

Fault Effects in FlexRay-Based Networks with Hybrid Topology

Mehdi Dehbashi, Vahid Lari, Seyed Ghassem Miremadi, Mohammad Shokrollah-Shirazi
Sharif University of Technology

{Lari, Dehbashi, Shirazi}@ce.sharif.edu
Miremadi@sharif.edu

Abstract

This paper investigates fault effects and error

propagation in a FlexRay-based network with hybrid
topology that includes a bus subnetwork and a star
subnetwork. The investigation is based on about
43500 bit-flip fault injection inside different parts of
the FlexRay communication controller. To do this, a
FlexRay communication controller is modeled by
Verilog HDL at the behavioral level. Then, this
controller is exploited to setup a FlexRay-based
network composed of eight nodes (four nodes in the
bus subnetwork and four nodes in the star
subnetwork). The faults are injected in a node of the
bus subnetwork and a node of the star subnetwork of
the hybrid network. Then, the faults resulting in the
three kinds of errors, namely, content errors, syntax
errors and boundary violation errors are
characterized. The results of fault injection show that
boundary violation errors and content errors are
negligibly propagated to the star subnetwork. And
syntax errors propagation is almost equal in the both
bus and star subnetworks. Totally, the percentage of
errors propagation in the bus subnetwork is more than
the star subnetwork.

1. Introduction

Nowadays, Distributed embedded systems have

significant position in modern industry because the
distributed embedded control systems possess many
advantages over traditional centralized ones, such as
improved performance, optimized resource utilization,
reduced cabling, enhanced modularity, and fault
tolerance [1]. In a distributed system, each node
consists of three parts [2]: 1) I/O part, 2) host part,
and 3) communication controller. Among these three
parts, the communication controller has a key role in
the system operation.

In general, communication activities can be
triggered either dynamically, in response to an event
(event-triggered), or statically, at predetermined
moments in time (time-triggered). Examples of time-
triggered protocols are the SAFEbus [3], SPIDER [4],
and Time-Triggered Protocol (TTP) [5]. The main
drawback of the time-triggered protocols is their lack
of flexibility [6]. Examples of event-triggered
protocols are the Byteflight [7] introduced by BMW
Company for automotive applications, CAN [8] and
LonWorks [9]. The main drawback of the event-
triggered protocols is their lack of predictability. A
large consortium of automotive manufacturers and
suppliers has proposed a hybrid type of protocol,
namely, the FlexRay communication protocol [10] .
The FlexRay allows the sharing of the bus among
event-triggered and time-triggered messages, thus
offering the advantages of both protocols. It is reported
that the FlexRay will very likely become the de-facto
standard for in-vehicle communications [6] [11]. The
FlexRay defines a communication cycle (bus cycle) as
the combination of a time-triggered (or static)
window, an event-triggered (or dynamic) window, a
symbol window and a network idle time (NIT)
window. The FlexRay network is very flexible with
regard to topology and transmission support
redundancy [11]. It can be configured as a bus, a star
or hybrid combinations of bus and star topologies.

The importance of safety in critical distributed
applications signals to pay specific attention to the
reliability of communication protocols. One way to
assess the reliability of communication protocols is by
fault injection. In [12], a simulation-based fault
injection has been used for the assessment of message
missings in the CAN network with bus topology.
Effects of masquerade failures have been investigated
using a simulation-based fault injection in the CAN
network with bus topology [13]. Evaluation of TTP/C
communication controller by heavy-ion fault injection
(hardware-based fault injection) has been performed in

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.161

491

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.161

491

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.161

491

[14]. The purpose of the experiments in that paper was
to validate the fail silence property of the TTP/C by
injecting faults in a single node. The relationship
between the number of nodes in a cluster and the
slightly-off-specification (SOS) failures has been
assessed using heavy-ion fault injection [15]. In [16],
the TTP/C protocol with bus and star topologies has
been investigated using SWIFI fault injection. Here,
the effects of the SOS failures in the bus and star
topologies with respect to the start of frame
transmission have been studied. In [17] [18] [19], a
generic tool was developed for monitoring and
diagnosis of a FlexRay-based system as well as for a
CAN-based system. This tool has been used by the
FlexRay consortium to perform extended fault
injection for evaluating of the FlexRay communication
protocol. One important limitation of this tool is that
faults cannot be injected inside different parts of the
FlexRay protocol.

