
Slack Allocation Based Co-Synthesis and Optimization of Bus and Memory

Architectures for MPSoCs

Sujan Pandey∗

NXP Semiconductors Research
Eindhoven, The Netherlands

sujan.pandey@nxp.com

Rolf Drechsler
Dept. of Computer Science

University of Bremen, Germany
drechsle@informatik.uni-bremen.de

Abstract

In this paper, we present a bus and memory architectures
co-synthesis technique. The co-synthesis problem is formu-
lated as an optimization problem, where scheduling, alloca-
tion, and binding of tasks are done simultaneously in order to
optimize the bus widths, the number of buses, and the mem-
ory sizes. As a main contribution, bus and memory archi-
tectures are optimized simultaneously by allocating different
amount of slacks to them during co-synthesis. The method
finds a balance of slack allocation for both bus and memory
optimization. While the previous co-synthesis approaches do
not consider the slack allocation technique, the synthesized
bus and memory architectures will not be optimal in terms
of area and energy consumption. The experimental results
carried out on real-life applications show 19% and 24% re-
duction in bus and memory area, respectively and 37% re-
duction in energy overhead due to a bridge in compared to
the previous co-synthesis approach.

1 Introduction

In recent years, the Multiprocessor System-on-Chip (MP-
SoC) computing platform is becoming a solution to meet the
strength performance requirements for the next generation
multimedia and network applications. Besides of its flex-
ibility and scalability, designers have to cope with several
design challenges that become severe as the complexity of a
system increases. Among them communication and memory
become a major performance bottleneck as there is a need to
transfer and load/store a huge amount of data specially for
multimedia applications. Thus, it is essential to design and
optimize both communication and memory architectures si-
multaneously.

Traditionally, bus and memory architectures were syn-
thesized separately and the resulting solution could be sub-
optimal in terms of chip size and performance. For in-
stance, the first approach for synthesizing a single global
bus was proposed in [2], which finds the minimum bus
width in order to minimize the chip size. The recent ap-
proaches for multi-bus based hierarchical communication
synthesis can be categorized into: synthesis oriented opti-
mization techniques [17, 21, 8, 12, 14] and exploration based
approaches [11, 18, 16]. The first approach is based on

∗This work was done, while the first author was with the Computer Ar-
chitecture Group at University of Bremen, Germany.

scheduling of tasks to synthesize a custom communication
architecture. While, the second approach uses a simulation
technique and maps a requirement to a set of bus architecture
templates such as AMBA and CoreConnect. The major con-
cern of the simulation based approaches are that the result-
ing bus architecture may be over or underutilized and makes
it inefficient in terms of performance. All the above ap-
proaches deal with communication synthesis, however, they
do not address the problem of synthesizing a memory archi-
tecture.

In a real-time embedded system, a memory architecture
influences the performance in terms of power, delay, and
chip size. Recently, it has been predicted that almost 70% of
the chip area will be occupied by memories [1] and this trend
is expected to grow in future as the complexity of system
increases. The recent works on memory synthesis and op-
timization [20, 1] use a system level approach, which maps
variables of a system behavior to a set of memories using
variable lifetime analysis and task reordering. Our approach
complements these works by analyzing lifetime and reorder-
ing of tasks for both buses and memories optimization, si-
multaneously. For this purpose, we allocate different amount
of slacks to shorten the lifetime and reordering of tasks in
order to maximize buses and memories sharing. In [3, 5]
an exploration based approach to optimize bus and memory
architectures was proposed. The approach gives a local op-
timal solution by mapping a design to a library of memories
and buses. Recently, in [4] a small subset of the co-synthesis
problem has been addressed. The approach synthesized a bus
architecture and a set of buffers that stores copies of the fre-
quently used data in the main memory. In [15] a co-synthesis
of communication and memory architecture is studied. How-
ever, the approach is limited to a crossbar switch based point-
to-point architecture. Further, the method relies on the sim-
ulation based technique, thus many design problems such as
task reordering for bus sharing and variable lifetime shorten-
ing to optimize the memory size are missing. This eventu-
ally leads to a sub-optimal solution in terms of bus cost (bus
widths and the number of buses) and memory size.

