is that SWORD has two operation levels:
the global algorithm controls the overall search process
and calls the local procedures of modules for decision
and implication. Thus, decision making and implica-
tion engine can be adjusted for each type of module.

In more detail, the solver first chooses a partic-
ular module based on a global decision heuristic
(c.1). Then, this module chooses a value for one of
its variables according to a local decision heuristic
(c.2). Afterwards, the solver calls the local implication
procedures (d.2) of all modules that are potentially
affected (d.1) by the previous decision or implication.
Here a variable watching scheme similar to the one
presented in [15] is used, which can efficiently deter-
mine these modules. The chosen modules imply further
assignments and detect conflicts.

C. Decision Strategies

1) Global Decision: The global decision procedure
chooses a module, that assigns a value to one of its
connected module variables. So the global decision
procedure has to decide, which module will make the
best decision, i.e. which decision of a module leads to
as many implications as possible. Therefore a (global)
heuristic is employed to decide which modules are
“more important” than others. To determine the impor-
tance of a particular module, semantical information
such as the type or structural information such as the
position within the overall problem are available.

Miter for a multiplier

’(0.1) choosemocjy (c.2) m->decision ‘

, next
(d.1) for all potentially ‘ (d.2) n->propagation ‘

affected modulesn [ 4gne
%

Lk{ (f) resolve conflict ‘
failed

(9) UNSAT

Fig. 3. Algorithm

Example 3. Again, consider the miter circuit shown
in Figure 2. In this example the primary inputs and
the outputs of the multiplier module are considered
more important than, for example, the select input of
one of the multiplexors. Therefore, the global decision
heuristic selects the multiplier module first.

To realize this efficiently, the global decision heuris-
tic currently uses a static priority based on the type of
the module. Here, more complex modules (e.g. multi-
pliers) are considered as being more important and,
therefore, are selected for a decision with a higher
priority than less complex modules. The complexity
is measured in the number of two-input gates needed
to describe a module. Furthermore the priority of a
particular module can be increased/decreased when it
is located near to the primary inputs/outputs or the
objective. By this, each global decision can be done
very efficiently, because no complex data manipulation
is necessary.

2) Local Decision: The local decision procedure of
a module assigns a value to one of its module variables.
The impact of a particular decision depends on the type
of a module. Therefore different strategies are applied
for different types of modules. For example, a module
representing a multiplier uses a different heuristic than
a module representing an AND gate. In the following
an adder exemplifies the local decision procedures of
SWORD. This type of module is simple enough to be
explained within the page limitation, but provides some
interesting insight.

An n-bit adder ADD : B"” x B® — B"*! is consid-
ered, which is represented by a module in SWORD.
The module variables connected to this module are
given by a,,_1,...,a9 and b,_1, ..., by that represent
the inputs of the adder and o,,...,0 that represent
the outputs.

For an adder, assigning some variables a;, b; or o;
(with n > ¢ > 0) while variables a;, b; or o; (with
t > j > 0) are still unassigned, often does not allow to
imply values for the outputs. In contrast, when all of
the least significant bits of both operands are given, the



decision
level

d-1

Fig. 4. Search tree and decision levels

corresponding bits of the outputs can be determined.
Therefore the variable representing the least significant
unassigned bit is assigned first.

From an implication point of view, the local decision
procedure is realized as a Finite State Machine (FSM).
This allows to carry out decisions efficiently. The FSM
has n + 1 states and is in state ¢ (n > 4 > 0) when all
variables with lower significance than 7 are assigned,
i.e. aj;,b; and o; (¢ > j > 0) are assigned. Thus, if the
FSM is in state ¢, only the variables a;, b; and o; are
considered. If all of these variables are assigned, the
FSM proceeds to state 7 + 1. Otherwise at least two of
these variables are unassigned (because an implication
is carried out when only one variable is unassigned, as
explained in Section IV-D.2).

An additional state R is needed to recalculate the
state when it was invalidated: Due to backtracking
the state of the local FSM of a module may be
invalidated because currently assigned variables may
become unassigned. This is recognized by tracking
the decision level. The decision level of the last state
transition, i.e. since the last change of a state, is stored
in d., and the lowest decision level that has been
reached after a backtrack intermediately is stored in
dy;. The state of the FSM may only be invalidated
when dp; < dp,.

