
VERIFICATION OF PLC PROGRAMS USING FORMAL PROOF
TECHNIQUES

Andre Sülflow, Rolf Drechsler
Graduate School Embedded Systems (GESy)
University of Bremen
Address: Bibliothekstraße 1, D-28359 Bremen, Germany
Phone: +49-421-218-63945, Fax: +49-421-218-7385,
E-Mail: {suelflow,drechsle}@informatik.uni-bremen.de

Abstract: The application of Programmable Logic Controllers (PLCs) in safety critical systems demands
a failure free behavior considering all possible scenarios. Due to the cost of software development a user
program is often in use on different types of PLCs. But one open question is: Behaves the user program
equivalent on all PLCs?
We propose a framework suitable to prove the equivalence of a user program regarding different types
of PLCs. The semantic behavior of the hardware is embedded and the equivalence against a high level
reference model is proved. We apply formal Equivalence Checking (EC) using Boolean satisfiability
(SAT) and evaluate the framework in a case study.
Keywords: formal verification, instruction list, SAT, equivalence checking

1. INTRODUCTION

Programmable Logic Controllers (PLCs) are
widely used in todays industry. A PLC is a re-
programmable computer, based on sensors and ac-
tors, which is controlled by a user program. They
are highly configurable and thus are applied to var-
ious industrial sectors like e.g. automotive, chem-
ical devision or rail automation systems.

To ensure the correct behavior of a user pro-
gram one can use test and simulation approaches,
or formal methods, that provide a proof of correct-
ness, i.e. testing the complete search space. The
focus of this work is on formal verification.

Today, one problem is the verification of soft-
ware running on PLCs. A user program is exe-
cuted on different types of PLCs (hardware), but
an open question is: Is the software running equiv-
alent on all systems? Our focus is the proof of
equivalence. We present an approach to transform
a user program to a high level implementation by
embedding the semantic of the underlying hard-
ware. Afterwards the implementation is formally
proved to be equivalent to a reference model. That
allows e.g. an estimation of the influence of hard-
ware specific parts to the behavior of a user pro-
gram.

The International Electrotechnical Commis-
sion (IEC) standardized two textual and three
graphical programming languages for PLCs (IEC,
1993): Structured Text (ST), Instruction List (IL)
and Ladder Diagram (LD), Function Block Dia-

gram (FBD), Sequential Function Chart (SFC).
We focus on IL, that is widely applied for pro-
gramming todays PLCs.

In (Canet et al., 2000; Pavlovic et al., 2007b)
the principles of formal verification of IL pro-
grams were proposed and evaluated in (Pavlovic
et al., 2007a). These works present an overview
of how IL statements can be translated to a formal
language. The focus is on symbolic model check-
ing (McMillan, 1993) of a specification given
in Linear Temporal Logic (LTL) using NuSMV
(Cimatti et al., 2002) as core solver. (Peleska and
Haxthausen, 2007) applied a transformation tech-
nique to show the equivalence of two PLC pro-
grams. In contrast we focus on formal Equiv-
alence Checking (EC) using todays state-of-the-
art Boolean satisfiability (SAT) solvers (Davis and
Putnam, 1960; Eén and Sörensson, 2004).

Our contribution is (1) to provide a fully au-
tomatic method for translating IL programs to a
higher level model in SystemC and (2) to apply
formal Equivalence Checking using SAT as the
underlying technique. The benefits of SystemC as
an intermediate representation are (1) the simula-
tion facility within the SystemC environment and
(2) formal verification can be applied (Drechsler
et al., 2005). An overview of the proposed frame-
work is given in Figure 1.

In a case study complex programs are consid-
ered. The results show that todays SAT solvers
can handle even large models within a short run
time.

Checker

IL

SystemC Spec.

Hold Counterexample

Fig. 1. Framework overview

The work is structured as follows: In Sec-
tion 2 the preliminaries for PLC programming,
SystemC and SAT are presented, followed by a
detailed introduction of the conversion of IL pro-
grams to SystemC in Section 3. Section 4 focuses
on Equivalence Checking using SAT. The experi-
mental results are presented in Section 5.