This paper evaluates the fault effects in the
FlexRay-based networks by injecting about 43500 bit-
flip faults inside different parts of this protocol. To do
this, a FlexRay communication controller is modeled
by Verilog HDL at the behavioral level. This HDL
model of the controller is exploited to setup the
FlexRay-based network with hybrid topology. This
network consists of two subnetworks: a bus
subnetwork composed of four nodes and a star
subnetwork composed of four nodes. To evaluate the
faults effects in this network and vulnerability of these
two subnetworks to the faults injection, the faults are
injected into two separated nodes: one node in the bus
subnetwork and another node in the star subnetwork.
Then, the faults effects resulting in the three kinds of
errors, namely, content errors, syntax errors and
boundary violation errors are observed in each
subnetwork. The dependencies of fault locations to
these three kinds of errors are assessed in two
mentioned subnetworks. Here, the sensitivity of each
subnetwork to fault injections is evaluated. Also, the
error propagation results in these two subnetworks are
compared after fault injections.

This paper is organized in six sections. Section 2,
introduces the FlexRay protocol, and section 3
presents error models found in this protocol. The
experimental organization is given in section 4, and
the results are presented in section 5. The last section
concludes the work.

2. FlexRay protocol

A consortium of major automotive companies
which includes BMW, Bosch, DaimlerChrysler,
General Motors, Motorola, Philips, and Volkswagen,
is currently developing the FlexRay protocol. The
FlexRay network is very flexible with regard to
topology and transmission support redundancy. It can
be configured as a bus, a star or a multistar. It is not
mandatory that each station possess neither replicated
channels nor a bus guardian, even though this should
be the case for critical functions such as steer-by-wire.

At the MAC level, FlexRay defines a
communication cycle as the concatenation of a time-
triggered (or static) window, an event triggered (or
dynamic) window, a symbol window and a network
idle time (NIT) window. The communication cycles
are executed periodically. The time-triggered window
uses a TDMA MAC mechanism; a station in FlexRay
might possess several slots in the time-triggered
window, but the size of all the slots is identical (Figure
1). In the event-triggered part of the communication
cycle, the mechanism is Flexible TDMA (FTDMA):
the time is divided into so-called minislots, each
station possesses a given number of minislots (not
necessarily consecutive), and it can start the
transmission of a frame inside each of its own
minislots. A minislot remains idle, if the station has
nothing to transmit which actually induces a loss of
bandwidth. The symbol window is a communication
period in which a symbol can be transmitted on the
network. The NIT window is a communication-free
period that concludes each communication cycle.

The FlexRay frame consists of three parts: the
header segment, the payload segment and trailer
segment. The FlexRay header segment consists of 5
bytes. These bytes contain a reserved bit, payload
preamble indicator, null frame indicator, sync frame
indicator, startup frame indicator, frame ID, payload
length, header CRC and cycle count.

The payload segment contains 0 to 254 bytes (0 to
127 two-byte words) of data. Because the payload
length contains the number of two-byte words, the
payload segment contains an even number of bytes.
The FlexRay trailer segment contains a single field, a
24-bit CRC for the frame. The Frame CRC field
contains a cyclic redundancy check code (CRC)
computed over the header segment and the payload

Figure 1. Communication cycle in FlexRay protocol

492492492

segment of the frame. The computation includes all
fields in these segments.

3. Error models related to FlexRay

The FlexRay protocol has different mechanisms for

detecting errors in the controller. At the end of each
time slot, the FSP mechanism checks the presence of
any error in that slot and informs the host about it.
This protocol defines 3 main errors that can occur in
each slot: syntax error, content error and boundary
violation errors. The syntax error denotes the presence
of a syntactic error in a time slot, the content error
denotes the presence of an error in content of a
received frame and boundary violation error denotes
whether a boundary violation occurred at boundary of
the corresponding slot.

