Improving Test Pattern Compactness in SAT-based ATPG

Stephan Eggersgliifl

Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany
{segg,drechsle}@informatik.uni-bremen.de

Abstract

Automatic Test Pattern Generation (ATPG) is one
of the core problems in testing of digital circuits. ATPG
algorithms based on Boolean Satisfiability (SAT) turned
out to be very powerful, due to recent advances in SAT-
based proof engines. SAT-based ATPG clearly outper-
forms classical approaches especially for hard-to-detect
faults. But due to the SAT provers, a magjor drawback
of the resulting test patterns is that a large number of
input bits is specified. Thus, the resulting patterns are
not well suited for test compaction and compression.

In this paper we present techniques to increase the
number of unspecified bits in test patterns generated by
SAT-based ATPG tools. We make use of structural
properties of the circuit and apply local don’t cares.
Ezxperimental results on industrial designs show signif-
icant reductions of up to 97%.

1 Introduction

While ATPG was considered a solved problem some
years ago, due to significantly increasing circuit sizes
according to Moore’s law, there is a renewed inter-
est in algorithms for efficient test pattern generation.
While classical approaches, like PODEM [9] or FAN [§]
are based on backtrack search, alternative formulations
based on SAT engines have been proposed. The first
methods were presented in the early 90s [10, 18]. But
at that time no efficient SAT solvers were available.

In the last ten years, there was a tremendous im-
provement of SAT solvers resulting in speed-ups of sev-
eral orders of magnitude. This is mainly due to the in-
stance management, efficient learning techniques, non-
chronological backtracking and clever decision heuris-
tics (see e.g. [11, 12, 3]). Based on these proof engines,
very powerful ATPG tools have been proposed that
clearly outperform classical approaches especially on
hard-to-test and also on redundant faults. This has
been shown in several studies and for varying fault
models (see e.g. [19, 17, 4, 6, 5]).

But SAT-based techniques face a major problem,

when ATPG is not considered as an isolated prob-
lem, but in the complete design flow. The step fol-
lowing ATPG is the compaction of test patterns. But
here, due to the algorithmic structure of modern SAT
solvers, the patterns are not well suited. For high com-
paction, the patterns should only specify bits that are
needed for showing the faulty behaviour at an output.
All other inputs should remain unspecified. While the
early DPLL SAT approaches [2, 1] assigned only rele-
vant variables and checked the set of clauses after each
iteration, modern solvers assign variables until a con-
tradiction occurs. And if no contradiction occurs, the
instance is classified as satisfiable. This efficient han-
dling of the instance is a major reason for the perfor-
mance, but results in over-specified patterns.

A simple alternative would be to check for each input
whether the assigned value is needed by running a fault
simulation with an assigned don’t care value. But this
would be far too time consuming for large industrial de-
signs and for this is not feasible. In [13, 16], techniques
for eliminating irrelevant variables in counterexamples
were presented. However, these approaches have much
time overhead and for this are not well suited for SAT-
based ATPG. Another possibility is the extension of a
SAT solver as done in [15]. But this is not always de-
sirable, because the robustness of modern SAT solvers
is likely to be compromised this way.

In this paper we present an approach to SAT-based
ATPG that results in very compact test patterns,
i.e. patterns with a large number of unspecified bits.
We discuss two strategies that make both use of struc-
tural information and local don’t cares. While one ap-
proach describes an integration in the SAT instance,
the other is based on a post-processing step. Prop-
erties are discussed and experimental results on large
industrial designs are given. It is shown that the post-
processing approach can reduce the number of specified
bits by up to 97%, while the run time is negligible.

The paper is structured as follows: In the next sec-
tion, a short overview of SAT-based ATPG is given.
Different strategies to determine more compact test
patterns are presented in Section 3. In Section 4, ex-
perimental results are provided and discussed. Conclu-
sions are drawn in Section 5.

Fault location

. |

Figure 1. Extraction of the influenced Circuit
Parts

2 SAT-based ATPG

In this section, the application of SAT-based ATPG
is briefly reviewed. For more details see [10, 18, 17].
In this context, the Stuck-At Fault Model (SAFM) is
considered'. Then, the general transformation of an
ATPG instance into a SAT instance is presented. Fur-
thermore, improving the search process of the SAT
instance by including problem specific knowledge is
briefly described.