2. PRELIMINARIES

To keep this paper self-contained this section
gives an overview of the languages and techniques
used in the remaining sections. The section starts
with a description of the considered PLC, contin-
ues with PLC and IL programming and ends with
an introduction to SystemC and SAT.

2.1 PLC

The focus is on a class of PLCs that repeats the
execution of a user program periodically. That
are e.g. PLCs capable for railway electronic inter-
locking specified to Safety Integrity Level 3 (SIL3)
by the International Electrotechnical Commission
(IEC) in (IEC, 1998). The task for the operating
system is to control the connected peripherals and
to provide interfaces for reading and writing of
data by a user program.

The three main phases for program execution
are as follows:

1. Read from inputs (sensors)

2. Program execution

3. Write to outputs (actors)

Therefore during program execution the inputs are
assumed to be “stable”. After execution the com-
puted data for the outputs is written to the con-
nected modules. The next cycle starts with read-
ing from inputs.

2.2 PLC Program

The entry point of a PLC user program is a “main”
module. The main module itself can be structured
into submodules. Each of the modules provides
an interface, i.e. inputs and outputs. Therefore the
program code can be partitioned into several levels
and thus can be re-used. If a module needs tem-
porary or static variables then a data block is as-
signed. Two or more modules can share one data
block (Siemens, 2001).

There are two types of modules: (1) without
and (2) with static variables. The first one is called
a combinatorial module, whereas the second one
is referred as a sequential module. In combina-
tional modules there are only temporary variables
allowed. That is, each temporary variable is reset
after program execution and all computed data are
lost. A sequential module keeps the current values
of static variables for one of the following cycles.
For example, a counter is a sequential module.

2.3 IL Program

IL is one of the textual PLC programming lan-
guages. It is a low-level, assembler-like language.
A module in IL consists of two sections: (1) vari-
able declaration and (2) a set of instructions in
a program body. In the reminder of the paper,
IL programs written in Statement List (STL) are
considered. STL is semantically equivalent to
IL, but the instructions have a different syntax
(Siemens, 2003).

In the declaration section all variables, that
are referenced in the definition part, are de-
clared. This includes interface variables, i.e. IN,
OUT, INOUT, as well as temporary (TEMP) and
static (STAT) variables. Each variable has a type
e.g. INT (16-bit) or BOOL (1-bit).

An IL program consist of n lines of code.
Each line contains one instruction, i.e. one opera-
tor, that has at most one operand. The instructions
are sequentially executed in a deterministic order.
The control flow is influenced by e.g. a jump in-
struction, referencing a label, that marks a line k,
1 ≤ k ≤ n. If the jump is executed the program
continues execution at line k.

2.4 SystemC

SystemC is an open-source C++ class library and
can be downloaded free of charge (Synopsys Inc.
and CoWare Inc. and Frontier Design Inc., 2008).
SystemC is platform independent and can be used
on every system with a standard C++ compiler
available, e.g. Windows, Linux, Unix and Mac OS
X. In the year 2005 the SystemC library was stan-
dardized in IEEE 1666-2005 (IEEE, 2005).

During the last years the SystemC community
has grown. Today SystemC is applied and inte-
grated in the development flow on academic as
well as industry sites. SystemC provides an cycle
accurate simulator and systems can be modeled at
different abstraction levels - from software down
to the hardware description level. Additionally,
each module can be partitioned into several sub-
modules. That makes SystemC a flexible frame-
work suitable to e.g. simulate PLC programs.

2.5 SAT

The Boolean satisfiability problem (SAT prob-
lem) is to check for a given Boolean function f :
{0, 1}n → {0, 1} whether there exists an assign-
ment that evaluates f to 1 or not. In general the
function f is given in Conjunctive Normal Form
(CNF). Each CNF is a set of clauses, where each
clause is a set of literals and each literal is a propo-
sitional variable or its negation. Each logic op-
erator as well as arithmetic and relation ones are
translated to a set of clauses.