4. Experimental Organization

This section discusses the basic characteristics of

the experiment.

4.1. Experimental setup

For performing experiments, a FlexRay

communication controller has been modeled by
Verilog HDL at the behavioral level according to the
FlexRay protocol specification [10] . This FlexRay
controller has been tested according to the FlexRay
protocol conformance test specification [20]. This
HDL model of the controller has been exploited to
setup a FlexRay-based network composed of eight
nodes. The implemented controller has usual
capabilities of the FlexRay protocol such as sending
and receiving the static and dynamic frames and
symbols. This controller according to the FlexRay
protocol specification has six parts to perform its
functions: controller host interface (CHI), protocol
operation control (POC), clock synchronization
process (CSP), frame and symbol process (FSP),
media access control (MAC), coding and decoding
(CODEC). In addition, instead of a real application, a
data generator has been implemented to generate static
frames with fixed length and dynamic frames with
variable length at the start of the communication
cycles.

The network topology in this experiment is a
hybrid combination of bus and star topologies (hybrid
topology). This topology with eight nodes is shown in
figure 2. As depicted in this figure, this network
includes two subnetworks: bus subnetwork and star

subnetwork. In order to set up a network with hybrid
topology, a model of central bus guardian (CBG) has
been implemented at the behavioral level according to
the FlexRay central bus guardian specification [21].
This CBG contains five branches that four nodes
(nodes S1, S2, S3, and S4) are connected using point-
to-point connections to four branches of the CBG. The
fifth branch is connected to a bus topology that
contains four nodes (nodes B1, B2, B3, and B4).

In this experiment, fault injection is done in two
phases: 1) fault injection in one node of bus
subnetwork (node B2), 2) fault injection in one node
of star subnetwork (node S2). After each fault
injection, error propagation observation is performed
in both bus and star subnetworks (respectively in
nodes B4 and S4). The faults are injected in five parts
of the FlexRay communication controller, including
CHI, POC, CSP, MAC and CODEC. As said in
section 2.2, FSP part checks the correct timing and
semantic correctness of received frames, and it applies
further syntactical tests to received frames [10] . Thus,
for the reason that the FSP part doesn’t have any role
in transmitting frames and error propagation to other
nodes, there is no fault injection in the FSP part. The
effects of fault injection are observed in FSP part of
the FlexRay communication controller.

Central bus guardian (CBG). The CBG is an
optional device that can be added to a channel of a
FlexRay system in order to increase fault tolerance.
The CBG guarantees that certain errors on one branch
will not propagate to other branches by filtering
functions. Examples of such filtering functions are:
semantic filtering, content filtering (cycle count, and
frame id filtering), Byzantine (SOS) filtering.

During normal operation the CBG enforces certain
temporal aspects of the communication schedule. It
does this via the use of several sub-states, each of
which enforces different characteristics of the
communication. During the static window the CBG
operates in the strict sub-state. The CBG enforces a
strict schedule within the static window by allowing
only one slot/branch combination to send a frame. All
other branches are blocked for transmission. The CBG
disables transmission, if a frame is sent outside its
timeslot. In the dynamic window the CBG operates in
the dynamic sub-state (race arbitration). The first
node/branch beginning to send in this segment is
allowed to transmit. The protection always ends at the
end of the frame. A node sending too long will be cut
off when exceeding the maximum allowed frame
length or the end of the dynamic window. During
other portions of the cycle it operates in the idle sub-

493493493

state. In this sub-state the CBG disables all
communication – no data is forwarded [21].

4.2. Fault injection tool

The SINJECT fault injection tool [22] is used for

injecting fault at the behavioral level in nodes,
collecting the results, and analyzing them. A fault
injection process usually consists of three steps:

1- When the given workload is applied, the
behavior of a fault-free network is
computed and stored.

2- During the second step, to consider faults effects,
the given workload are applied again to the
network, the fault is injected, and the behavior of
the network is observed.