The SAFM is a static fault model. One line in the
circuit is considered to be stuck at the constant value
0 or 1 and is therefore independent from the primary
inputs. The modeling of a Stuck-At Fault (SAF) in a
given circuit is described in the following. A particular
SAF is called testable, iff a test pattern exists which
produces different output values in the faulty and the
fault-free circuit at least at one output. Otherwise the
fault is untestable.

Modern SAT solvers work on the problem repre-
sented as a Conjunctive Normal Form (CNF). A CNF
is a set of clauses, a clause is a set of literals and a
literal is a variable in its positive or negative form. A
CNF is satisfied iff an assignment exists, which satisfies
all clauses. A clause is satisfied iff at least one literal
is satisfied.

Due to reasons of efficiency, modern SAT solver de-
tect satisfiability, iff all variables are assigned and no
contradiction occurs instead of checking whether all
clauses are satisfied. As a result, there exists no un-
specified variable in the computed solution.

The classical transformation of an ATPG instance
into a SAT instance as described in [10] is explained
in the following. To each line in the circuit, a Boolean
variable is assigned. The functionality of each gate
in the circuit is represented by a set of clauses. The
complete CNF of the circuit is the conjunction of the
clauses of all gates.

Consider the circuit in Figure 1. To model the SAF,
all outputs at which the fault effect may be observed
have to be determined. The transitive fan-in cone of

IThe techniques in the following can also be applied to more
complex fault models, like gate delay or path delay, if the ATPG
engine is based on SAT.

these outputs influences the detection of the fault and
for this must be added to the SAT instance.

To detect the fault, a faulty and a fault-free version
of the circuit have to be modeled. Since different values
can only occur in the output cone of the fault location,
the transitive fan-in cone can be shared between both
versions. Only the output cone has to be duplicated.
This results in a reduction of the SAT instance.

To guide the search process and to guarentee that
the fault effect can be observed at the outputs, struc-
tural information is added to the SAT instance as
suggested in [18] and originally proposed for the D-
algorithm [14].

Beside the variables for the faulty and the fault-free
version, a third variable gp is therefore introduced for
each gate g in the output cone. This variable denotes
whether the gate is on a D-chain? (¢gp = 1) or not
(9p =0).

Further details about the modeling of the necessary
additional implications can be found in [17].

However, in industrial circuits it is insufficient to
model only Boolean values. Due to page limitation, the
modeling of multi-valued logic is not explained here. A
detailed description can be found in [7].

In summary, the SAT instance is only satisfiable, iff
a test pattern is found that yields at least one wrong
output value if the fault is present. In every case, all
included inputs are assigned with specified values.

3 Improving Compactness

SAT-based ATPG algorithms have been shown to
be effective even for large industrial circuits. But a
weakness of this method is the large number of specified
bits in the computed test pattern.

During their search for a solution of the problem,
state-of-the-art SAT solvers, like e.g. Zchaff [12] or
MiniSat [3], prove either the unsatisfiability by show-
ing that no solution for the given formula exists or the
satisfiability by computing a Boolean assignment of the
formula. In state-of-the-art SAT solvers, the stopping
criterion of the latter case is the complete assignment
of all variables.

More formally, a solution of a Boolean formula
flx1,...,xy) is found, iff

Vo, | 1<i<n: z; €{0,1}

and no contradiction exists.

From this solution the test pattern is directly deter-
mined by the assignment of the input variables. Due
to the complete Boolean assignment, all bits of the test
pattern of the considered part of the circuit have a spec-
ified value. That means they are either 0 or 1, but not
X (don’t care).

2A D-chain denotes a path from the fault location to a pri-
mary output, where on each gate along the path the values of
the faulty and fault-free versions differ.

1 testpattern t = X;
2 set<input> s;

3 list 1;

4 foreach(output o) do

5 {

6 if (observable(o))

7 {

8 1.push(o);

9 while (!1l.empty())

10 {

11 gate g = 1.first_element();
12 if (g == INPUT) s.add(g);
13 else 1l.add(g.all_predecessors())
14 1.remove(g);

15 }

16 foreach (input i in s) do

17 {

18 t.set_computed_bit(i);

19 }

20 break;

21 }

Figure 2. Pseudo-code of the Post-Processor

In contrast, classical ATPG algorithms such as FAN
[8] assign X-values to signals during their search pro-
cess and, as a result, immediately generate test pat-
terns with a small number of specified bits.

In industrial practice, it is important, that com-
puted test patterns have a high number of unspecified
bits. This is required such that techniques like test
compaction and test compression can be applied. In
the following, strategies are presented that reduce the
number of specified bits in test patterns computed by
SAT-based ATPG.

