
SAT-based ATPG for Path Delay Faults in Sequential Circuits

Stephan Eggersglüß Görschwin Fey Rolf Drechsler
Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{segg,fey,drechsle}@informatik.uni-bremen.de

Abstract

Due to the development of high speed circuits beyond
the 2-GHz mark, the significance of automatic test pat-
tern generation for Path Delay Faults (PDFs) drastically
increased in the last years. This paper describes an algo-
rithm for generating robust and non-robust tests for PDFs
based on Boolean Satisfiability (SAT). A new formulation
for the robust path delay fault model as a SAT instance
is introduced. Unlike previous SAT-based approaches our
approach can cope with latches and is therefore applica-
ble for sequential circuits. The formulation provides the
possibility to apply the SAT technique Incremental SAT
to accelerate the process. Experimental results show the
efficiency of the approach.

I. Introduction

The rapidly growing size and the increasing complexity
of modern circuit designs cause a continuous need of
improvement in the domain of Automatic Test Pattern Gen-
eration (ATPG). Classical ATPG-algorithms, such as FAN
[2], reach their limits, when coping with large designs.
Due to the development of high speed circuits beyond the
2-GHz mark, the significance of ATPG for dynamic fault
models, e.g. the PDF model, increased in the last years.

Because of the development of efficient techniques in
the domain of the Boolean Satisfiability (SAT) problem
like dynamic conflict learning [6], efficient implementation
of implication strategies [7] and efficient search heuristics
[3] the significance of this field has grown in the last
years. Several SAT-based approaches were presented in
the field of ATPG, e.g. [8] for the stuck-at-fault model.
For the PDF model, a SAT-based ATPG algorithm for
robust tests has been presented in [1]. To model robustness
a 7-valued logic is introduced. The mere applicability
of the technique Incremental SAT (ISAT) [9], which can
accelerate the solving process of related instances, for the
PDF model was shown in [5]. The approaches listed so
far are restricted to combinational circuits. An adequate
modelling of sequential dependencies is not given. But this
is crucial in industrial practice.

In this paper we consider adequate modelling of se-

quential dependencies and present a SAT-based algorithm
for generating robust and non-robust test patterns. For the
generation of robust tests three different encodings are
presented and compared to each other. Furthermore the
applicability of ISAT is demonstrated.
The paper is structured as follows: In the next section,
the application of Boolean Satisfiability to circuit problems
and the PDF model is shown. In Section III, we present the
formulation for non-robust tests, while the formulation for
robust tests is shown in Section IV. Section V introduces
the use of ISAT. The experimental results are shown in
Section VI. In Section VII we draw conclusions.

II. Preliminaries

A. Boolean Satisfiability

SAT-based algorithms are working on a formula in
Conjunctive Normal Form (CNF). A CNF Φ in n binary
variables is the conjunction of m clauses, each clause is the
disjunction of literals. A literal is a variable in its positive
or negative form. For modelling the circuit C in CNF, the
following notations are needed.

The sequential dependencies of a circuit C are given by
a set S of pairs of present states (pseudo primary inputs)
and next states (pseudo primary outputs). A pair (g, h) ∈ S
means that g is the present state and h is the next state. A
gate g ∈ C modelled at time t is described by the variable
gt. The corresponding CNF is denoted by φg,t and given
by a truthtable. The set of predecessors of g is given by
P(g) and the non-controlling (controlling) value is given
by νnc

g (νc
g), e.g. νnc

g = 1, νc
g = 0, if g is an AND/NAND

gate.
The CNF of a combinational circuit is given by the

following equation:

ΦC,t =
∏
g∈C

φg,t

The sequential dependencies for two time frames are
modelled by:

ΦS,t1,t2 =
∏

(g,h)∈S

gt2 ↔ ht1

TABLE I. Off-path constraints
rising-robust falling-robust non-robust

AND/NAND X1 S1 X1
OR/NOR S0 X0 X0

The following equation describes the CNF ΦC for a
circuit including sequential behaviour for two time frames:

ΦC = ΦC,t1 · ΦC,t2 · ΦS,t1,t2

B. Path Delay Fault Model

The Path Delay Fault Model (PDFM) describes a fault
(delay) on a path from a (pseudo) primary input to a
(pseudo) primary output. A test pattern for a PDF contains
two vectors v1, v2, one for each time frame. To detect
the delay, a transition, which is either rising or falling, is
applied to the input of the path and determines the value
of the signal in both time frames.

