
Reusing Learned Information in SAT-based ATPG∗

Görschwin Fey Tim Warode Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{fey,drechsle}@informatik.uni-bremen.de

Abstract

The robustness of engines for ATPG has to be im-
proved to cope with the growing size of circuits. Re-
cently, SAT-based ATPG approaches have been shown
to be very robust even on large industrial circuits.
Here, we propose techniques to further improve the ef-
ficiency by embedding learning techniques in a SAT-
based ATPG engine. We provide a heuristic to ap-
ply incremental SAT when enumerating faults and a
technique to apply circuit-based learning where in-
cremental SAT is not applicable. The correctness of
circuit-based learning is proven. Experimental results
on large benchmarks show the efficiency.

1 Introduction

The size of circuits is steadily increasing. Espe-
cially for Automatic Test Pattern Generation (ATPG)
this is a problem due to the NP-completeness of the
task. The classical ATPG algorithms, like FAN [5]
or PODEM [6], reach their limits. But for the post-
production test of circuits, ATPG is essential.

In the recent past ATPG engines based on Boolean
satisfiability (SAT) [9, 16] have shown their robust-
ness even on large industrial circuits [14]. SAT-based
engines are especially useful to classify faults that are
hard for other engines, e.g. redundancies [13]. These
tools mainly benefit from recent advances in the SAT
domain. When applied to a SAT instance the SAT
solver learns information each time a non-solution
subspace is found [10]. Techniques to reuse this in-
formation for similar SAT instances have been pro-
posed [18] and applied e.g. for bounded model check-
ing [15, 7]. The challenge for reuse lies in the cre-
ation of the SAT instance and storing the learned in-
formation in a database. Domain specific knowledge
is needed to allow for efficient reuse. Results for SAT-
based ATPG have been reported for path delay faults

∗This work was supported in part by Philips Semiconductors
GmbH, Hamburg, Germany within the BMBF project MAYA and
in part by DFG grant DR 287/15-1.

[1], but in this case dynamic learning is based on the
time consuming calculation of unsatisfiable cores. In
classical ATPG algorithms learning was applied by
considering non-trivial implications statically [12] or
by detecting structural dependencies dynamically in a
time consuming preprocessing step [8].

Here, we propose two strategies to reuse dynam-
ically learned information for SAT-based ATPG of
stuck-at faults. The first approach makes use of in-
cremental SAT [18]. In this paradigm the SAT solver
is never released, but the SAT instance is modified on
the fly. So learned information is kept, if applicable.
A heuristic to enumerate stuck-at faults such that sub-
sequent SAT instances are very similar is proposed.
The second approach applies a more general circuit-
based learning scheme. This is necessary when SAT-
based ATPG is applied in a multi-engine environment
as it is usually done in industrial practice. The correct-
ness of this learning approach is proven. Both tech-
niques are applied to publicly available benchmark cir-
cuits and large industrial circuits. The experimental
results show that the performance and robustness of
SAT-based ATPG are significantly improved.

The paper is structured as follows: Preliminaries
are provided in Section 2. In Section 3 the heuris-
tic to apply incremental SAT is presented. Then, the
approach for circuit-based learning is introduced and
proven to be correct. Experimental results for a range
of benchmark circuits are given in Section 5. Conclu-
sions are presented in the last section.

2 Preliminaries

2.1 SAT

A Conjunctive Normal Form (CNF) is a set of
clauses. A clause is a set of literals. A literal is either
positive or negative. A positive literal is a variable, a
negative literal is the negation of a variable.

A CNF is satisfied under an assignment of the vari-
ables if all clauses are satisfied. A clause is satisfied,
if at least one literal is satisfied. A positive (negative)
literal is satisfied, if the variable is assigned to 1 (0).