As main contributions compared to the recent ap-
proaches [4, 15, 5], this paper formulates the problem of co-
synthesis of bus and memory architectures as a scheduling,
allocation, and binding problem. These steps are performed
simultaneously in order to minimize the bus cost, mem-
ory size, and the number of communications via a bridge



(cuts) [13] among the modules that are mapped to separate
buses. These three variables of an objective function are
solved together with a set of constraints using an optimiza-
tion tool that finds a global optimal solution. Further in the
formulation, the timing slack of each task is exploited for a
variable lifetime optimization and tasks reordering to share
buses and memories among the tasks. The tasks are sched-
uled to minimize the number of task’s timing overlaps for
bus sharing and to minimize the lifetime of variables that
are mapped to a memory. Intuitively, the shorter the lifetime
of a variable, the more the chances of variable overwriting,
which, in turn, results in the minimum memory size. Fur-
ther, at each step for allocation and binding of tasks to a set
of buses and memories, the number of cuts among the tasks
that are mapped to separate buses, is evaluated and a solution
is chosen that gives the minimum number of cuts. The simul-
taneous scheduling, allocation, and binding of tasks based on
slack allocation technique gives an optimal solution in terms
of bus widths, number of buses, memory sizes, and energy
consumption compared to the state-of-the-art co-synthesis
techniques.

2 Preliminaries

We consider an embedded system which is realized as an
MPSoC. Such a system consists of several on-chip process-
ing modules, like general-purpose processors, application
specific integrated circuits (ASICs) or field-programmable
gate arrays (FPGAs). These on-chip modules communicate
with each other by transferring data through a shared bus.
We assume that a system has been partitioned into HW/SW
and mapped efficiently onto the appropriate modules of an
SoC. All communications c ∈ C that take place among the
on-chip modules using an on-chip bus are captured by com-
munication tasks ci as shown in Fig. 1(a). Each communica-
tion task in the figure takes certain time duration to transfer
data. This duration is called a communication lifetime inter-
val (CLTI), which is a function of data size, bus width, and
voltage. An edge between two nodes ci and cj weighted with
w is the data processing time, which gives an early start time
constraint for a successor cj to transfer data using a bus. The
data transfer delay of each communication task c is modeled
as

CLTIc,r =

⌈

NBc

br

⌉

· Td, (1)

Td = K ·
Vdd

(Vdd − Vth)α
, (2)

where NBc (number of bit) is a size of data to be transferred
by a task c with bus width br and Td is a gate delay, which
is a function of voltage and technology dependent param-
eters [19]. In Eq. (2), Vdd and Vth are the supply and the
threshold voltage, respectively. Further, notations K and α
are the technology dependent parameters.

3 Motivational example

In this section we give a motivation for simultaneous
scheduling, allocation, and binding of tasks for both bus and