In the recent years several improvements in
SAT were achieved. Thus, todays state-of-the-art
SAT solvers can handle instances with hundreds
of thousands of variables and clauses. This en-
ables the application of SAT for a wide range of
formal verification problems.

3. SYSTEMC MODEL

To obtain a model for formal verification, Sys-
temC is used as intermediate, high level repre-
sentation of an IL program. In the following we
make use of the integrated SystemC environment
SyCE (Drechsler et al., 2005). That allows to
e.g. synthesize (Fey et al., 2004) and formally ver-
ify (Große and Drechsler, 2005) SystemC designs
using SAT.

In this section details of the semantic equiv-
alent transformation of an IL program to Sys-
temC are presented. We start with the underly-
ing Central Processing Unit (CPU) (Section 3.1),

followed by the transformation of variables (Sec-
tion 3.2), basic statements (Section 3.3), control
flow statements (Section 3.4) and call statements
(Section 3.5).

3.1 CPU

An IL program is executed on a CPU. Therefore to
obtain a semantic equivalent model of an IL pro-
gram the semantic behavior of the CPU has to be
considered and implemented, too. In this work
the CPU model of (Siemens, 2003), the same as
the one in (Pavlovic et al., 2007b), is used. An
overview of the main registers is given, for more
details it is referenced to (Siemens, 2003).

The CPU consists of several registers, rep-
resenting its current state: accumulators, status
word, nesting stack and the master control relay
stack.

Depending on the chosen CPU type, a CPU
may have two or four accumulators. The width
of each accumulator is 32-bit. Accumulators are
used e.g. to perform arithmetic operations on two
integer variables. The IL programs in the case
study use the functionality of two accumulators
only, therefore a CPU with two accumulators is
used as reference.

The status word has a bit width of 16-bit, but
only the first 9 bits are used: /FC (first check),
RLO (result of logic operation), STA (status), OR
(temporary result of an or operation), OS (over-
flow stored), OV (overflow), CC0 (condition code
0), CC1 (condition code 1) and BR (binary result)
(Siemens, 2003). All status bits are considered
and implemented.

The nesting stack is used to store intermedi-
ate results. In detail, it saves the current value of
BR, OR, RLO and an additional operation identi-
fier (OI) on a stack. A maximum of seven stack
elements are supported. Thus, the nesting stack
offers facilities to build more complex functions.

The status of a software master control re-
lay (MCR) influences the semantic of some IL
instructions. If the MCR is enabled, the instruc-
tions behave normal, otherwise the result is in-
dependent from the values of the CPU registers.
The values of the MCR stack, consisting of eight
elements, one bit each, controls the MCR. The
MCR was not considered in the models of our case
study, therefore we prevented the implementation.

3.2 Variables

For all IL data types, e.g. BOOL and INT, there ex-
ists an equivalent in the SystemC syntax. For ex-

ample, an INT has a bit width of 16 and is syntacti-
cally equivalent to sc_int<16> in SystemC. There-
fore in general the declaration of variables of an
IL program is mapped one-to-one to SystemC (see
Table 1).

But for input and output variables the seman-
tic behavior is different. In the following the dif-
ferencing behavior is described in detail and a so-
lution is provided.

IL SystemC
Type Type Behavior
IN sc_in<T> signal

OUT sc_out<T> signal
INOUT sc_inout<T> signal
TEMP function variable variable

STATIC member variable variable

Table 1. Mapping of data types

The first column of Table 1 gives the IL
data type, followed by the corresponding Sys-
temC data type in column two. The last col-
umn represents the behavior of the data types in
SystemC. The parameter T defines a data type,
e.g. sc_in<sc_int<16> > is an 16-bit integer in-
put signal.