More formally, a PDF is described by F = (T, P),
where T ∈ {↑, ↓} determines the type of the transition
and P = (g1, . . . , gn) is a path in the circuit, where g1

is a (pseudo) primary input and gn is a (pseudo) primary
output.

The quality of the test depends on the off-path inputs
of the gates along P . Table I shows the constraints of
the off-path inputs for a non-robust and a robust test. The
values are given in the 7-valued logic presented in [1] and
describe the behaviour of the signal in both time frames.

The second element of each value in the table shows
the value in t2 and the first element describes, whether the
value is static (S) or unknown (X). A signal is static, if the
values of t1, t2 are the same and no hazard occurs during
the interval. In case of unknown, there is no assertion on
the value of t1 and consequently no assertion, whether the
signal is static or not.

Note, that the signal value during t1 cannot be clearly
specified with the 7-valued logic. Previous approaches
using this logic are therefore not able to handle sequential
circuits. In contrast, we show a formulation, which can
determine the values of both time frames in the following
sections.

If there is neither a non-robust nor a robust test under
the given constraints, the PDF is redundant.

III. Non-Robust Tests

The SAT-based approach to calculate a non-robust PDF
test for a given circuit C and a PDF F = (T, P) is
presented in this section.

Essentially, a non-robust PDF test is calculated by
solving a CNF formula ΦN

C,F . If ΦN
C,F is unsatisfiable,

the fault is not testable. If the formula is satisfiable, any
satisfying assignment directly determines test patterns. The
formula ΦN

C,F is given as follows:

ΦN
C,F = ΦC · ΦT · ΦP

Fig. 1. Example circuit

As explained in Section II-A, ΦC models the circuit during
two consecutive time frames. The constraint ΦT forces the
transition, whereas ΦP sets all off-path inputs of gates
along P to non-controlling values in the second time
frame. More formally, for a given fault F = (T, P),
where P = (g1, . . . , gn), the constraints ΦT and ΦP are
described by:

ΦT =
{ ∏n

i=1 gi,t1 · gi,t2, if T =↑∏n
i=1 gi,t1 · gi,t2, if T =↓

ΦP =
n∏

i=2

∏
h∈P(gi),h 6=gi−1

ht2 ↔ νnc
gi

Example 1: Assume that the path a - d - e - g, shown
in Figure 1, with a falling edge is to be tested non-
robustly. The falling transition is forced by the following
assignments:
at1 = dt1 = et2 = gt2 = 1, at2 = dt2 = et1 = gt1 = 0
Note, that the transition must be inverted if the path passes
an inverting gate. To set the off-path constraints, the non-
controlling values of the gates are assigned:
bt2 = ct2 = 1, ft2 = 0
A corresponding test would be:
{at1 = 1, bt1 = x, ct1 = x, at2 = 0, bt2 = 1, ct2 = 1}

IV. Robust Tests

One approach to calculate robust tests is to extend the
formula ΦN

C,F by additional constraints ΨH that guarentee
the absence of hazards. ΦR

P denotes the additional con-
straints on off-path inputs for a robust test. The formula
for robust tests is given as follows:

ΦR
C,F = ΦN

C,F ·ΨH · ΦR
P

Then, ΦR
C,F is satisfiable if and only if the assignment

determines a robust PDF test. The constraint ΨH must
guarentee, that a hazard-free signal, applied to an off-path
input, is propagated backwards to the inputs. For any gate
in C a hazard-free output value implies that at least one
input value is controlling and hazard-free or that all input
values are non-controlling and hazard-free.