memory optimization, where the slack is exploited to max-
imize buses and memories sharing among the tasks. As a
result of this, the synthesized bus and memory architectures
are optimal in terms of 1.) bus widths and the number of
buses and 2.) memory sizes, respectively. We consider a
partitioned and mapped HW/SW system. Based on the par-
titioned and mapped system, a communication task graph
GC(C,Π) with nine tasks and their data dependencies is
extracted as shown in Fig. 1(a), where a task with dotted
circle is for memory write and a task with a solid circle is
for memory read. In the figure, tasks {c4, c5, c7}, {c8, c9},
{c1, c2, c3}, and {c6} are initiated by on-chip modules M1,
M2, M3, and M4, respectively. Fig. 1(b) shows a schedule of
tasks with their ASAP and ALAP time. A white rectangle is
a slack of a task so that a task can be scheduled in an interval
of ASAP and ALAP with an aim to minimize the number of
overlaps among the tasks. This results in the minimum num-
ber of buses. For a given schedule of tasks, Fig. 1(c) shows
the memory lifetime interval of tasks1 (i.e., data associated
with a memory write task) c1, c4, and c8. Since the possible
memory write time of task c4 overlaps with the memory life-
time of task c1, task c4 can not overwrite the memory space
of task c1. Thus a separate memory space needs to be allo-
cated for a memory write task c4. In the figure, it can be seen
that the length of memory lifetime depends on the slack and
when a task is scheduled. For example, if tasks c2 and c3 are
scheduled at their ASAP time then the memory lifetime of
c1 will be shortened and task c4 can overwrite the memory
space of task c1. Thus a single memory space can be shared
by all three tasks c1, c4, and c8.

After synthesizing a bus and memory architectures, it is
often impossible to avoid dependencies among the tasks that
are mapped to a set of memory blocks. So, there will be
a frequent communication among the modules, which are
connected to two different buses. Thus in an MPSoC archi-
tecture, bridges are used to connect multiple buses so that
a module that is connected to a bus can communicate with
a module connected to another bus. The recent effort on
power estimation of communication architecture [6] shows
that a bridge contributes a significant amount of power due
to its communication overhead. Thus, while synthesizing the
memory architecture, it is equally essential to have an effi-
cient partitioning and mapping of data associated to tasks
onto a set of memory blocks. This results in the minimum
number of cuts among the modules.

Fig. 2(a) depicts a cluster of tasks with their data depen-
dencies for a given schedule. The main aim is to cluster
the data associated with tasks, which have data dependen-
cies and map each cluster to a memory. From the given
cluster of tasks as shown in Fig. 2(a), tasks are clustered
further in order to find the minimum number of memories
unless there is a memory access conflict (when two tasks
access a memory at a same time). Fig. 2(b) and (c) show
the synthesized memories and the cuts. In the first figure,
data of tasks, which are initiated by modules M1 and M2 are
mapped to MEM1. While data of tasks initiated by mod-

1Throughout this paper, we use a term memory lifetime interval (MLTI)
of a task instead of data associated to a task.



c9

(a)

c1

c3

c2 c4

c6

c5

c7

w1

w2

w3

w4

w5

w6

w7
w8

w9

w11

w10

w12

w13
c8

(b)

0 2 4 6 8 10 12 14 16 18 20 t(ms)

T
as

k
s

slack

mem read task

0 2 4 6 8 10 12 14 16 18 20 t(ms)

(c)

M
em

o
ry

 s
p

ac
e

mem write task

c1(w)

c2(r)

c3(r)

c4(w) c5(r)

c6(r)

c7(r)

c8(w)

c9(r)

c1(w)

c4(w)

c8(w)

memory lifetime

M1

M4

M3

M2

Figure 1. Communication tasks and their schedule. (a) Example
communication tasks. (b) A schedule of tasks with their ASAP and
ALAP time. (c) Memory lifetime interval of tasks

ules M3 and M4 are mapped to MEM2. In the figure, there
are three cuts, which mean that either modules M1 and M2
or M3 and M4 access memory MEM2 or MEM1 for three
times using a bridge. Similarly, Fig. 2(c) depicts synthesized
memory sizes, number of memories, and the number of cuts.
In the figure, the number of cuts is less than the synthesized
memory of Fig. 2(b). This, in turn, results in less power and
delay overhead due to a communication via a bridge. Thus,
the memory partitioning and mapping of Fig. 2(c) give the
optimal number of memories with the minimum number of
bridge accesses. The synthesized on-chip buses and memo-
ries with their interconnection are shown in Fig. 2(d).

4 Problem formulation

As discussed in the motivational example, in this section,
we formulate the problem of simultaneous scheduling, allo-
cation, and binding of tasks with an objective function and a
set of constraints.