In this section, two post-processing strategies that
result in more compact test patterns are introduced.
In Section 3.1, the exploitation of structural proper-
ties about the observability of the fault effect is pre-
sented, while Section 3.2 applies local don’t cares. In
Section 3.3, an alternative strategy which includes the
relevant information in the SAT instance is briefly con-
sidered.

3.1 Observability at Outputs

As described in Section 2, for a given SAF, the fault
must be justified at the faulty line and is then prop-
agated towards the outputs, so that the fault effect is
observable at least at one output.

During the creation of the SAT instance, it is not
known along which paths the fault effect is propagated
to the outputs. Therefore, all possible paths and their
transitive fan-in cone have to be included. As a result,
the test pattern is over-specified.

To reduce the number of specified bits in the test
pattern ¢, a post-processor is applied after calculating
the solution. The pseudo-code of the post-processor is
shown in Figure 2.

b
1 }
[
0 SAl |
0 d

Figure 3. Example Circuit

First, all bits of the test pattern are set to X (line 1).
Then, the inputs s of the transitive fan-in cone of out-
put o at which the fault effect is observable are identi-
fied by backtracing (line 9-15). The assignments of all
inputs in s are extracted and the corresponding bits in
the test pattern are set to the computed value (line 18).
Because it is sufficient that the fault effect can be ob-
served at only one output, this must be done only once.
Therefore, the complexity of this post-processing step
is O(n), where n denotes the number of elements in the
circuit for a randomly chosen o.

Because it is likely that the fault effect can be ob-
served at more than one output, the number of specified
bits in the test pattern depends on the chosen output.
To find the output with the smallest number of speci-
fied bits for the calculated solution, the procedure must
be executed for each output o at which the fault effect
is observable. In this case, the complexity of the proce-
dure is O(n-k), where k denotes the number of outputs
in the output cone.

Example 1. Consider the circuit given in Figure 3. A
SA1 fault is to be tested at line h. A corresponding test
pattern of the classical SAT approach can be found at
the left side of the inputs.

The fault effect can be observed at both outputs.
Choosing output j, the post-processor backtraces to the
inputs a,b,c,d and sets the corresponding bits in the
test pattern to the specified value. The bits for the in-
puts e, f remain X. Choosing output k however results
in specified bits for inputs c,d, e, f and don’t care bits
for a,b.

3.2 Applying Local Don’t Cares

In this section, a procedure which exploits the
knowledge about local don’t cares is introduced. This
procedure can be combined with the technique pre-
sented in Section 3.1.

In the procedure described above, the inputs are
identified by backtracing without considering internal
assignments. Consequently, all inputs from which the
output o is structural dependent are represented by

1 testpattern t = X;
2 set<input> s;

3 list 1;

4 foreach(output o) do

5 {

6 if (observable(o))

7 {

8 1.push(o);

9 while (!1l.empty())

10 {

11 gate g = 1.first_element();

12 if (g == INPUT) s.add(g);

13 else if (on_d_chain(g))

14 1l.add(g.all_predecessors());
15 else if (contr_in_val(g))

16 1l.add(g.pred_with_contr_val());
17 else

18 1l.add(g.all_predecessors());
19 1.remove(g);

20 ¥

21 foreach (input i in s) do

22 {

23 t.set_computed_bit(i);

24 }

25 break;

26 }

Figure 4. Pseudo-code of the Post-Processor
applying local Don’t Cares

specified bits in the test pattern. But not all consid-
ered internal signals in the transitive fan-in cone of o
are necessary for detecting the fault.

For determining the value of a basic gate g like AND,
NAND, OR or NOR, it is not always necessary to know
all values of the predecessors. If the controlling value
¢ (0 for AND, NAND, 1 for OR, NOR) is applied at
at least one incoming connection, then the value of the
gate is determined. Consequently all other incoming
connections can be substituted by X-values. Only one
incoming connection with a controlling value has to be
backtraced to guarantee the correct value of the gate.

This property can be exploited when calculating the
transitive fan-in cone of output o under a specific as-
signment. The pseudo-code of the extended algorithm
is shown in Figure 4. Instead of directly backtracing all
predecessors of the considered gate of the circuit, the
element is analyzed with respect to the assignment.

If the gate is located on a D-chain, i.e. the fault effect
is propagated along this gate, all predecessors must be
backtraced (line 13-14). This is due to the restriction,
that all side-inputs of the D-chain must be set to non-
controlling value to propagate the fault effect.