SystemC provides a cycle accurate simulator.
Therefore it is distinguishing between the behav-
ior of a signal and a standard variable. A sig-
nal has in one cycle exactly one value assigned,
whereas a standard variable can have more than
one value. In contrast an IL variable behaves like
a variable in SystemC.

Behavior
Line Variable Signal
1 int A; sc_inout < int > A;
2 An := Ac + 1; An := Ac + 1;
3 An := An + 2; An := Ac + 2;

Table 2. SystemC behavior

Example 1. Consider Table 2, representing a
code fragment that shows the difference between
a variable and a signal behavior. The columns
give the line number (Line) and the behavior type
(Variable, Signal). The current and next state of
A are represented by Ac and An.

This simple program performs an addition of
the values 1 and 2 to an integer variable A. First,
A is declared (Line 1). Then, the value 1 is added
to the initial value Ac of A (Line 2). The interme-
diate result An is equal in both cases. Afterwards
the difference is observed (Line 3): A read oper-
ation on a signal results in returning the value of
Ac, whereas a read on a variable returns the last
assigned value An.

Line Code
1 sc_inout < int > A_inout;
2 int Ac := A_inoutc;
3 An := Ac + 1;
4 An := An + 2;
5 A_inoutn := An;

Table 3. IL conform behavior

To solve the differencing behavior temporary
variables are used for all variables of type IN,
OUT and INOUT (see Table 3). First, the value
of the original variable is copied to a local vari-
able (Line 2). The following operations are then
performed on the local variable only (Lines 3-4).
At the end of the program the value of the local
variable is copied to the original variable (Line 5).
Therefore the semantic equivalent behavior to an
IL variable is reached.

3.3 Basic statements

The existing documentation (Siemens, 2003) of
the semantic of the underlying CPU makes the
translation to SystemC straight-forward. An IL
program consists of n lines of code with exactly
one instruction per line. An instruction consists of
one operator and in general zero or one operand1.

For each instruction there exists a correspond-
ing transformation to SystemC that can be applied
in an automatic process. In Table 4 a few transfor-
mation rules are presented. On the left side the IL
statement with the operator (code), the parameter
type of the operand (op) and a short description is
given (description). The right side represents the
corresponding code fragment that is to be replaced
in SystemC.

Example 2. Consider the IL instruction
“A ctrl”, with ctrl : BOOL. The operator
“A” is equivalent to the logical “and”, and the
transformation rule is obtained from Table 4.
Therefore the instruction above is translated to:
RLO = (/FC)? (ctrl | OR) & RLO : (ctrl | OR);
/FC=1;

3.4 Control flow statements

Control flow statements, i.e. jumps, can be han-
dled in several ways in SystemC. The focus is in
the following on two solutions: (1) an explicit
modeled program counter (PC) (see e.g (Pavlovic
et al., 2007b)) and (2) goto statements. The IL
code fragment in Figure 2 is considered and the
focus is on the PC behavior.

1Except for the CALL statement, that can have more than one operand.

IL statement SystemC
code op description
Bit op.
A op bit logical and RLO = (/FC)?(op | OR) & RLO : (op | OR);

/FC = 1;
O op bit logical or RLO = (/FC)? op | RLO : op;

OR = 0; /FC = 1;
= op bit assigns RLO op = RLO; OR = 0; /FC = 0;
Transfer op.
L op byte, word, dword loads data ACCU2 = ACCU1; ACCU1 = op;
T op byte, word, dword stores data op = ACCU1;
Arithmetic op.a

+I addition ACCU1 = ACCU2 + ACCU1;
*I multiplication ACCU1 = ACCU2 * ACCU1;

Relation op.b

==I equal RLO = (ACCU2 == ACCU1);
OR = 0; /FC = 1; OV = 0;

aOS, OV, CC1 and CC0 are changed depending on the computed result (see (Siemens, 2003)).
bCC1 and CC0 are changed depending on the compare (see (Siemens, 2003)).