Of course, there is no unique representation of ΨH .
For this, we study three alternatives and discuss their
properties:
(1) the absolute encoding
(2) the extended (ext.) absolute encoding and
(3) the relational encoding

TABLE II. Additional overhead of the different
encodings

encoding # clauses # literals # add. variables
1-input gates

absolute 8 18 1
ext. absolute 10 20 2

relational 6 16 1
2-input gates

absolute 7 19 1
ext. absolute 5 15 2

relational 11 33 3

The encodings differ in their representation of a hazard-
free signal and therefore in the size of the CNF represen-
tation.

In the absolute encoding, for each gate g an additional
variable gh is introduced, which determines, whether
a signal is hazard-free or not. The output value is
hazard-free, if gh = 1. This is modelled by the following
constraint:

ΨH =
∏

g∈C

{
(gh)

→
[∑

h∈P(g)(hh = 1, ht1 ↔ νc
g)

+
∏

h∈P(g)(hh = 1, ht1 ↔ νnc
g)

]}
The disadvantage of this encoding is the exponential
number of clauses for gates with more than two inputs.
Therefore in the ext. absolute encoding we introduce two
additional variables ghnc, ghc for each gate. With two
variables for each gate, the increase in the number of
clauses for each gate is only linear and not exponential.
The output value of a gate is hazard-free and has the
non-controlling (controlling) value, if ghnc = 1 (ghc = 1).
This is guarenteed by:

ΨH =
∏

g∈C

{
(ghnc)

→
[∏

h∈P(g)(hhnc = 1, ht1 ↔ νnc
g)

]}{
(ghc)

→
[∑

h∈P(g)(hhc = 1, ht1 ↔ νc
g)

]}
Another possibility to encode a hazard-free signal is
presented with the relational encoding. The additional
variable grel is introduced and describes an arbitrary
point in time between t1 and t2. Moreover, n temporary
variables are needed for calculating the value of grel.
where n is given by the number of inputs of g. The output
value of a gate is hazard-free, if gt1 ↔ gt2 ↔ grel. This
is guarenteed by the following constraint:

ΨH =
∏

g∈C

{
(gt1 ↔ gt2 ↔ grel)

→
[∑

h∈P(g)(ht1 ↔ ht2 ↔ hrel ↔ νc
g)

+
∏

h∈P(g)(ht1 ↔ ht2 ↔ hrel ↔ νnc
g)

]}
The advantage of this encoding is the smaller CNF rep-
resentation of gates with only one input. To compare the
additional overhead of the different encodings, Table II
shows the number of clauses and literals as well as the
number of additional variables for a 1-input (e.g. inverter)
and 2-input gates.

As stated above, the number of clauses for the CNF
representation is exponential in the number of inputs in
the absolute encoding. Therefore gates with n > 2 inputs
are modelled as n− 1 gates with two inputs in this case.

It can be observed that the relational encoding, which
has the largest number of variables and clauses when mod-
elling 2-input gates, has the smallest number of variables
and clauses when modelling 1-input gates.

Example 2: In contrast to Example 1, consider that the
path a - d - e - g with a falling edge is to be tested robustly.
The assignments to the path remain the same. Changes
occur at the assignments to the off-path inputs. For a robust
test the following assignments are applied:
bt1 = bt2 = ct1 = ct2 = 1, ft1 = ft2 = 0
Additionally, the off-path inputs have to be hazard-free.
Depending on the encoding used, this is guarenteed by the
following assignments:
• brel = crel = 1, frel = 0 (relational encoding)
• bh = ch = fh = 1 (absolute encoding)
• bhnc = chnc = fhnc = 1 (extended absolute encoding)
A corresponding test would be:
{at1 = 1, bt1 = 1, ct1 = 1, at2 = 0, bt2 = 1, ct2 = 1}

V. Use of Incremental SAT

Generally, robust tests are more desirable than non-
robust tests. If no robust test is available, a non-robust
test is needed for a testable PDF.