Example 4. Figure 4 illustrates this mechanism. The
search tree is indicated by the plain line and the
decision levels that are reached are also shown. A
transition of the FSM is indicated by a cross. The table
shows the values of d.p, and dy; before the transition
is done. The first transition occurs at A and d.p is
changed from 0 to d; dy; is uninitialized. At B the
decision level has increased; the state is still valid;
dep, is updated to d + 1. Due to a backtrack dy; is set
to d+2. Thus, at C the state from decision level d+1 is
still valid. In contrast, when transition D is done, the
state is potentially invalid and has to be recalculated.

The resulting FSM for a 3-bit adder is shown in
Figure 5; only state transitions are indicated, internal
variables are not shown.

D. Implication Engine

The implication engine is also divided into a global
part and local procedures that are dedicated to the type
of a module.

1) Detection of Affected Modules: Globally those
modules that may be affected by a previous decision
or implication have to be identified. This is done by
a variable watching scheme. Currently, a conservative

Fig. 5. FSM for an adder

approach is applied: the local propagation procedure
of each module that contains a variable that has been
assigned is called. Such a static scheme is efficient,
because module variables usually only connect to a
few modules — often only two modules.

2) Local Implication: The local implication proce-
dures only consider the connected module variables
for the propagation of values. For efficiency these
procedures do not determine all implications that are
possible, but only those that can be derived efficiently.
Again, the local implication procedure of an adder
exemplifies the local implication procedures.

The implication procedure works similar to the
decision procedure: If, for example, the input bit a;
and the output bit o, and all less significant input
bits (a; and b; with ¢ > j > 0) are assigned, the
third variable (b; in the example) can be implied. This
implication procedure does not guarantee to detect
implications on higher significant bits and is therefore
not too powerful. But in most cases implications on
these bits are improbable.

The implication procedure relies on the same FSM
that is used for decisions. Additionally, the carry bits
Cn—1,---,Co are internally updated at each state transi-
tion. In state ¢ (n > ¢ > 1) carry bit ¢;_; is also given.
Therefore an implication can be carried out efficiently
based on the current state ¢, the value of the carry bit
c;—1 and the values of the module variables a;, b;, 0;.

Note, due to the implication procedure a conflicting
assignment may not be detected directly. But when
the FSM reaches state n, i.e. all module variables
are assigned, the consistency of the assignment will
be validated. However, due to the order of decisions
conflicts are usually detected early. The mechanisms
for conflict analysis are explained in detail in the next
section.

E. Conflict Analysis

In SWORD conflict analysis and learning are quite
similar to the classical approach of a SAT solver.
Upon detection of a conflict, the module returns the
conflicting variables to the global solve process. Then,
conflict analysis is carried out. Currently we adapted
the implementation of MiniSat [4]. Because SWORD
does not work in terms of clauses, a separate implica-
tion graph is stored globally. Each module updates this
graph when an implication is carried out. The learned
information is stored in terms of clauses as in standard
SAT solvers. Therefore an additional clause module
exists, which handles all clauses generated by conflict



analysis (and applies the known state-of-the-art SAT
techniques).

The conflict graph keeps track of the reasons for
a particular assignment. Thus, the identification of
a reason is crucial in this context. The smaller the
reason, the smaller the conflict clauses and the more
effectively the search space is pruned. Again, an adder
is facilitated to give an idea of how the implication
graph is created.

Example 5. Assume, o; is implied based on the inter-
nal value of c;_1 and the module variables a; and b;.
Furthermore, due to previous assignments a;—1 = 0
and b;_1 = 0, the reasons for these assignments
are already stored in the implication graph. In this
case input bits with lower significance than i — 1 do
not influence the value of o;, because no carry bit
is propagated beyond © — 1. Thus, the four variables
a;, b;, a;_1 and b;_1 are identified as the reason for
the implication on o;. The four edges (a;,0;), (b;, 0;),
(aj—1,0;) and (b;—1,0;) are added to the implication
graph. Note, that the reasons for a;_1 = 0 and b;_1 =
0 are already stored in the graph.

Like in standard SAT solvers, only conflict clauses
up to a certain length are learned. The ratio behind this
heuristic is that short clauses prune a large part of the
search space while longer clauses are less valuable.