1

Fault free

Faulty

Fault shadowωA
corr

ωA
faulty ωA

diff

ωA’

Figure 1. Structure of φA

A SAT solver searches for a satisfying assignment
for a given CNF formula. In our paper conflict based
learning as applied in modern SAT solvers is most im-
portant. Essentially, a backtrack search based on the
DPLL procedure is performed [2]. Each time a con-
flict (a partial non-satisfying assignment) is found, this
conflict is analyzed and a learned clause is added to
the CNF to store the non-solution space.

2.2 Incremental SAT

Incremental SAT has been proposed to reuse
learned information when a series of structurally sim-
ilar SAT instances has to be solved [18]. Given two
CNF formulas φA, φB and φA is solved first. Then,
all clauses learned from φA ∩ φB can directly be ap-
plied when solving φB . Reusing the learned informa-
tion speeds up the solving process for φB . Internally a
SAT solver stores an implication graph. Therefore for
any conflict clause c the set of clauses φc that implied c
can be determined, i.e. φc → c. Then, c may be reused
for φB if φc ⊆ (φA ∩ φB). Completely storing φc

for each conflict clause c is too inefficient. Therefore
modern SAT solvers, like e.g. ZChaff [11], allow to
define groups of clauses. Each conflict clause c has a
tag that determines the groups that imply c. Only com-
plete groups may be removed from the SAT instance.
Then all clauses learned from this group are automat-
ically removed as well. Adding clauses or groups of
clauses is always allowed.

2.3 Circuits and Fault Modeling

A circuit C is composed of gates. The connections
between the gates are described by a graph structure.
A Boolean function is associated to each gate. The
transitive fanin of a gate G is denoted by F(G). The
transitive fanin of a set of gates G is denoted by F(G).
The circuit can be transformed into a CNF φ by adding
a set of clauses ωG for each gate G: φ =

⋃
G∈C ωG.

A Stuck-At Fault (SAF) occurs if a single line in a
circuit is stuck at a constant value and does not depend

on the values of the primary inputs any more. A test
pattern for a SAF leads to different output values de-
pending on the presence of the fault. If no test pattern
exists, the SAF is redundant.

2.4 SAT-based ATPG

SAT-based ATPG was first proposed in [9]. Given
a circuit and a SAF A, a SAT instance φA is created
that is only satisfiable if a test pattern for A exists.
If φA is unsatisfiable the fault is redundant. Figure
1 shows the structure of φA. Essentially, φA contains
a model of the circuit without the fault and a model
with the fault. Then the SAT solver searches for an
input assignment that forces at least one output to dif-
ferent values in the two models. Parts of the models
are shared. Constraints to model different parts of the
SAT instance are denoted as follows:

• ωcorr
A – the gates in the correct model of the fault

shadow or the shared part of the circuit

• ω
faulty
A – the faulty part of the circuit

• ω
diff
A – forces a difference at least at one output

• ω′A – the faulty copy of the gate at A

Thus,

φA = ωcorr
A ∪ ω′A ∪ ω

faulty
A ∪ ω

diff
A .

In the following for a gate G the constraints contained
in ωcorr

A are always denoted by ωG.
This is only a basic explanation of SAT-based

ATPG. In practice additional constraints are added to
the SAT instance to reflect the structure of the cir-
cuit [16, 13]. This makes SAT solving more efficient.
For solving the SAT instance modern SAT solvers
[10, 11, 4] are used and dedicated decision strategies
are applied [13]. A more detailed presentation of SAT-
based ATPG can be found in [3].

3 Incremental SAT for SAT-based ATPG

In the context of ATPG the enumeration of all faults
determines the series of SAT instances considered.
The order can be freely chosen. The objective is to
enumerate faults such that subsequent SAT instances

1. have large identical parts and

2. the identities can be determined efficiently.



A
x1
x2

x3
x4 B

D

x5

FC z1

z2

xx
x

x xx
x xxx

xx
x

E

Figure 2. Example for gate-input-
partitioning

We developed a heuristic to partition the set of
faults. All faults in a single partition are handled incre-
mentally. The clauses in the SAT instance are grouped
depending on the heuristic. While enumerating faults
in a single partition, some groups of clauses are kept
while others are replaced. When continuing with the
next fault partition, the whole SAT instance is rebuilt
and all learned information is dropped.