If the assignment of at least one incoming connection
of the considered gate is the controlling value (line 15),
then only the corresponding predecessor has to be back-
traced. The other predecessors are not addressed any-
more and therefore can be treated as X. Note, that this
is not an exact method. In case of having more than
one controlling value, the choice is based on heuristics.

In all other cases, all predecessors must be back-
traced to ensure the correct value. Finally, the bits of
all inputs which have been considered during backtrac-
ing are set to the computed value in the test pattern.

Equal to the procedure presented in Section 3.1, the
number of specified bits depends on the chosen output.
To determine the output with the smallest number of
specified bits for the given assignment, the same pro-
cedure as above can be applied.

Example 2. Consider again the circuit in Figure 3.
Choosing k as observed output results in considering all
predecessors of k, because k is on a D-chain, i.e. h and i
have to be backtraced. Because both gates are controlled
by at least one incoming connection, only one predeces-
sor of h and i, respectively, have to be considered. This
results in only two specified bits (one of {c,d} and one
of {e, f}) which are needed to detect the fault instead
of all siz.

3.3 SAT Encoding

As an alternative to the post-processor, a strategy
is presented which encodes the relevant information di-
rectly into the SAT instance. As a result, the informa-
tion which bits of the test pattern can be set to un-
specified value is derived directly from the solution.

Therefore, for each gate g in a circuit an addi-
tional variable go is introduced. This variable indi-
cates whether a value can be substituted by a don’t
care (gc = 0) or not (gc = 1).

Let f be the gate with the outgoing fault connec-
tion, then fo must be set to 1. Furthermore, it has to
be guarenteed, that the C-variable of exactly one out-
put of which the D-variable (see Section 2) is assigned
to 1 is also assigned to 1. The values have to be prop-
agated towards the inputs with respect to local don’t
cares by including additional implications into the SAT
instance.

This encoding was implemented and experiments
were carried out. Although the results were compa-
rable to those of the post-processing in terms of qual-
ity, the run time and number of not classified faults
increased significantly due to the increased size of the
SAT instance. Due to page limitation, the results are
therefore left out.

4 Experimental Results

In this section, experimental results of the presented
approaches are shown. The industrial circuits are pro-
vided by NXP Semiconductors GmbH, Germany. All
experiments were carried out on an AMDG64 3500+
(2200 MHz, 4096 MByte, GNU /Linux). As SAT solver,
MiniSat [3] was used.

The general test procedure is as follows. For a given
fault, a test pattern is computed. Afterwards, the post-
processor is started to reduce the number of specified

Table 1. Results — Run Time

default post post min post ext. post min ext.

circ time | ab. time | ab. time | ab. time | ab. time | ab.
p4dk 48:13m 0 || 48:24m 0 || 47:58m 0 || 50:55m 0 || 51:09m 0
p49k 2:14h | 102 2:13h | 103 2:13h | 103 2:13h | 103 2:18h | 108
P77k 0:30m 0 0:29m 0 0:29m 0 0:29m 0 0:29m 0
p80k 11:54m 0 || 29:24m 0 || 29:23m 0 || 30:08m 0 || 30:10m 0
p88k 12:36m 0 12:59m 0 13:05m 0 12:51m 0 12:56m 0
P99k 9:35m 0 9:30m 0 9:33m 0 9:40m 0 9:45m 0
pl77k 1:40h 0 1:39h 0 1:39h 0 1:51h 0 1:53h 0
p462k 2:58h 10 2:57h 10 2:56h 10 2:59h 10 2:59h 10
p565k 2:38h 0 2:39h 0 2:38h 0 2:39h 0 2:39h 0
p1330k 6:01h 0 6:07h 0 6:10h 0 5:56h 0 5:56h 0

bits. Additionally, a fault simulator is started to check
whether the test pattern finds additional faults.

In the following, we first discuss the run time of the
algorithms followed by an analysis of the quality.

In Table 1, results for the approaches presented in
Section 3 are shown. The name of the circuit (column
cire) roughly denotes the size of the circuit, e.g. p1330k
contains over 1.3 millions of gates. For comparison,
results of the default approach without the usage of
a post-processor are presented in column default. In
column post, results of the approach presented in Sec-
tion 3.1 are given for a randomly chosen output, while
column post min provides results for the output with
the smallest number of specified bits. The results for
the approaches presented in Section 3.2 are given in
column post ext. and post min ext., respectively.