But previous SAT-based approaches considered a multi-
valued logic instead of a Boolean logic for PDF test
generation. The multi-valued problem was then encoded
into a Boolean problem. A single value in the multi-
valued logic represents the value of a gate at the second
time frame and the information about hazards, e.g. a 7-
valued logic was applied in [1]. Therefore, determining
the correspondences between an encoded Boolean SAT
instance for robust tests and non-robust tests is difficult
in this case. Moreover, latches were not modelled.

In contrast, the representations proposed here model the
problem at the Boolean level. Hence, it allows to model
latches directly. As a result, the model for non-robust
test generation can be extended incrementally for robust
tests. This can be exploited during the overall test pattern
generation process and suggests a two-phase approach
for each PDF, which relies on the notion of Incremental
Satisfiability (ISAT) as introduced in [4], [10].

Essentially, the information that can be learned directly
from the model of the circuit can be reused for all PDFs.
By keeping the learned information, the efficiency of test
pattern generation can be improved. Furthermore, learned
information from the generation of a non-robust test can
be re-used for efficiently generating a robust test.

In our approach the relation ΦC ⊂ ΦN
C,F ⊂ ΦR

C,F holds.
The use of ISAT is therefore restricted to incrementally
adding the constraints in two steps:
(1) ΦC ·ΨH is extended incrementally by ΦT ·ΦP to ΦN

C,F

(2) ΦN
C,F is extended incrementally by ΦR

P to ΦR
C,F

That is in contrast to the approach presented in [5], where

the path segments are incrementally added to the problem
instance.

VI. Experimental Results

ISCAS benchmark results are reported in the following.
All experiments are carried out on a Pentium M (2.13
GHz) system (Linux) with 1024 MB RAM. As SAT solver,
we used Zchaff [7]. The test procedure works as follows.
All possible paths (rising and falling) in the circuit are
tested. First a non-robust test is generated. If sucessful,
the constraints for the generation of a robust test are added
incrementally and a robust test generation follows.

Note that the number of testable paths may differ
from those of the previous approaches, since previous
approaches overestimate the number of testable paths. This
is due to not modelling the sequential dependencies.

First, in Table III the advantage of the use of ISAT
is presented using the relational encoding. In this table
the name of the circuit (circuit), the number of paths in
the circuit (# paths), the number of robust testable paths
(r.test.) and the number of non-robust testable paths (n-
r.test.) are shown. The run time for ATPG without using
ISAT is presented in column without ISAT and the run
time with ISAT is given in column with ISAT. It can
be observed, that the application of ISAT accelerates the
generation for all instances up to a factor of 5.

In Table IV the results for the benchmarks are presented
for comparing the run time and the number of clauses
for the different encodings. The circuit’s name is given in
the column (circuit). The run time (time) and the number
of clauses (# cls) for each encoding are shown in the
following columns below the name of the encoding.

It can be observed, that there is only little difference
between the run times in the different encodings. The
absolute encoding seems to be the slowest encoding in
most circuits. The results of the relational and the ext. ab-
solute encoding are almost the same. In a few benchmarks
there are advantages for the ext. absolute encoding. The
relation of the times for the different encodings are mostly
reflected by the number of clauses. Therefore a compact
representation is desirable for an instance.

VII. Conclusions

A new SAT-based algorithm for the generation of robust
and non-robust tests for PDFs was presented. Instead of
using a multi-valued logic to generate robusts tests, the
problem is directly modelled at the Boolean level. As a
result, for the first time a SAT-based algorithm for PDF
test generation can handle sequential circuits. To speed up
the generation the ISAT-technique was used. Experimental
results show the efficiency of the approach.