As an extreme, each fault can be put into a sepa-
rate partition. This corresponds to independent calls
of the SAT solver for each fault. No information is
reused. This partitioning is called classic in the fol-
lowing. On the other hand all faults can be stored in a
single partition. Then, the fault free part of the circuit
always contains a model of the whole circuit. Clauses
resulting from this part are never dropped. Learned in-
formation is accumulated during ATPG, but may cause
a significant overhead in the size of the SAT instance.
This partitioning is called totalInc.

More promising is a compromise between the two
extremes. In the following we show the gate-input-
partitioning heuristic. A partition contains all faults at
the inputs of a gate. An example for this partitioning
is shown in Figure 2. Six partitions are created shown
by gray boxes. Each ‘x’ denotes a SAF. Note that no
fault collapsing is considered in the figure, whereas we
applied fault collapsing as a preprocessing step in our
experiments.

Given a gate G, large parts of the SAT instances that
correspond to faults in a single partition are identical:

• Fault shadow: Due to the use of fanout gates, all
fault locations have the same paths to the primary
outputs. Therefore the fault shadow is identical
for all faults in the partition. This is valid for the
faulty part and the fault free part of the circuit.

• Fault free part of the circuit: The fault free part
contained in the SAT instance is determined by
traversing the circuit from outputs in the fault
shadow towards inputs. Because the fault shadow
is identical, also the fault free part of the circuit is
identical.

,
for each faultpartition do {
extractClauses( globalGroup );
for each fault in faultpartition do {
extractFaultyGate( faultGroup );
extractFaultSite( faultGroup );
solve();
deleteClauses( faultGroup );
resetSatSolver();

}
deleteAllClauses();

}

Figure 3. Algorithm based on gate-input-
partitioning

All clauses corresponding to these parts, i.e. ωcorr
A ∪

ω
faulty
A , are summarized in the group globalGroup of

clauses.

The only difference between two SAT instances is
the model of the gate that is considered faulty. Differ-
ent clauses are needed to model the stuck-at value at
different inputs of the gate. Also the two SAFs at a
single input differ in their value. Therefore all clauses
to model the gate and the fault value (ω′A) are collected
in the group faultGroup.

The overall ATPG algorithm for gate-input-
partitioning is shown in Figure 3. All par-
titions are enumerated. The function extract-
Clauses(globalGroup) creates the clauses in ωcorr

A ∪
ω

faulty
A . These clauses are stored in globalGroup and

are not changed while enumerating other faults in the
current partition. Then, all faults within the parti-
tion are handled individually. The clauses to encode
ω′A, i.e. to model the faulty gate (extractFaultyGate)
and the fault value (extractFaultSite), are created and
stored in faultGroup. By solving the SAT instance,
the function solve classifies the fault. Afterwards, all
clauses in faultGroup and all clauses derived from this
group are removed by calling the procedure delete-
Clauses. Finally, to restart the search the SAT solver
has to be reset before proceeding to the next fault.
Only if a new partition is considered all clauses are
removed.

Besides gate-input-partitioning other heuristics
were implemented and evaluated, e.g. by grouping
faults along paths, at outputs or a combination of these
heuristics [17]. But gate-input-partitioning turned out
to be the most efficient partitioning scheme in our ex-
periments regarding run time and memory consump-
tion.



4 Enhanced Circuit-based Learning
In practice there is usually a large number of easy

to detect faults that can be classified very efficiently
by random simulation. More sophisticated algorithms,
like FAN or PODEM, efficiently classify harder faults.
SAT-based approaches are well suited for hard to de-
tect faults and also perform very well in case of redun-
dancies. For this reason, a state of the art ATPG sys-
tem applies multiple engines where individual faults
are passed to particular engines. The choice of the en-
gine is usually done by heuristics. As a result, stati-
cally partitioning all faults during preprocessing is not
feasible. Instead, learning has to be circuit-based and
must be independent from the SAT instance and the
ATPG engine. We provide an efficient circuit-based
learning strategy and prove the correctness of the ap-
proach.