3- During the third step of the fault injection
process, the faulty network behavior is compared
with the behavior of the fault-free network,
which is gathered at first step, and therefore the
fault effects are specified and saved.

5. Experimental Results

In this experiment for investigating the error

propagations in a FlexRay-based network with hybrid
topology, faults are injected in two separate nodes in
this network: the node B2 in the bus subnetwork and
the node S2 in the star subnetwork. In each of these
two nodes about 21786 bit-flip faults are injected into
five different parts of their communication controller.
These five parts include: CHI, CSP, MAC, POC, and
CODEC. Each experiment lasts for three
communication cycles, in cycle 1 the faults are
injected and the effects of them are observed in cycle
1 through 3. The error propagation observation is
done in two different nodes: the node B4 in the bus
subnetwork and the node S4 in the star subnetwork. In
each communication cycle, 12 slot IDs in static
window and 12 slot IDs in dynamic window are

allocated to different nodes.
The experimental results are investigated in 3

parts. In the first part the error propagation results are
investigated as the result of fault injection in bus
subnetwork. In the second part, the error propagation
results are investigated as the result of fault injection
in star subnetwork. Finally, in the third part, a
comparison of error propagation results of previous
parts is declared.

5.1. Error propagation after fault injection in
bus subnetwork

In this part the faults are injected in different parts

of a node in the bus subnetwork. After the fault
injection in this node, the error propagation results are
observed in another node in the bus subnetwork and a
node in the star subnetwork. The errors are divided
into three main classes. These three classes include
syntax error, content error and boundary violation
error.

Table 1 shows the errors that are observed in bus
subnetwork. The CSP part is the most vulnerable to
fault injection and the fault injections in this part lead
to the most content errors, syntax errors and boundary
violation errors. Also, in table 2 which shows the
errors that are observed in star subnetwork, the CSP
part is the most vulnerable part to fault injection. Fault
injection in the POC part causes the least error
propagation in the network.

No
de

S2
No
de S3

Figure 2. Experimental setup

Table 1. Error propagation in bus subnetwork
 (after fault injection in bus subnetwork)

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %
CODEC 5070 225 4.43 9 0.17 97 1.91
MAC 2196 174 7.92 119 5.41 104 4.73
CSP 8640 3059 35.4 1452 16.8 2658 30.76
POC 1680 2 0.11 0 0 0 0
CHI 4200 1304 31.04 485 11.54 400 9.52
All Parts 21786 4764 21.86 2065 9.47 3259 14.95

Table 2. Error propagation in star subnetwork
 (after fault injection in bus subnetwork)

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %
CODEC 5070 225 4.43 0 0 0 0
MAC 2196 195 8.87 0 0 0 0
CSP 8640 2955 34.2 59 0.68 35 0.4
POC 1680 2 0.11 0 0 0 0
CHI 4200 1391 33.11 19 0.45 2 0.04
All Parts 21786 4768 21.88 78 0.35 37 0.16

494494494

By comparing the results of table 1 and 2, it can be
seen that the error propagation is reduced in the star
subnetwork significantly. Most of the content and
boundary violation errors occurring in the bus
subnetwork are eliminated in the CBG. This is
because of the fact that the CBG performs boundary
protection and content filtering. This device
disconnects the transmitter node/branch when it
observes slot boundary termination or content error.
Thus, the CBG prevent the propagation of the content
and boundary errors from the bus subnetwork to the
star subnetwork. The syntax errors propagation is
almost equal in the both bus and star subnetworks.
Totally, if a node becomes faulty in the bus
subnetwork, error propagation in the bus subnetwork
is more than the star subnetwork.

5.2. Error propagation after fault injection in
star subnetwork

 In this part the faults are injected in different parts

of a node in the star subnetwork. Like the last part, the
error propagation results are observed in another node
in the bus subnetwork and a node in the star
subnetwork.