VIII.. Acknowledgement

This research work was supported in part by DFG grant
DR 287/15-1.

TABLE III. Results - without ISAT vs. with ISAT
relational enc.

circuit # paths r. test. n-r.test. without ISAT with ISAT
s344 710 253 259 2.08s 0.36s
s349 730 253 259 1.52s 0.36s
s382 800 154 165 0.70s 0.34s
s400 896 150 166 0.77s 0.40s
s420 184 37 38 0.08s 0.04s
s444 1070 148 166 0.94s 0.54s
s510 866 221 256 1.42s 0.63s
s641 3444 1007 1100 16.11s 14.35s
s713 43624 831 1097 2465.44s 2422.85s
s820 1166 358 437 3.80s 1.48s
s832 1234 389 429 4.04s 1.65s
s953 1634 533 540 6.02s 2.59s
s1196 2420 1243 1313 18.97s 8.84s
s1238 1044 496 527 6.64s 2.43s
s1488 2096 627 890 13.45s 6.38s
s1494 2246 641 929 15.31s 7.88s
s5378 26758 15886 16739 1461.69s 839.78s

TABLE IV. Results for the different encodings
absolute enc. ext. absolute enc. relational enc.

circuit time # cls time # cls time # cls
s344 0.84s 2491 0.35s 2717 0.36s 2541
s349 0.87s 2538 0.35s 2766 0.36s 2598
s382 0.52s 3094 0.33s 2934 0.34s 2866
s400 0.37s 3280 0.39s 3104 0.40s 3048
s420 0.06s 2248 0.04s 1394 0.04s 1782
s444 0.52s 3569 0.51s 3423 0.54s 3359
s510 0.80s 6683 0.48s 3609 0.63s 5261
s641 14.64s 4190 14.42s 4316 14.35s 3652
s713 2478.67s 4732 2422.90s 4810 2422.85s 4274
s820 2.22s 11410 1.08s 5482 1.48s 8426
s832 2.46s 11995 1.14s 5697 1.65s 8821
s953 2.28s 7288 2.62s 7678 2.59s 7550
s1196 8.02s 8818 8.27s 8592 8.84s 9124
s1238 2.04s 9211 2.08s 8781 2.43s 9673
s1488 9.76s 19097 4.05s 8663 6.38s 14071
s1494 11.93s 20306 5.06s 9142 7.88s 14922
s5378 831.83s 32917 841.40s 32887 839.78s 30395

References

[1] C. Chen and S. K. Gupta. A satisfiability-based test generator for
path delay faults in combinational circuits. In DAC ’96: Proceedings
of the 33rd annual conference on Design automation, pages 209–
214, 1996.

[2] H. Fujiwara and T. Shimono. On the acceleration of test generation
algorithms. IEEE Trans. on Comp., 32:1137–1144, 1983.

[3] E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-
solver. In Design, Automation and Test in Europe, pages 142–149,
2002.

[4] J. N. Hooker. Solving the incremental satisfiability problem. Journal
of Logic Programming, 15(1-2):177–186, 1993.

[5] J. Kim, J. Whittemore, J. P. Marques-Silva, and K. Sakallah. On
applying incremental satisfiability to delay fault testing. In DATE
’00: Proceedings of the conference on Design, automation and test
in Europe, pages 380–384, 2000.

[6] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. on Comp., 48(5):506–521,
1999.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Design Automation
Conf., pages 530–535, 2001.

[8] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlöffel.
PASSAT: Effcient SAT-based test pattern generation for industrial
circuits. In IEEE Annual Symposium on VLSI, pages 212–217, 2005.

[9] O. Shtrichman. Pruning techniques for the SAT-based bounded
model checking problem. In CHARME, volume 2144 of LNCS,
pages 58–70, 2001.

[10] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incre-
mental satisfiability engine. In Design Automation Conf., pages
542–545, 2001.