Table 4. Statement translation

1 AN # b i t 0 ;
2 JC BIT1 ;
3 = # v a r ;
4 BIT1 : NOP 0 ;

Fig. 2. Example program

Explicit modeling of a PC can be imple-
mented by a Finite State Machine (FSM) (see Fig-
ure 3). The FSM is controlled by the current value
of the PC counter. Thus, for each line of IL code
there exists a case statement. A jump statement
changes the PC counter to the jump target, if the
jump has to be executed and increments the PC
otherwise (Line 7).

1 i n t PC = 1 ;
2 whi le (PC <= 4) {
3 sw i t ch (PC) {
4 case 1 : / / AN # b i t 0 ;
5 PC = PC + 1 ; break ;
6 case 2 : / / JC BIT1 ;
7 PC = RLO? 4 : PC + 1 ; break ;
8 case 3 : / / = # v a r ;
9 PC = PC + 1 ; break ;

10 case 4 : / / BIT1 : NOP 0 ;
11 PC = PC + 1 ; break ;
12 }
13 }

Fig. 3. FSM model

This mapping has the disadvantage that an
extra variable for the PC is needed which makes
the “traceability” harder. The FSM is optimized

(see Figure 4) by using case statements only for
PC = 1 (Line 5), the start of the program, and
each line marked with a label (Line 10).

1 i n t PC = 1 ;
2 boo l s t o p = f a l s e ;
3 whi le (! s t o p) {
4 sw i t ch (PC) {
5 case 1 :
6 / / AN # b i t 0 ;
7 / / JC BIT1 ;
8 i f (RLO) {PC = 4 ; break ; }
9 / / = # va r1 ;

10 case 4 : / / BIT1 : NOP 0 ;
11 s t o p = t rue ;
12 }
13 }

Fig. 4. Optimized FSM model

The second option is to use the C++ goto
statement. Each line that contains a label in IL,
gets the same label in C++. Therefore a jump will
be executed by calling goto. The advantage is that
the original names of the labels will be kept from
IL. Therefore it makes a potential debugging eas-
ier.

3.5 Calls

The IL CALL statement executes a submodule.
A call gets a list of IN, OUT, and INOUT pa-
rameters. CALLs are implemented by creating a
C++ function for each submodule and passing the
parameters by copy (IN) or reference (OUT, IN-
OUT).

X(0) X(1) X(t)

...

...

Y(t)

Y’(t)

S(0)
S(1) S(2)

S’(1)

Y(0)

Y’(0)

S’(2)

Y(1)

Y’(1)

P

P

P P

P P

or or 1...

S’(0)

impl

spec spec

impl

spec

impl

Fig. 5. Sequential EC with reset states

4. EQUIVALENCE CHECKING

To formally verify the equivalence of a given im-
plementation Pimpl and its specification Pspec,
SAT-based Equivalence Checking (EC) is applied.
First, both models are assumed to have the same
number of IN, OUT, INOUT variables, otherwise
the models are declared as non-equivalent.

The implementation as well as the specifica-
tion are given in SystemC. By using a SystemC
parser, e.g. (Fey et al., 2004), the models are ana-
lyzed and translated into a SAT instance. In the
following the SAT formulation is presented for
combinatorial and sequential models.

Y

Y’

P
spec

P
impl

X

Fig. 6. Combinational EC

4.1 Combinatorial

For combinatorial models there are inputs (X),
outputs (Y) and temporary variables. The equiva-
lence of Pimpl and Pspec is proved by creating a
SAT instance as follows (see Figure 6): (1) create
both models, (2) connect the inputs and (3) force

the outputs to be different. A name based match-
ing algorithm is used to find the corresponding
variable v ∈ {X, Y } of Pimpl in Pspec. If the
instance is unsatisfiable the models are equivalent,
otherwise it is satisfiable, the models are different,
and a counterexample is provided.

X

Y

Y’

S

P
spec

P
impl

Fig. 7. Sequential EC without reset states

4.2 Sequential

Additional to the inputs (X), outputs (Y) and
temporary variables there are state variables (S).
States keep the value of the current cycle and are
available in the next cycle.