First, learned clauses are stored in a database,
then stored clauses are considered for reuse. In the
database a learned clause c is stored as a set of liter-
als {l0, . . . , ln}. A variable in the SAT instance corre-
sponds to the output of a gate. Therefore each literal
is a pair (Gi, Pi) where Gi denotes the gate and Pi the
polarity, Pi = 0 denotes the negative literal, Pi = 1
denotes the positive literal. After solving a SAT in-
stance the learned clauses are analyzed and stored in
the database if the following rule applies.

Rule: Clause c is derived from the fault free part of
the circuit, i.e. ωcorr

A → c.
There are two reasons to apply this rule. First,

the precondition can be evaluated efficiently across
all SAT instances for different faults. More detailed,
when all clauses in ωcorr

A are summarized in a single
group the decision whether the clause can be derived
solely from the fault free part of the circuit is easy.
Second, clauses derived only from the fault free part
can be reused more easily than clauses derived from
the faulty part of the circuit where the injected fault
changes the functionality. Note that for efficiency in
practice only those clauses are stored that have three
literals or less.

The next step is the reuse of stored clauses. Insert-
ing a stored clause c into a SAT instance φA is only
allowed if φA → c. This check has to be carried out
efficiently because it is done for each fault and each
stored clause. We provide such an efficient check and
prove the correctness: in our context it is sufficient to
check whether φA contains clauses for all gates that
are considered in c. Two lemmas are used to prove the
main result.

Lemma 1. Let φA be a SAT instance for SAF A and
for gate G let ωG ⊆ φA. Then, for any gate H in the
transitive fanin F(G) of G also ωH ⊆ φA.

Proof. Due to construction ωG ⊆ ωcorr
A ⊆ φA. Con-

straints for gate G are only inserted if G is reached
while traversing the circuit towards the primary in-
puts. Then, constraints for all gates in F(G) are also
inserted into φA.

Lemma 2. Let c = {l1, . . . , ln} be a stored clause,
φA be a SAT instance for SAF A, and φA → c. Let
G = {G : (G, P ) ∈ c, where P ∈ {0, 1}}. Then c can
be implied by considering only φc = ∪H∈F(G)ωH ,
i.e. all clauses coming from gates in the fanin of G.

Proof. According to the rule for storing clauses it is
sufficient to consider ωcorr

A . Due to construction φc ⊆
ωcorr

A .
Given the values of all but one gate the value of the

last gate can be implied. Therefore the clause c can
be rewritten as {l1, . . . , ln−1} → ln (any other literal
than ln may be chosen, but choosing n simplifies the
notation). The value of a gate G only depends on its
predecessors in the circuit, i.e. on F(G).

Let α be a CNF that is only satisfied by an as-
signment to the primary inputs that forces all gates
Gi, i ≤ n to the values P i. If no such assignment
exists, φc → c holds (because l1 . . . ln−1 is never sat-
isfied).

Otherwise φc ∪ α can only be satisfied under a
variable assignment if Gn assumes the value Pn (be-
cause l1 . . . ln−1 → ln holds on ωcorr

A ). Thus, (φc ∪
α) → ln holds. By construction the constraint α
is equivalent to l1 . . . ln−1 with respect to φc. Thus
(φc ∪ {l1, . . . , ln−1}) → ln. Therefore, if l1 . . . ln−1

is satisfied, φc can only be satisfied if ln is satisfied.
This leads to φc → c.

Theorem 1. Let c = {l1, . . . , ln} be a stored clause
and φA be a SAT instance for SAF A. Furthermore for
each i ∈ {1, . . . n} and li = (Gi, Pi) let ωGi ⊆ φA.
Then, φA → c.