Definition 1 Let R be a set of bus widths, let Mem be a set
of byte memories, and let cuts be the number of dependen-
cies among a set of tasks that are mapped to separate buses.
Further, let a set Depn ⊆ C × C be a set of tasks that have
data dependency, then the cost function can be written as:

BMCost =
∑

r∈R

β ·br+
∑

s∈Mem

γ ·ms+
∑

∀(ci,cj)∈Depn

∧(ci∧cj)67→br

θ ·cuts,

(3)
where the terms β, γ, and θ are constants. The notations b
and m are indexes to a bus and a memory block, respectively.
While r and s are bus width and memory size. In Eq. (3) the

c4

c5

c7

c1

c3
c2

c6
c8

c9

c1

c3
c2

c4

c5

c7
c6

c8

c9

M3

M1

M2

c4

c5

c7

c8

c9

c1

c3
c2

c6

M1 M2 M3 M4

MEM1 MEM2

B
ri

d
g
e16−bit 24−bit

MEM1 MEM2

M1

M4M2

M3

(a)

M4

MEM1 MEM2

M1 M3

M4

M2

(c) (d)

(b)

Figure 2. Co-synthesis of on-chip buses and memories. (a) Clique
of data dependency tasks and their dependencies. (b) Synthesized
memories with number of cuts = 3. (c) Synthesized memories with
number of cuts = 2. (d) Synthesized bus architecture and memories
with interconnection of on-chip modules and bridge.

first summation is for a given set of bus widths, the second
summation is over a given set of memories, and the third
summation is for tasks that have dependencies and are not
mapped to the same bus br (bus index b and width r).

Definition 2 Let Xc,t,r,s be a binary variable that gives a
binding constraint such that Xc,t,r,s = 1 when a task c is
scheduled at a unique time t, bus width r, and an allocated
memory size s. Otherwise, it is zero.

∑

r∈R

∑

s∈Mem

ALAPc
∑

t=ASAP
′
c

Xc,t,r,s = 1 : ∀c ∈ C (4)

In Eq. (4), the first and second summations are over bus
widths and memories, respectively. While the third summa-
tion is over a possible task schedule time that ranges from its

ASAP
′

c to ALAPc such that the timing slack can be exploited
for both bus and memory sharing as discussed in Section 3.

The term ASAP
′

c can be defined as

ASAP
′

c = ASAPc+(1−%BusSlackc)·(ALAPc−ASAPc).
(5)

In Eq (5) for all tasks c, if x% of the total slack is allocated
for bus sharing then (1−x) % of the slack is used for memory
size optimization. A new ALAP time of a task c for mem-

ory optimization is ASAP
′

c. So, depending on the amount of
slack that is allocated for bus optimization, it influences the
synthesized memory size. Thus, the aim is to find a balance
of slack allocation for both bus and memory optimization.



Definition 3 Let Ω =
⋃

c∈C{ASAP
′

c , · · · , ALAPc} be a
time window such that the tasks that are scheduled within
this interval could overlap. If the timing of a task overlaps
with another task then the task is assigned to a separate bus
with index b and width r. The bus constraint can be de-
scribed as [12]:

∀t ∈ Ω,∀r ∈ R,∀s ∈ Mem,
∑

c∈C

∑

(t
′
∈{t,··· ,t+CLT Ic,r−1}

∩{ASAP
′
c ,··· ,ALAPc−CLT Ic,r})

Xc,t
′
,r,s ≤ br, (6)

where the first summation is over a set of tasks and the sec-
ond summation is over a time window covering all schedule

times t
′

for which tasks could overlap.