Column time provides the run time. In column ab.,
the number of faults which could not be classified due
to time limit is presented.

Studying the results of Table 1, it can be observed,
that the additional use of the post-processor only re-
sults in small run time overhead. This is due to the
linear complexity of the algorithm. Only in case of
p80k, the run time is higher by more than a factor of
two. This can be explained by the likewise increased
number of test generator calls, i.e. the fault simulator
detects a smaller number of additional faults detected
by the test patterns. In all other cases, this increase of
the calls cannot be observed.

Comparing the configurations post and post min, it
can be noticed, that using post min results more often
in (minimal) smaller run time, although more calcula-
tions have to be done. This is due to the usage of a
fault simulator, i.e. different test patterns cause a dif-
ferent set of targeted faults. This cannot be observed
using post ext. and post min ext. Here, the run time of
post ext. remains always smaller (or equal) compared
to post min ext.

Compared to the default configuration, the run
times using the post-processor are in most — but not all
— cases only slightly larger (except p80k). The number
of not classified faults remains almost stable.

In Table 2 and Table 3, results concerning the av-

erage number of specified bits are presented for the
approach with and without local don’t cares, respec-
tively. Column #Input lists the total number of inputs
(both primary and pseudo-primary) of the circuit. In
column %bits, the average percentage of specified bits
of the presented approaches is provided (in default, this
is the number of inputs included in the SAT instance).
Column %def gives the percentage of specified bits in
relation to the default configuration. Finally, column
#PAT denotes the number of generated test patterns.

The usage of a post-processor without applying lo-
cal don’t cares reduces the specified bits significantly.
The results show a reduction of up to 69%. It can be
noticed, that there are only slight differences between
the configurations post and post min. Although in post
min, the output with the smallest number of specified
bits is considered, the total number of specified bits is
not always smaller. This is again due to the usage of a
fault simulator.

Applying the post-processor considering local don’t
cares results in a even more reduced percentage of spec-
ified bits in test patterns. In the worst case, the reduc-
tion is still over 60%, while in the best case it is up to
97% (p177k).

The experiments show, that the presented post-
processor is able to reduce the number of care bits
drastically. With nearly no overhead in run time, SAT-
based ATPG algorithms are able to generate compact
test patterns which are well suited for techniques like
test compaction and compression.

5 Conclusions

In this paper, we presented techniques which make
use of structural properties of the circuit and apply lo-
cal don’t cares in form of a post-processor. As a result,
the number of specified bits in test patterns generated
from SAT-based ATPG tools could be reduced signifi-
cantly of up to 97% as experimental results have shown,
while run time is negligible in most cases. The result-
ing test patterns are well suited for techniques like test
compaction and compression.

Table 2. Specified Bits — Post-Processing

default post post min

circ #Input || %bits | %def | #Pat || %bits | %def | #Pat || %bits | %def | #Pat
pddk 2914 || 70.01 100 5946 || 59.31 | 76.56 5542 || 59.31 | 76.56 5542
p49k 637 || 47.38 100 379 || 17.86 | 37.82 373 || 17.85 | 37.80 376
p77k 3148 1.94 100 123 0.59 | 31.27 121 0.59 | 31.83 125
p80k 4030 || 10.05 100 4025 4.99 | 49.71 | 10694 4.99 | 49.71 | 10694
p88k 4712 4.38 100 5757 2.95 | 67.05 5890 2.95 | 67.05 5890
p99k 5914 5.48 100 3300 4.23 | 77.15 3285 4.23 | 77.15 3285
pl77k 11275 || 21.24 100 3755 7.97 | 38.16 3890 7.93 | 37.98 3846
p462k 31020 0.85 100 9316 0.30 | 35.31 9223 0.30 | 35.42 9198
p565k 33405 0.24 100 8638 0.16 | 66.80 8664 0.16 | 67.26 8715
pl1330k | 105247 0.26 100 | 12151 0.17 | 69.81 | 12477 0.17 | 69.81 | 12477

Table 3. Specified bits — Post-Processing applying local Don’t Cares
default post ext. post min ext.