Proof. Clause c was learned previously on a SAT in-
stance φB for SAF B. According to Lemma 2, clause
c can be implied by φc (as defined in the lemma). Fur-
thermore φc ⊆ φA according to Lemma 1. Thus,
φA → c.

Based on this foundation, we propose two learning
approaches. First we applied learning only in a prepro-
cessing step. For each output the circuit is converted
into a CNF and the SAT solver is started on this CNF.
The learned clauses of this run are considered for cre-
ating a static database. The second approach applies
dynamic learning. After running the SAT solver on the
SAT instance for a particular fault the database is up-
dated with the learned clauses.



Table 1. Run time for incremental SAT

circ classic gate-input totalInc
eqn sat eqn sat imp. eqn sat

c432 3.0 1.4 1.3 1.3 1.69 6.3 6.1
c499 10.0 54.6 4.7 35.0 1.63 30.5 61.0
c1355 17.4 83.7 6.6 43.5 2.02 45.7 86.1
c1908 13.2 15.9 5.8 12.5 1.59 45.6 51.7
c3540 49.4 37.7 20.2 31.4 1.69 167.5 157.0
c7552 102.2 130.6 46.7 93.3 1.66 449.5 536.3
s1494 2.1 1.7 1.0 1.7 1.41 8.4 10.1
s5378 19.5 7.6 8.7 5.5 1.91 111.9 132.7
s15850 145.6 70.9 66.8 58.6 1.73 1693.5 1.318.7
s38417 220.0 88.1 95.8 70.8 1.85 mem. out
b10_C 0.5 0.2 0.2 0.1 2.33 1.2 1.0
b11_C 6.4 2.2 2.8 1.8 1.87 19.6 20.8
b12_C 6.8 3.3 2.8 2.7 1.84 47.8 51.6
b14_C 856.9 2485.1 391.7 1921.2 1.44 mem. out
b15_C 1310.9 4511.9 555.0 3432.5 1.46 mem. out

avg 1.74

5 Experimental Results

In the experiments we consider benchmark circuits
from the ISCAS85, ISCAS89 and ITC99 benchmark
sets as well as industrial benchmarks from Philips
Semiconductors GmbH, Hamburg, Germany. All ex-
periments were carried out on an AMD Athlon XP 64
3500+ system (Linux, 2200 MHz, 1 GB). Due to page
limitation only a subset of the results can be reported
in the following. The proposed learning techniques
are implemented on top of the SAT-based ATPG tool
PASSAT that often outperforms classical ATPG algo-
rithms [13]. Results of the application of PASSAT to
industrial circuits were already reported [14]. PAS-
SAT applies a four-valued logic to handle multi-valued
benchmarks such as tri-state values and unknown val-
ues coming from the environment of the circuit. We
use the SAT solver ZChaff [11] in the 2004 version
that provides an interface for incremental SAT. For a
circuit all SAFs are classified using the SAT-based en-
gine. No other engines and no fault simulation are ap-
plied (which can further speed up ATPG in practice).
Fault collapsing is used to reduce the number of faults
in advance. For each remaining fault a time out of
20 seconds was applied, otherwise the classification
was aborted. Additionally, the proposed learning tech-
niques were embedded.

Results for the application of incremental SAT are
shown in Table 1. Data is presented for the parti-
tioning classic, gate-input and totalInc as explained
in Section 3. For each algorithm the total run times
for generating the SAT instances (eqn) and solving
(sat) are reported in seconds. The speed-up of gate-