Definition 4 Let Cw be a set of tasks that writes data to a
memory. A successor task cj ∈ Cw can overwrite a pre-
decessor task ci ∈ Cw only if its memory lifetime does not
overlap with the lifetime of ci. Otherwise, a separate mem-
ory space NBc 7→ s is allocated to cj . This constraint is
given as:

∀t ∈ Ω,∀r ∈ R,∀s ∈ Mem,
∑

c∈C

∑

(t
′′

∈{t,··· ,t+MLT Ic,r−1}

∩{ASAPc,··· ,ASAP
′
c−MLT Ic,r})

Xc,t
′′

,r,s ≤ ms, (7)

where the second summation is over a time window that cov-
ers memory lifetime of tasks, which could overlap.

Definition 5 If tasks (ci, cj) ∈ Depn and tasks ci and cj

are scheduled at time ti and tj on two different buses, re-
spectively, then there is a cut (communication via a bridge).
Thus, those tasks are scheduled with an aim to cluster a set of
tasks and map them onto a module with the minimum number
of cuts.

∀(ci, cj) ∈ Depn ∧ (ci ∧ cj) 67→ br

∑

c∈C

ALAP
∑

t=ASAP
′
c

Xc,t,r,s ≤ cuts : ∀r ∈ R, s ∈ Mem
(8)

Definition 6 Let c
′

and c be predecessor and successor
tasks, respectively. Their dependency constraint can be ex-
pressed as [12]:

∀(c
′

, c) ∈ Depn,

∑

r∈R

ALAPc
∑

t=

ASAP
′
c

∑

s∈Mem

t · Xc,t,r,s ≥
∑

r∈R

ALAP
c
′

∑

t=

ASAP
′

c
′

∑

s∈Mem

(t + CLTIc
′
,r + w) · Xc

′
,t,r,s

(9)

where the right hand side of the equation expresses that a
successor task c should be executed only after the execution

of the predecessor task c
′

. The term w is the data processing
delay.

5 Co-synthesis algorithm

The objective of the bus and memory co-synthesis
problem is to minimize the cost function, which includes
bus, memory, and the number of cuts. This can be expressed
as:

Minimize: BMCost (see Eq. 3)
subject to, Eqs. (4), (6), (7), (8), and (9)

The data transfer delay CLTI for each task c with bus
width r is evaluated using Eq. (1). Algorithm 1, shows a
method to compute the memory lifetime interval of a task c
(memory write task), which is scheduled at time stime with
a bus width r. At line 1, a loop is for tasks that write data
to a memory. At line 3, conditions are checked for all ci,
which write data first to a memory before the current task c.
If the conditions are satisfied, then line 5 finds a successor
(memory read task) of ci to compute the last read time from
the memory. This is shown at line 6, where the MLTI of
a task ci is the summation of the successor’s last read time
(z.stime) and its data transfer delay CLTIz,r with a bus
width r minus write time ci.stime of task ci. As a task ci can
have more than one successor (memory read tasks), at line 7,
its MLTIs considering all successors are stored. Line 10
provides the maximum MLTI considering the last memory
read time. At line 11, MaxMLTI is returned to generate
the memory constraint as shown in Eq. (7). From the algo-
rithm, it can be seen that the MLTI of tasks depends on the
time when a task is scheduled (i.e., stime) and a bus width
r. Thus, our optimization algorithm finds an optimal sched-
ule with a selection of bus width that minimizes the length
of MLTIs.

Similarly, Algorithm 2 finds the number of cuts for a set
of tasks that are scheduled and mapped onto a set of buses.
At line 1 a loop starts for tasks ci and cj . If the conditions
are fulfilled at line 3 then the number of cuts are evaluated
for each pair of tasks that are mapped onto separate buses at
line 5. The number of cuts is returned at line 7 to generate
the cut constraint as shown in Eq. (8).

In the above bus and memory co-synthesis and optimiza-
tion problem, the optimization variables br, ms, and cuts are
integer and linear to the objective function MBCost. While
the variables CLTIs and MLTIs are real values, thus, the
optimization problem is a mixed integer linear programming
(MILP) problem, which can be solved using an optimization
tool.