Tables 3 and 4, respectively, show the error
propagation in the bus subnetwork and the star
subnetwork after fault injection in a node of the star
subnetwork. In both of them, the CSP is the most
vulnerable part to the fault injection among the
different parts of the communication controller. The
fault injections in this part lead to the most content
errors, syntax errors and boundary violation errors.
The POC is the least sensitive part to the fault
injection and causes the least error propagation in the
network. As these two tables show, like the last part,
the error propagation in the star subnetwork is less
than the error propagation in the bus subnetwork. It
means, in spite of the faults are injected in the star
subnetwork but the error propagation in the bus
subnetwork is more than the star subnetwork. This is
because of the fact that the faulty node can affect
operation of other nodes in dynamic window while the
CBG operates in the race-arbitration sub-state in this
window. Thus in the bus subnetwork that the nodes
are not controlled, the operation of faulty node can
cause more errors in the bus subnetwork than star
subnetwork in dynamic window. Totally, the results
show that if a faulty node exists in the star subnetwork
with hybrid topology, the error propagation in the bus
subnetwork is more than the star subnetwork.

5.3. Comparison of error propagation in bus
and star subnetworks

In the two past parts, the results of fault injections

in bus and star subnetworks were investigated.
According to these results, the CBG has an effective
role in error propagation prevention between bus and
star subnetworks. This device protects the star
subnetwork nodes against the some errors
propagation. As discussed in section 5.2, the star
subnetwork is more fault-tolerant even against those
faults that are injected in it. As in the bus subnetwork
the bus is used as a common media by the nodes and
transmissions are not controlled, the probability of
error occurrence is higher than the star subnetwork.
Thus, the bus subnetwork is more vulnerable against
the fault injections. Totally, if a node becomes faulty
in the hybrid topology (whether in the star subnetwork
or in the bus subnetwork), the error propagation in
nodes of the bus subnetwork is more than the star
subnetwork. Also, the results show that entirely the
CSP part of the FlexRay controller is the most
vulnerable part and fault injection in this part causes
the most error propagation in the network. The POC
part is the least sensitive part to the fault injection.

Table 3. Error propagation in bus subnetwork
 (after fault injection in star subnetwork)

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %
CODEC 5070 210 4.14 3 0.06 0 0.00
MAC 2196 193 8.79 11 0.50 5 0.23
CSP 8640 2766 32.01 407 4.71 86 1.00
POC 1680 4 0.24 0 0.00 0 0.00
CHI 4200 1391 33.12 68 1.62 21 0.50
All Parts 21786 4564 20.95 489 2.24 112 0.51

Table 4. Error propagation in star subnetwork
 (after fault injection in star subnetwork)

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %
CODEC 5070 211 4.16 0 0.00 0 0.00
MAC 2196 200 9.11 0 0.00 0 0.00
CSP 8640 2766 32.01 84 0.97 24 0.28
POC 1680 4 0.24 0 0.00 0 0.00
CHI 4200 1403 33.40 13 0.31 0 0.00
All Parts 21786 4584 21.04 97 0.45 24 0.11

495495495

6. Conclusions

This paper investigated the error effects and error

propagation in a FlexRay-based network with hybrid
topology that includes a bus subnetwork and a star
subnetwork. The investigation was based on about
43500 bit-flip fault injections inside five parts of the
FlexRay protocol. To do this, a FlexRay
communication controller was modeled by Verilog
HDL at the behavioral level. A FlexRay-based network
with hybrid topology composed of eight nodes was
established using this controller. The results of fault
injection showed that boundary violation errors and
content errors are negligibly propagated to the star
subnetwork. And syntax errors propagation is almost
equal in the both bus and star subnetworks. Totally,
the percentage of errors propagation in the bus
subnetwork is more than the star subnetwork. Also the
dependencies of fault locations to these three kinds of
errors were assessed in two mentioned subnetworks.
Here, the sensitivity of each subnetwork to fault
injections was evaluated.

7. References

[1] J. Morris, D. Kroening, P. Koopman, “Fault Tolerance
Tradeoffs in Moving from Decentralized to Dentralized Embedded
Systems”, International Conference on Dependable Systems and
Networks (DSN 2004), Italy, pp. 349-358, 2004.