A general sequential EC model is shown in
Figure 5 (Pixley, 1992). As in bounded model
checking (Biere et al., 1999) both models are un-
rolled for t time frames; the inputs (X) are con-
nected and the outputs (Y) are forced to be differ-
ent in at least one of the time frames. In the worst
case an unrolling (parameter t) has to be done un-
til the sequential depth is reached2. For the initial
state values (S(0), S’(0)) two cases are distinguish:

2The sequential depth is longest trace without repeating a state. It is also known as recurring diameter.

(1) with and (2) without given reset states.
With reset states additional constraints are

added in the SAT instance, which force S(0) and
S’(0) to be identical to the reset values.

For PLCs the variables are initialized with
zero or false (Pavlovic et al., 2007a). Considering
reset states leads in the worst case to an unrolling
to the sequential depth. Therefore this approach
can be time and memory consuming.

Thus, we concentrate on the case without ex-
plicitly given reset states. The problem is reduced
to one time frame by using a name-based state
matching, i.e. find and connect the equivalent ini-
tial states in Pimpl and Pspec. In Figure 7 an ab-
stract representation of the SAT instance is shown.
One time frame is created, the inputs (X) are con-
nected and the outputs (Y) are forced to be differ-
ent. Additional constraints are added to the SAT
instance that match and connect the state variables
(S) of both models. Therefore, as for the inputs,
assigning an initial value in Pimpl leads to the
same assignment in Pspec. Note, letting S unini-
tialized is an over-approximation of the state space
and may lead to false negatives, i.e. implementa-
tion and specification are wrongly declared to be
not equivalent.

5. EXPERIMENTAL RESULTS

In the experimental study combinatorial and se-
quential models, used in the railway electronic in-
terlocking domain, are considered.

Variables IL
Program I O I/O T S LOC
Comb. Model
comb-1 8 1 - 1 - 63
comb-2 8 1 15 2 - 52
comb-3 1 - 2 - - 22
Seq. Model
seq-1 23 10 2 25 70 775

Table 5. IL models

Details of the IL models are presented in Ta-
ble 5. It contains the number of inputs (I), out-
puts (O), in/outputs (I/O), temporary variables (T),
number of state variables (S) and the number of IL
code lines in the body of the program (LOC).

Sequential EC without explicit reset states is
applied, i.e. proving the equivalence for all possi-
ble initial states and using a state matching. The
high level specification was manually created and
implemented in SystemC.

All experiments have been carried out on an
Intel Core 2 Duo processor (2.33 GHz, 2 GB main

memory, Mac OS X 10.4) using MiniSat (Eén and
Sörensson, 2004) as underlying SAT solver.

Impl. Spec.
Program #ops #ops Time
Comb. Model
comb-1 120 41 0.01s
comb-2 498 79 0.03s
comb-3 326 14 0.06s
Seq. Model
seq-1 18330 1128 3.79s

Table 6. Equivalence Check

In Table 6 the name of the model (Program),
the number of operators3 in the implementation
(Impl. #ops) and the specification (Spec. #ops)
are shown. The run time of the SAT solver is pre-
sented in the last column (Time).

Due to the extra hardware specific variables,
i.e. registers, accumulators and nesting stack, an
IL program has a factor of 3 to 23 more operations
than its higher level specification. The factor de-
pends on the type of instruction in the IL program.
For example, an instruction using the nesting stack
needs more operators than one without.

Regarding run time SAT-based EC is fast.
For the combinatorial models (comb-1, comb-2,
comb-3) the run time is near to zero, but also for
the sequential case the equivalence was proved
within four seconds only.

Therefore SAT-based EC was shown as a
powerful technique to cope with formal verifica-
tion of PLC programs.

6. CONCLUSION

A framework that automatically embeds IL pro-
grams and the semantic of PLC specific hardware
into a SystemC model was proposed. The equiv-
alence to a reference model was proved by using
SAT-based Equivalence Checking. It was shown,
that modern SAT solver can formal verify IL pro-
grams within a short run time.