6 Case studies

We validate the effectiveness of the proposed technique
using real-life multimedia applications, i.e., an audio de-
coder and a speech recognition system. The audio decoder
includes four main decoding steps, which are inverse quanti-
zation, channel decoupling, reconstruct curve, and IMDCT.
Similarly, the second speech recognition system consists of
three main components: front end, decoder, and linguist.
The front end includes series of data processing tasks such
as pre-emphasis, hamming window, FFT (fast Fourier trans-
formation), mel frequency filter, IFFT, cepstral mean nor-



COMPUTEPREDSMLTI(c, stime, r)
1 for (ci ∈ Cw)
2 do
3 if (ci.stime < c.stime)
4 then
5 z = ci.SUCCESSORS(ci) ∧ z 6∈ Cw;
6 MLTI = z.stime + CLTIz,r − ci.stime;
7 vector<int*> MLTIList.push back(MLTI);
8 endif;
9 endfor;

10 MaxMLTI = MAX(MLTIList);
11 return MaxMLTI;

Algorithm 1: Compute memory lifetime interval (MLTI).

COMPUTECUTSNUM()
1 for (ci ∈ C) ∧ (cj ∈ C)
2 do
3 if (ci, cj ∈ Depn) ∧ (ci 7→ b

′

r1
) ∧ (cj 7→ b

′′

r2
)

4 then
5 cuts = cuts + 1;
6 endfor;
7 return cuts;

Algorithm 2: Compute the number of cuts.

malization, and feature extraction to generate the features
from the speech. After manually partitioning and mapping
of the above applications, Table 1 depicts a set of on-chip
modules for the audio decoder and the speech recognition
system. The modules are two PowerPC processors, inverse
modified discrete cosine transformation (IMDCT), compact
flash interface, speech processor, fast Fourier transformation
(FFT), and an audio buffer for streaming. A set of commu-
nication tasks is extracted [9] after profiling an application
using the GNU gprof.

The on-chip buses are given as a library of buses with
different bus widths, which range from 16 to 128 bit wide.
The bus synthesis algorithm was implemented in C as a pre-
processing model to interface with a solver of MOSEK. Ta-
ble 2 depicts the results of synthesized bus width, number
of buses, memory size, and the number of memories for dif-
ferent percentage of slack (BusSlack) that is allocated for
bus optimization. In the table, the column entitled BusSlack
gives the percentage of slack that is allocated for bus opti-
mization. For instance, column BusSlack 100% means that
all the slacks are allocated for bus optimization (i.e., for bus

Application Modules

Audio PowerPC1
decoder IMDCT

CF-interface
Audio buffer

Speech PowerPC2
recognition FFT

Speech processor

Table 1. A set of modules after HW/SW partitioning and mapping
of real-life applications

sharing), while no slack is allocated for memory optimiza-
tion (i.e., increment in overlaps among MLTIs). Similarly,
40% in column BusSlack means that 40% slack is allocated
for bus optimization and 60% slack is allocated for memory
size optimization. The column entitled Buses (br) gives the
synthesized bus widths and the number of buses for differ-
ent percentage of slacks. In the column entitled Mems (ms)
shows a synthesized memory block for each bus as presented
in the same row in the table. The co-synthesis results show
that the bus width increases with decreasing percentage of
slack that is allocated for bus optimization. However, in col-
umn Mems (ms) the synthesized memory size decreases with
decreasing BusSlack. As discussed in Section 3, if a small
amount of slacks is allocated for bus optimization and the
rest of the slacks is used for memory optimization then this
results in the minimum number of overlaps among the mem-
ory lifetimes. Thus a set of tasks can overwrite the memory
space that was used previously. Further, the column enti-
tled cuts gives the number of cuts among the tasks that are
mapped to separate buses. The columns entitled MILP shows
the run time of the MILP based co-synthesis approach. The
run time for solving the MILP based co-synthesis problem
increases as the number of variables increases, which is due
to the memory resource constraint set by variable BusSlack.