Semantical knowledge is also exploited in this pro-
cess. For example, a conflict clause is not learned if
it contains variables that are associated to a complex
module like a multiplier — in this case only backtrack-
ing is carried out. This heuristic is motivated by the
observation that usually a large number of clauses is
learned that describe the behavior of a multiplier which
causes memory overhead but does not speed up the
search.

V. EXPERIMENTAL RESULTS

This section provides experimental results for
SWORD in comparison to the Boolean SAT solver
MiniSat [4], K¥BMDs [6] using the package of [21]
as a representative of pure word level approaches, and
the SMT solver Yices [11], [12].

All experiments were carried out on an AMD
Athlon64 3500+ (Linux, 2.2 GHz, 1 GB). We consid-
ered different benchmark problems. In the following,
the name indicates the type of the problem. The prefix
ec_ indicates equivalence checking of a multiplier
(mul_) on the word level with another multiplier that
is given as word level module (mul_), as sum of
partial products (pp_), or as gate level description
(gt_), respectively. Thereby, a miter circuit is used. In
some cases the least significant bit was ignored in the
miter (indicated by /i_) and in other cases a fault was
injected at the gate level to create a satisfiable instance
(indicated by ft_ ). The prefix pc_arith indicates a
property checking problem that contains arithmetic
modules. Finally, a number indicates the bit width of
the data path.

Table I provides run times for K¥BMDs, SWORD
and Yices, while Table II shows results in comparison

TABLE I
COMPARISON TO WORD LEVEL SOLVER

[ circuit [ K*BMD | SWORD | SMT |
ec_mul_mul_7 <0.01s 0.35s <0.01s
ec_mul_mul_8 <0.01s 1.67s <0.01s
ec_mul_mul_9 <0.01s 8.02s <0.01s
ec_mul_mul_10 <0.01s 37.09s <0.01s
ec_mul_pp_7 0.01s 0.62s 15.83s
ec_mul_pp_8 0.01s 3.10s | 105.56s
ec_mul_pp_9 0.01s 15.54s >500s
ec_mul_pp_10 0.01s 59.85s >500s
ec_mul_gt 7 3.48s 0.91s 10.93s
ec_mul_gt_8§ 13.60s 4.69s 82.40s
ec_mul_gt_9 53.45s 23.20s >500s
ec_mul_gt_10 202.31s 113.48s >500s
ec_mul_mul_li_7 >500s 0.34s 0.29s
ec_mul_mul_li_8 >500s 1.66s 1.96s
ec_mul_mul_li_9 >500s 7.95s 58.15s
ec_mul_mul_li_10 >500s 37.01s >500s
pc_arith_a_6 0.5s 0.36s <0.01s
pc_arith_a_7 2.1s 1.72s | <0.01s
pc_arith_a_8 8.7s 8.21s <0.01s
pc_arith_a_9 35.8 37.83s | <0.01s
pc_arith_b_10 1.69s 1.42s 0.07s
pc_arith_b_11 3.18s 4.68s 0.15s
pc_arith_b_12 6.36s 12.24s 0.34s
pc_arith_b_13 12.82 30.91s 0.96s

to MiniSat. An x in column sat indicates whether the
problem instance is satisfiable. For each benchmark
the number of variables to represent the problem, the
number of clauses for MiniSat and the number of
modules for SWORD are given in columns var, cls and
mod, respectively. The memory requirements and the
CPU time in seconds are provided in columns mem and
time. Finally, the improvement in run time of SWORD
over MiniSat is shown in column imp.

As expected K¥BMDs performs very well on pure
word level problems and outperform SWORD in this
case (e.g. benchmark set ec_mul_mul). But when
the description is provided at the bit level the per-
formance degrades significantly (ec_mul_gt). Further-
more, bit level operations cannot be handled efficiently
(ec_mul_mul_li). Yices also handles the pure word
level problems extremely efficient. But again, when
word level and lower level descriptions are mixed, the
performance degrades. On these benchmarks SWORD
is more robust. In comparison to MiniSat SWORD
requires less memory and is significantly faster (except
benchmark set pc_arith_b). In the best case up to three
orders of magnitude can be achieved.