Table 2. Run time of learning on top of
gate-input-partitioning
circ gate-inp. static dynamic

time time imp. time imp.
c432 2.6 2.7 0.96 2.6 1.00
c499 39.7 30.7 1.29 21.0 1.89
c1355 50.1 40.0 1.25 32.5 1.54
c1908 18.3 16.9 1.08 14.4 1.27
c3540 51.6 54.1 0.95 47.9 1.07
c7552 140.1 145.6 0.96 106.5 1.31
s1494 2.7 2.7 1.00 2.8 0.96
s5378 14.2 15.5 0.91 14.3 0.99
s15850 124.4 139.3 0.89 121.3 1.02
s38417 166.6 191.3 0.87 226.0 0.73
b10_C 0.3 0.4 0.75 0.3 1.00
b11_C 4.6 4.8 0.95 5.1 0.90
b12_C 5.5 5.6 0.98 5.6 0.98
b14_C 2312.9 1982.6 1.16 1426.8 1.62
b15_C 3987.5 3665.3 1.08 2673.6 1.49

avg 1.00 avg 1.18

input-partitioning vs. classic is also reported (imp).
Even classic classified all faults within the time out,
i.e. no aborts occurred. Compared to the classi-
cal approach gate-input-partitioning provides remark-
able speed-ups. The generation of the SAT instances
is done much faster because large parts are simply
reused. Also the time for solving the problems is sig-
nificantly reduced due to the learned clauses. On av-
erage a speed-up of 1.74 was obtained on the bench-
marks. The memory needs for gate-input-partitioning
were the same as for the algorithm classic. In contrast,
totalInc causes a drastic increase in memory usage due
to a large number of learned clauses that were accumu-
lated while enumerating all faults. As a result even the
run time increased and in some cases the memory limit
of 1250MB (including swapping space) was exceeded.

Next, we applied the two circuit-based learning ap-
proaches to the classical algorithm without incremen-
tal SAT and to the algorithm based on gate-input-
partitioning. In both cases learning improved the over-
all run time. Experimental results for the combina-
tion with gate-input-partitioning are reported in Table
2. Here, the improvements are reported in compari-
son to gate-input-partitioning without learning. When
gate-input-partitioning is used, the preprocessing does
not improve the overall performance. The learned
clauses stem from “simple” conflicts and do not im-
prove the performance for hard SAT instances. In con-
trast the dynamic approach that analyzes and stores
learned clauses after each run of the SAT solver im-
proves the performance on average by another 18%
over gate-input-partitioning, i.e. by 217% over clas-
sic. This shows that especially reusing learned clauses
from hard faults helps to improve the overall perfor-



Table 3. Results for industrial circuits
classic gate-inp+dynamic

circ #faults ab. time ab. time
p77k 126,338 0 4,487 0 3,832
p80k 181,160 12 24,703 0 12,116
p88k 133,891 2 13,572 0 5,755
p99k 140,633 63 26,343 19 15,397
p177k 260,812 6,974 372,546 236 95,452
p462k 616,735 6,232 309,828 19 62,921
p565k 1,317,213 4,306 495,167 540 284,235
p1330k 1,441,878 132 166,791 14 221,060

mance. Note, that all possible faults in the circuits
where classified by the SAT-based approach. But the
overhead of generating a SAT instance only pays off
for faults that are hard to classify. In our case this
overhead occurs even for the large number of “easy-
to-detect” faults that could be classified much more ef-
ficiently by random simulation. Therefore the overall
run time could not be improved in some cases.

Finally, results for industrial benchmark circuits are
reported in Table 3. The name of a circuit also gives
the number of gates contained in the circuit, e.g. p565k
has about 565.000 gates. The number of faults after
collapsing is reported in the second column. The clas-
sical algorithm without learning is compared to the
algorithm that combines gate-input-partitioning with
dynamic learning. The number of faults that were
aborted are reported in column ab. Column time give
the total run time. The results show that the learn-
ing techniques significantly improve the robustness
of SAT-based ATPG. A large number of faults was
aborted by the classical algorithm. In contrast only
a few aborted faults remain when learning is applied.
Moreover, even the run time decreases in most cases.
In one case the improvement even reaches a factor of
4.9. The runtime was only increased for p1330k, but
at the same time the number of aborted faults was re-
duced significantly. This shows that storing learned
information is essential to classify hard faults.