Fig. 3 depicts a synthesized bus and memory architec-
tures for BusSlack = 70%. The synthesized buses are 24,
32, and 48 bit wide and corresponding synthesized mem-
ories are 1.3KB, 1.7KB, and 2.6KB respectively. Table 3
compares the results of bus area, memory area, and en-
ergy overhead with the previous approach [5] for a synthe-
sized bus architecture as shown in Fig. 3 with BusSlack =
70%. The bus and memory areas estimation models are
based on the approaches proposed in [10, 7]. The values are
estimated for 70nm technology with the maximum wiring
pitch 300nm (ITRS 2006). The columns entitled Mem-area
and Bus-area give estimated memory and bus area for both
approaches, respectively. With our co-synthesis approach,
there are 19.28% and 24.55% reductions in area for bus
and memory architectures, respectively. The column entitled
Energy-Ov gives an energy overhead for a bridge with an av-
erage wait cycles 17 to get a bus granted. Further, the column
entitled cuts compares the number of cuts among the tasks
that are mapped to separate buses. As our co-synthesis ap-
proach incorporates this cost during scheduling, allocation,
and binding, while the previous approach does not, the num-
ber of cuts is less compared to the previous technique [5].
The results show 37.45% reduction in energy overhead after
incorporating the cuts during co-synthesis.

7 Conclusion

The previous bus and memory architectures co-synthesis
approaches focused mainly on solving a small subset of the
co-synthesis problem such as combined bus and buffer syn-
thesis, crossbar based bus and memory synthesis without
considering the variable lifetime optimization and tasks or-
dering techniques. Thus, the resulting solution will be sub-
optimal in terms of bus widths, number of buses, mem-
ory sizes, and energy consumption. In this work, the co-
synthesis problem is formulated as simultaneous schedul-



BusSlack Buses Mems No. of MILP
(%) (br) ms (KB) cuts (sec.)

b1 = 24 m1 = 1.8
100 b2 = 32 m2 = 2.4 23 41.3

b3 = 48 m3 = 3.7
b1 = 24 m1 = 1.6

90 b2 = 32 m2 = 2.1 24 54.7
b3 = 48 m3 = 3.3
b1 = 24 m1 = 1.6

80 b2 = 32 m2 = 2.1 24 69.2
b3 = 48 m3 = 3.3
b1 = 24 m1 = 1.3

70 b2 = 32 m2 = 1.7 24 83.3
b3 = 48 m3 = 2.6
b1 = 32 m1 = 1.3

60 b2 = 32 m2 = 1.7 26 91.6
b3 = 48 m3 = 2.6
b1 = 32 m1 = 0.9

50 b2 = 32 m2 = 1.3 26 103.4
b3 = 64 m3 = 2.0
b1 = 32 m1 = 0.9

40 b2 = 32 m2 = 1.3 26 113.1
b3 = 64 m3 = 2.0

Table 2. Bus and memory co-synthesis for different percentages of
slack

b2 = 32

FFT
processor
Speech

Bridge2

m2
Audio
buffer

IMDCT

Bridge1

CF
Interface

b1 = 24

b3 = 48

m1

m3PowerPC2

PowerPC1

Figure 3. Synthesized bus and memory architectures with three
buses and memory blocks for BusSlack = 70%.

Approach Mem-area Bus-area Energy-Ov cuts

(mm2) (mm2) (µJ)

Our-App 4.70e-04 1.24e-07 54.6 24
Pre-App [5] 6.23e-04 1.54e-07 87.3 38

Table 3. Comparison of memory area, bus area, and energy over-
head for a synthesized buses and memories with BusSlack = 70%

ing, allocation, and binding of tasks. The slack is exploited
for both bus and memory architecture optimization. A case
study carried out on real-life multimedia applications shows
that the slack allocation technique for co-synthesis finds a so-
lution with a balance slack allocation to both bus and mem-
ory architectures optimization. Further, while binding a set
of tasks on buses, their cuts are incorporated in an objective
function to reduce the energy overhead due to communica-
tion via a bridge.