VI. CONCLUSIONS

We presented the satisfiability solver SWORD that
uses a SAT like algorithm and exploits word level
information in the search process. SWORD works on
a representation of the problem in terms of modules.
This yields a powerful framework for decision making,
implications and conflict analysis. Experimental results
show on our benchmarks, that SWORD is more robust
than other approaches that were considered here.

A task for future work is developing techniques
for automating the creation of modules for SWORD.
Furthermore, the application to other problem domains



TABLE II
COMPARISON TO BIT LEVEL SOLVER

MiniSat SWORD
circuit sat var | cls | mem | time var | mod | mem | time imp
ec_mul_mul_7 519 1766 3.98MB 2.02s 43 3| 2.73MB 0.35s 5.77
ec_mul_mul_8 687 2348 4.50MB 10.79s 49 3 | 2.73MB 1.67s 6.46
ec_mul_mul_9 879 3014 5.65MB 54.96s 55 3| 2.73MB 8.02s 6.85
ec_mul_mul_10 1095 3764 8.45MB | 461.44s 61 3 | 2.73MB 37.09s 12.44
ec_mul_pp_7 1012 3381 4.24MB 3.98s 228 17 | 2.73MB 0.62s 6.41
ec_mul_pp_8 1331 4460 5.00MB 25.76s 292 19 | 2.73MB 3.10s 8.30
ec_mul_pp_9 1694 5689 6.93MB | 189.24s 364 21 | 2.73MB 15.54s 12.17
ec_mul_pp_10 2101 7068 | >10.16MB >500s 444 23 | 2.86MB 59.85s >8.35
ec_mul_gt_7 519 1766 3.98MB 2.02s 274 246 | 2.73MB 0.91s 2.21
ec_mul_gt_8 687 2348 4.50MB 10.79s 360 328 | 2.86MB 4.69s 2.30
ec_mul_gt 9 879 3014 5.65MB 54.96s 458 422 | 2.86MB 23.20s 2.36
ec_mul_gt_10 1095 3764 8.45MB | 461.44s 568 528 | 2.86MB | 113.84s 4.05
ec_mul_mul_li_7 518 1761 3.99MB 2.03s 43 3 | 2.73MB 0.34s 5.97
ec_mul_mul_li_8 686 2342 4.36MB 7.95s 49 3 | 2.73MB 1.66s 4.78
ec_mul_mul_li_9 878 3009 5.90MB 88.88s 55 3 | 2.73MB 7.95s 11.17
ec_mul_mul_li_10 1094 3759 8.11MB | 409.51s 61 3 | 2.73MB 37.01s 11.06
ec_mul_gt_ft_18 X 3687 | 12788 17.16MB 70.58s || 1880 | 1808 | 3.12MB | <0.01s || >7058.00
ec_mul_gt_ft_19 X 4119 | 14294 16.84MB 54.88s || 2098 | 2022 | 3.29MB 0.01s 5488.00
ec_mul_gt_ft_21 X 4575 | 15884 20.10MB 73.91s || 2328 | 2248 | 3.30MB | <0.01s || >7391.00
ec_mul_gt_ft_22 X 5055 | 17558 2491MB | 111.03s || 2570 | 2486 | 3.43MB 0.03s 3701.00
pc_arith_a_6 572 1980 4.11MB 3.78s 55 10 | 2.73MB 0.36s 10.50
pc_arith_a_7 740 2562 5.00MB 28.52s 61 10 | 2.73MB 1.72s 16.58
pc_arith_a_8 932 3228 6.93MB | 196.98s 67 10 | 2.73MB 8.21s 23.99
pc_arith_a_9 1148 3978 | >10.16MB >500s 73 10 | 2.73MB 37.83s >13.21
pc_arith_b_10 250 852 3.60MB 0.01s 77 17 | 3.89MB 1.42s <0.1
pc_arith_b_11 268 911 3.61MB 0.01s 82 17 | 4.68MB 4.68s <0.1
pc_arith_b_12 286 970 3.59MB 0.01s 87 17 | 6.70MB 12.24s <0.1
pc_arith_b_13 304 1029 3.59MB 0.01s 92 17 | 7.70MB 30.91s <0.1

than verification is an important topic. As one example
logic synthesis for reversible circuits with SWORD
was introduced in [22].