circ #Input || %bits | %def | #Pat || %bits | %def | #Pat || %bits | %def | #Pat
p4dk 2914 70.01 100 5946 7.59 9.72 6149 7.59 9.72 6149
p49k 637 47.38 100 379 16.76 | 35.48 368 16.68 | 35.32 377
P77k 3148 1.94 100 123 0.49 | 26.51 118 0.49 | 26.51 118
p80k 4030 10.05 100 4025 3.17 | 31.64 | 12915 3.17 | 31.64 | 10985
P88k 4712 4.38 100 5757 1.15 | 26.23 5752 1.15 | 26.23 5752
P99k 5914 5.48 100 3300 1.52 | 27.86 3354 1.52 | 27.86 3354
pl77k 11275 23.24 100 3755 0.69 2.99 4086 0.70 3.00 4113
p462k 31020 0.85 100 9316 0.13 | 15.92 9254 0.14 | 15.96 9235
pH65k 33405 0.24 100 8638 0.09 | 39.79 8695 0.09 | 39.83 8729
p1330k 105247 0.26 100 | 12151 0.04 | 16.59 | 11967 0.04 | 16.59 | 11967

References [10] T. Larrabee. Test pattern generation using Boolean
satisfiability. IEEE Trans. on CAD, 11:4-15, 1992.

(1] M. Davis, G. Logeman, an«.tl D. Loveland. A machine [11] J. Marques}-]Silva and K. Sakallah. GRASP: A search

grggja?%?foig%};eorem proving. Comm. of the ACM, algorithm for propositional satisfiability. IEEE Trans.
09373 I 1, : on Comp., 48(5):506-521, 1999.

[2] M. Davis and H. Putnam. A computing procedure for [12] M. Mosllgewicz(7)C Madigan, Y. Zhao, L. Zhang, and
quantification theory. Journal of the ACM, 7:506-521, S. Malik. Chaff: Engineering an efficient SAT solver.
1960. In Design Automation Conf., pages 530-535, 2001.

[3] N. Eén and N. Sorensson. An extensible SAT solver. [13] K. Ravi and F. Somenzi. Minimal assignments for
In SAT 2003, volume 2919 of LNCS, pages 502-518, bounded model checking. In Tools and Algorithms
2004. for the Construction and Analysis of Systems, volume

[4] S. Eggersgliiff, G. Fey, and R. Drechsler. SAT-based 2988 of LNCS, pages 31-45, 2004.

ATPG for path delay faults in sequential circuits. In [14] J. Roth. Diagnosis of automata failures: A calculus
IEEE Int’l Symp. on Circuits and Systems, 2007. and a method. IBM J. Res. Dev., 10:278-281, 1966.

[5] S. Eggersglii, G. Fey, R. Drechsler, A. Glowatz, [15] S. Safa.rpour, ’A Venerls, R. Dlrechsl.er7 ar.l(.i J. Hang.
F. Hapke, and J. Schloeffel. Combining multi-valued Managlng don ,t cares 1 Boglean satisfiability. In De-
logics in SAT-based ATPG for path delay faults. In ;6987’47 Automation and Test in Europe, pages 260265,
ﬁgfl{lsgjtoiECi Edeigizl 2%%7;](on Formal Methods and [16] S. Shen, Y. Qin, and S. Li. A faster counterexample

.. T e minimization algorithm based on refutation analysis.

[6] S. Eggersglaf, D. Tille, G. Fey, R. Drechsler, In Design, Automation and Test in Europe, pages 672—
A. Glowatz, F. Hapke, and J. Schloeffel. Experimental 677 2035’ pé, b
studies on SAT-basqd ATPG for 'gate delay faults. In [17] J. S’hi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke,
Int’l Symp. on Multi-Valued Logic, 2007. . and J. Schlsffel. PASSAT: Efficient SAT-based test

(7] G. Fey, J. Shl’ a1.1d R. Drechsler. Efficiency O,f multi- pattern generation for industrial circuits. In IEEE An-
valued epcodmg in SAT—based ATPG. In Int’l Symp. nual Symposium on VLSI, pages 212-217, 2005.
on Multi-Valued Logic, pages 25-30, 2006. [18] P. Stephan, R. Brayton, and A. Sangiovanni-

[8] H. Fujiwara and T. Shimono. On the acceleration of Vincentelli. Combinational test generation using sat-
test generation algorithms. IEEE Trans. on Comp., isfiability. IEEE Trans. on CAD, 15:1167-1176, 1996.
32:1137-1144, 1983. [19] P. Tafertshofer, A. Ganz, and K. Antreich. Igraine -

[9] P. Goel. An implicit enumeration algorithm to gen- an implication graph based engine for fast implication,

erate tests for combinational logic. IEEE Trans. on
Comp., 30:215-222, 1981.

justification, and propagation. IEEE Trans. on CAD,
19(8):907-927, 2000.