For further work the extension of the sup-
ported subset of IL instructions, e.g. considering
shift and timer operations, is planned. Addition-
ally, the appliance to formal Property Checking
using SAT is in focus.

ACKNOWLEDGEMENT

This work was supported in part by the Rail Au-
tomation Graduate School (RA:GS!) of Siemens
Transportation Systems in Braunschweig, Ger-
many.

3An operator is e.g. an assignment, arithmetic or relation operation.

REFERENCES
Biere, A., A. Cimatti, E. Clarke and Y. Zhu

(1999). Symbolic model checking without
BDDs. In: Tools and Algorithms for the
Construction and Analysis of Systems. Vol.
1579 of LNCS. Springer Verlag. pp. 193–
207.

Canet, G., S. Couffin, J.-J. Lesage, A .Petit
and P. Schnoebelen (2000). Towards the
automatic verificication of PLC programs
written in instruction list. In: IEEE conf.
on Systems, Man and Cybernetics (SMC).
pp. 2449–2454.

Cimatti, A., E. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani and A. Tacchella (2002).
NuSMV 2: An OpenSource tool for sym-
bolic model checking. In: Computer Aided
Verification. pp. 359–364.

Davis, M. and H. Putnam (1960). A computing
procedure for quantification theory. Journal
of the ACM 7, 506–521.

Drechsler, R., G. Fey, C. Genz and D. Große
(2005). SyCE: An integrated environment
for system design in SystemC. In: IEEE In-
ternational Workshop on Rapid System Pro-
totyping. pp. 258–260.

Eén, N. and N. Sörensson (2004). An extensi-
ble SAT solver. In: SAT 2003. Vol. 2919 of
LNCS. pp. 502–518.

Fey, G., D. Große, T. Cassens, C. Genz, T. Warode
and R. Drechsler (2004). ParSyC: An Effi-
cient SystemC Parser. In: Workshop on Syn-
thesis And System Integration of Mixed In-
formation technologies (SASIMI). pp. 148–
154.

Große, D. and R. Drechsler (2005). CheckSyC: An
efficient property checker for RTL SystemC

designs. In: IEEE International Symposium
on Circuits and Systems. pp. 4167–4170.

IEC (1993). IEC-61131-3: Programmable con-
trollers - Part 3: Programming languages.

IEC (1998). IEC-61508: Functional safety
of electrical/electronic/programmable elec-
tronic safety-related systems.

IEEE (2005). IEEE-1666: IEEE Standard Sys-
temC Language Reference Manual.

McMillan, K.L. (1993). Symbolic Model Check-
ing. Kluwer Academic Publisher.

Pavlovic, O., R. Pinger and M. Kollmann (2007a).
Automated formal verificaiton of PLC pro-
grams written in IL. In: Conference on Au-
tomated Deduction (CADE). pp. 152–163.

Pavlovic, O., R. Pinger, M. Kollmann and H.-D.
Ehrich (2007b). Principles of formal veri-
fication of interlocking software. In: Proc.
of Formal Methods for Automation and
Safety in Railway and Automotive Systems
(FORMS/FORMAT). pp. 370–378.

Peleska, J. and A.E. Haxthausen (2007). Ob-
ject code verification for safety-critical rail-
way control systems. In: Proc. of For-
mal Methods for Automation and Safety in
Railway and Automotive Systems (FORMS/-
FORMAT). pp. 184–199.

Pixley, C. (1992). A theory and implementation
of sequential hardware equivalence. IEEE
Trans. on CAD 11(12), 1469–1478.

Siemens (2001). Grundlagen zur SPS-
Programmierung mit SIMATIC S7-300.

Siemens (2003). SIMATIC–Statement List (STL)
S7-300 and S7-400 Programming.

Synopsys Inc. and CoWare Inc. and Frontier De-
sign Inc. (2008). Open SystemC Inititative.
http://www.systemc.org.