References

[1] L. Cai, H. Yu, and D. Gajski. A novel memory size model for variable mapping
in system level design. In proc. of ASPDAC, pages 813–818, 2004.

[2] M. Gasteier et al. Bus-based communication synthesis on system level. In ACM
Tran. of design automation electronic systems, pages 1–11, 1999.

[3] P. Grun, N. Dutt, and A. Nicolau. Memory system connectvity exploration. In
proc. of DATE, pages 894–901, 2002.

[4] I. Issenin and N. Dutt. Data reuse driven energy aware mpsoc co-synthesis of
memory and communication architecture for streaming applications. In proc. of
CODES, pages 294–299, 2006.

[5] S. Kim, C. Im, and S. Ha. Efficient exploration of on-chip bus architectures and
memory allocation. In proc. of CODES, pages 248–253, 2004.

[6] K. Lahiri and A. Raghunathan. Power analysis of system-level on-chip commu-
nication architectures. In proc. of CODES, pages 236–241, 2004.

[7] D. Langen et al. High level estimation of the area and power consumption of
on-chip interconnects. In proc. of Int. Conf. on ASIC/SoC, pages 297–301, 2000.

[8] D. Lyonnard et al. Automatic generation of application specific architectures for
heterogeneous mpsoc. In proc. of DAC, pages 518–523, 2001.

[9] Z. Ming. Architecture exploration for speech-feature-extraction acceleration.
Bachelor thesis, Darmstadt University of Technology, Germany, September
2005.

[10] J. M. Mulder et al. An area model for on-chip memories and its application.
IEEE Tran. on CAD of Integrated Circuits and Systems, Vol. 26(No. 2):98–106,
1991.

[11] S. Murali and G. D. Micheli. An application specific design methodology for
STbus crossbar generation. In proc. of DATE, pages 1176 – 1181, 2005.

[12] S. Pandey et al. Statistical on-chip communication bus synthesis and voltage
scaling under timing yield constraint. In proc. of DAC, pages 663–668, 2006.

[13] S. Pandey et al. Co-synthesis of custom on-chip bus and memory for MPSoC
architectures. In proc. of Int. Conf. on VLSISoC, pages 304–307, 2007.

[14] S. Pandey and M. Glesner. Simultaneous on-chip bus synthesis and volt-
age scaling under random on-chip data traffic. In IEEE Trans. VLSI Systems,
15(10):1111–1124, 2007.

[15] S. Pasricha and N. Dutt. COSMECA: Application specific co-synthesis of mem-
ory and communication architectures for mpsoc. In proc. of DATE, pages 700–
705, 2006.

[16] S. Pasricha et al. FABSYN:Floorplan-aware bus architecture synthesis. In IEEE
Trans. VLSI Systems, Vol. 14(No. 3):241–253, 2006.

[17] A. Pinto, L. P. Carloni, and A. V. Singiovanni. Constraint driven communication
synthesis. In proc. of DAC, pages 783–788, June 2002.

[18] K. K. Rye et al. Automated bus generation for multiprocessor soc design. IEEE
Tran. on CAD of Integrated Circuits and Systems, Vol. 23(No. 11):1531–1549,
Nov. 2004.

[19] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison
wesley, 1994.

[20] S. Wuytack et al. Minimizing the required memory bandwidth in vlsi system
realizations. IEEE Trans. on VLSI Systems, 7(4):433–441, 1999.

[21] T. Y. Yen and W. Wolf. Communication synthesis for distributed embedded
systems. In proc. of ICCAD, pages 288–294, 1995.