ACKNOWLEDGMENTS

We wish to thank Jodo Marques-Silva and Paulo
Jorge Matos for many helpful discussions in the area
of SMT.

(1]

(2]

(3]

[4]
[3]

(6]

[7]

(8]

[9]

REFERENCES

R. Bryant, “Graph-based algorithms for Boolean function ma-
nipulation,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677-691,
1986.

A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, ‘“Robust
Boolean reasoning for equivalence checking and functional
property verification,” IEEE Trans. on CAD, vol. 21, no. 12,
pp. 1377-1394, 2002.

M. Davis, G. Logeman, and D. Loveland, “A machine program
for theorem proving,” Comm. of the ACM, vol. 5, pp. 394-397,
1962.

N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT
2003, ser. LNCS, vol. 2919, 2004, pp. 502-518.

R. Bryant and Y.-A. Chen, “Verification of arithmetic functions
with binary moment diagrams,” in Design Automation Conf.,
1995, pp. 535-541.

R. Drechsler, B. Becker, and S. Ruppertz, “K*BMDs: A new
data structure for verification,” in European Design & Test
Conf., 1996, pp. 2-8.

R. Brinkmann and R. Drechsler, “RTL-datapath verification
using integer linear programming,” in ASP Design Automation
Conf., 2002, pp. 741-746.

J. Thathachar, “On the limitations of ordered representations
of functions,” in Computer Aided Verification, ser. LNCS, vol.
1427. Springer Verlag, 1998, pp. 232-243.

S. A. Seshia, S. K. Lahiri, and R. E. Bryant, “A hybrid SAT-
based decision procedure for separation logic with uninter-
preted functions,” in Design Automation Conf., 2003, pp. 425—
430.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli, “DPLL(T): Fast decision procedures,” in Computer
Aided Verification, ser. LNCS, vol. 3114, 2004, pp. 175-188.
B. Dutertre and L. Moura, “A Fast Linear-Arithmetic Solver
for DPLL(T),” in Computer Aided Verification, ser. LNCS, vol.
4114, 2006, pp. 81-94.

B. Dutertre and L.Moura, The YICES SMT Solver, 2006,
available at http://yices.csl.sri.com/.

C.-Y. Huang and K.-T. Cheng, “Using word-level ATPG and
modular arithmetic constraint-solving techniques for assertion
property checking,” IEEE Trans. on CAD, vol. 20, no. 3, pp.
381-391, 2001.

J. Marques-Silva and K. Sakallah, “GRASP: A search algo-
rithm for propositional satisfiability,” IEEE Trans. on Comp.,
vol. 48, no. 5, pp. 506-521, 1999.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik, “Chaff: Engineering an efficient SAT solver,” in Design
Automation Conf., 2001, pp. 530-535.

E. Goldberg and Y. Novikov, “BerkMin: a fast and robust SAT-
solver,” in Design, Automation and Test in Europe, 2002, pp.
142-149.

G. Parthasarathy, M. Iyer, K.-T. Cheng, and L.-C. Wang, “An
efficient finit-domain constraints solver for circuits,” in Design
Automation Conf., 2004, pp. 212-217.

Y. Novikov and R. Brinkmann, “Foundations of hierarchical
sat-solving,” in Int’l Workshop on Boolean Problems, 2004,
pp. 103-141.

G. Tseitin, “On the complexity of derivation in propositional
calculus,” in Studies in Constructive Mathematics and Math-
ematical Logic, Part 2, 1968, pp. 115-125, (Reprinted in: J.
Siekmann, G. Wrightson (Ed.), Automation of Reasoning, Vol.
2, Springer, Berlin, 1983, pp. 466-483.).

M. M. Mano and C. R. Kime, Logic and Computer Design
Fundamentals, 3rd ed. Pearson Education, 2004.

M. Herbstritt, wid: A C++ library for decision diagrams,
Institute of Computer Science, Albert-Ludwigs-University,
Freiburg im Breisgau, 2000, http://ira.informatik.uni-
freiburg.de/software/wld.

R. Wille and D. GroBe, “Fast Exact Toffoli Network Synthesis
of Reversible Logic,” in Int’l Conf. on CAD, 2007.