[2] H. Kopetz, “A Comparison of CAN and TTP,” Vienna
University of Technology, Real-Time System Group, Research
Report 23/1998.

[3] K. Hoyme, and K. Driscoll, “SAFEbus,” The IEEE Aerospace
and Electronic Systems Magazine, vol. 8, no. 3, pp. 34-39, 1992.

[4] P. S. Miner, “Analysis of the SPIDER Fault-Tolerance
Protocols,” Proc. of the 5th NASA Langley Formal Methods
Workshop, 2000.

[5] H. Kopetz, and G. Bauer, “The Time-Triggered Architecture,”
Proc. of the IEEE, vol. 91, no. 1, pp. 112-126, 2003.

[6] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing
Analysis of the FlexRay Communication Protocol,” Proc. of the
18th Euromicro Conference on Real-Time System, pp. 203-216,
July 2006.

[7] J. Berwanger, M. Peller, and R. Griessbach, “Byteflight-A New
High Performance Data Bus System for Safety-Related
Applications,” BMW 2000, available in http://www.byteflight.de.

[8] R. Bosch GmbH, “CAN Specification,” v2.0, 1991.

[9] Echelon, and LonWorks, “The LonTalk Protocol Specification,”
available in http://www.echelon.com.

[10] FlexRay Consortium, “FlexRay Communications System -
Protocol Specification,” v2.1 Revision A, December 2005.

[11] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert,
“Trends in Automotive Communication Systems,” Proc. of the
IEEE, vol. 93, no. 6, June 2005.

[12] H. Salmani, and S. G.Miremadi, “Assessment of Message
Missing Failures in CAN-based Systems,” Proc. of the Parallel and
Distributed Computing and Networks, pp. 387-392, 2005.

[13] H. Salmani, and S. G. Miremadi “Contribution of Controller
Area Networks Controllers to Masquerade Failures,” Proc. of the
11th Pacific Rim International Symposium on Dependable
Computing, pp. 310- 316, 2005.

[14] H. Sivencrona, P. Johannessen, M. Persson, and J. Torin,
“Heavy-ion Fault Injections in the Time-triggered Communication
Protocol,” Proc. of the Latin American Symposium on Dependable
Computing, pp. 69-80, 2003.

[15] H. Sivencrona, M. Persson, and J. Torin, “Using Heavy-Ion
Fault Injection to Evaluate Fault Tolerance with Respect to Cluster
Size in a Time-Triggered Communication Systems,” Proc. of the
IEEE International Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECS-06), pp. 171-176, April
2003.

[16] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin,
“Evaluation of Fault Handling of the Time-Triggered Architecture
with Bus and Star Topology,” Proc. of the International
Conference on Dependable Systems and Networks, pp. 123-133
June 2003.

[17] R. Pallierer, M.Horauer, M. Zauner, A. Steininger, E.
Armengaud, and F. Rothensteiner, “A Generic Tool for Systematic
Tests in Embedded Automotive Communication Systems,” Proc. of
the Embedded World Conference, 2005.

[18] E. Armengaud, F. Rothensteiner, A. Steininger, and M.
Horauer, “A Method for Bit Level Test and Diagnosis of
Communication Services,” Proc. of the IEEE Workshop on Design
& Diagnostics of Electronic Circuits & Systems, 2005.

[19] E. Armengaud, A. Steininger, and M. Horauer, “An Efficient
Test and Diagnosis Environment for Communication Controllers,”
Proc. of the Austrochip Conference, 2005.

[20] FlexRay Consortium, “FlexRay Communications System -
Protocol Conformance Test Specification,” v2.1, December 2005.

[21] FlexRay Consortium, “FlexRay Communications System -
Preliminary Central Bus Guardian Specification,” v2.0.9, December
2005.

[22] H. R. Zarandi, S. G. Miremadi, and A. Ejlali, “Dependability
Analysis Using a Fault Injection Tool Based on Synthesizability of
HDL Models,” Proc. of the IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 485-492, Boston,
2003.

496496496