Overall the performance of SAT-based ATPG can
be significantly improved. Especially the combination
of gate-input-partitioning and dynamic circuit-based
learning boosts robustness. The run time is reduced
on average and the number of aborted faults is reduced
for all benchmarks considered.

6 Conclusions
We presented a SAT-based ATPG engine with em-

bedded learning strategies. Both paradigms, i.e. in-
cremental SAT and circuit-based learning, were ex-
ploited. For the more difficult case of circuit-based
learning the correctness of the technique was proven.
Experimental results show an improved robustness on
large industrial benchmarks.

The next step is the tight integration with classi-
cal ATPG engines. In this context the SAT-based tool
can be used to efficiently handle faults that are hard to
classify using other techniques. By reusing learned in-
formation for the other engines, e.g. FAN, the overall
performance can be further improved.

Additionally, the extension of SAT-based ATPG to
other fault models, such as the path delay fault model
or the bridging fault model, is considered.

References

[1] K. Chandrasekar and M. S. Hsiao. Integration of learning
techniques into incremental satisfiability for efficient path-
delay fault test generation. In Design, Automation and Test
in Europe, pages 1002–1007, 2005.

[2] M. Davis, G. Logeman, and D. Loveland. A machine pro-
gram for theorem proving. Comm. of the ACM, 5:394–397,
1962.

[3] R. Drechsler and G. Fey. Automatic test pattern generation.
In Formal Methods for Hardware Verification, LNCS, pages
30–55, 2006.

[4] N. Eén and N. Sörensson. An extensible SAT solver. In SAT
2003, volume 2919 of LNCS, pages 502–518, 2004.

[5] H. Fujiwara and T. Shimono. On the acceleration of test gen-
eration algorithms. IEEE Trans. on Comp., 32:1137–1144,
1983.

[6] P. Goel. An implicit enumeration algorithm to generate tests
for combinational logic. IEEE Trans. on Comp., 30:215–222,
1981.

[7] D. Große and R. Drechsler. Acceleration of SAT-based itera-
tive property checking. In CHARME, volume 3725 of LNCS,
pages 349–353. Springer, 2005.

[8] W. Kunz. HANNIBAL: An efficient tool for logic verification
based on recursive learning. In Int’l Conf. on CAD, pages
538–543, 1993.

[9] T. Larrabee. Test pattern generation using Boolean satisfia-
bility. IEEE Trans. on CAD, 11:4–15, 1992.

[10] J. Marques-Silva and K. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Trans. on Comp.,
48(5):506–521, 1999.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conf., pages 530–535, 2001.

[12] M. Schulz, E. Trischler, and T. Sarfert. SOCRATES: A highly
efficient automatic test pattern generation system. In Int’l Test
Conf., pages 1016–1026, 1987.

[13] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and
J. Schlöffel. PASSAT: Effcient SAT-based test pattern gener-
ation for industrial circuits. In IEEE Annual Symposium on
VLSI, pages 212–217, 2005.

[14] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J. Schlöffel, and
F. Hapke. Experimental studies on SAT-based test pattern
generation for industrial circuits. In Int’l Conf. on ASIC,
pages 967–970, 2005.

[15] O. Shtrichman. Pruning techniques for the SAT-based
bounded model checking problem. In CHARME, volume
2144 of LNCS, pages 58–70, 2001.

[16] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.
Combinational test generation using satisfiability. IEEE
Trans. on CAD, 15:1167–1176, 1996.

[17] T. Warode. Strukturelles Lernen in der erfüllbarkeits-
basierten Testmustergenerierung (Structural learning for test
pattern generation based on satisfiability). Master’s thesis,
University of Bremen, 2006.

[18] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new in-
cremental satisfiability engine. In Design Automation Conf.,
pages 542–545, 2001.


