SWORD v0.2 — Module-based SAT Solving
Robert Wille André Siilflow Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
Email: {rwille,suelflow,drechsle}@informatik.uni-bremen.de

In this paper, we present SWORD — a SAT like solver that facilitates word
level information!. The main idea behind SWORD is based on the following
observation: Current SAT solvers perform very well on instances with a large
number of logic operations. But when more complex functions like arithmetic
units are considered, the performance degrades with increasing data-path width.
In contrast, pure word level approaches handle e.g. arithmetic operations very
fast but suffer from complexity problems when irregularities in the word level
structure (e.g. bit slicing) occur.

SWORD tries to combine the best of both worlds: Logic operations like
(bv)and, (bv)or, and (bv)xor are represented in terms of clauses while more com-
plex functions like arithmetic operations or shifts are represented by so called
modules. These modules inherit a problem specific decision as well as a prob-
lem specific propagation strategy, which is exploited during the search. Thus,
SWORD combines the advantages of a Boolean proof procedure with the power
of word level knowledge. Moreover, SWORD is not limited to pre-defined encod-
ings as CNF or QF_BV logic. Problem specific modules for respective domains
can be developed.

Algorithm

The overall algorithm of SWORD is shown in Fig. 1. The flow is similar to
the DPLL procedure as applied in standard SAT solvers: While free variables
remain (a) a decision is made (c). Implications resulting from this decision are
carried out (d). If a conflict occurs, it is analyzed (f). The important difference is
that SWORD has two operation levels: the global algorithm controls the overall
search process, handles all clauses, and calls the local procedures of the modules
for decision and implication. Thus, decision making and implication engine can
be adjusted by the modules.

In more detail, the solver first chooses a particular module based on a global
decision heuristic (c.1). Here a module is selected that assigns a value to one
of its connected variables. Therefore, a (global) heuristic is employed to decide
which modules are “more important” than others. To determine the importance
of a particular module, semantical information such as the type of the operation
are available.

After global decision, the selected module chooses a value for one of its vari-
ables according to a local decision heuristic (c.2). Therefore, different strategies
are applied for different types of modules (which concrete decision is made de-
pends on the type of a module). For example, a module representing a multiplier
uses a different heuristic than a module representing a shift operation.

! A more detailed description of the initial version of SWORD can be found in [3].



global : local
(solver) ' (modules)

(a) free var. left?
yes

’(0.1) choose module m (c.2) m->decision ‘

(d.1) for all potentially |-eXt
affected modules n

(d.2) n->propagation

conflict

(f) resolve conflict

failed

Fig. 1. General Idea

Afterwards the solver calls the local implication procedures (d.2) of all mod-
ules that are potentially affected (d.1) by the previous decision or implication.
The chosen modules imply further assignments and detect conflicts. Again, the
concrete strategy depends on the type of a module.

Implementation Details
SWORD in its current version has been (re)implemented on the top of the SAT
solver MiniSat [2]. Furthermore, the readin routine of the QF BV input lan-
guage is based on the grammar of Smt2Sf [1]. Addition, multiplication, shifts,
and ITE-operations are handled in terms of modules. All remaining QF _BV-
operations are reformulated to these operations or represented by clauses, re-
spectively. Moreover, further (problem specific) modules for respective domains
can be developed. One example showing how a problem specific module will im-
prove the solving time has been presented in [4] for logic synthesis of reversible
circuits.

SWORD will participate in the QF_BV division at SMT Comp using the
random seed 823.

Acknowledgements

We like to thank Goérschwin Fey, Daniel Grofle, and Stephan Eggersgliif§ for
helpful discussions and their contribution to the initial implementation of the
solver presented in [3].

References

1. D. Babic. Smt2Sf. http://www.cs.ubc.ca/~babic/index_tools.htm.

2. N. Eén and N. Sérensson. An extensible SAT solver. In Theory and Applications of
Satisfiability Testing 2008, volume 2919, pages 502—-518, 2004.

3. R. Wille, G. Fey, D. Grofle, S. Eggersglii}, and R. Drechsler. SWORD: A SAT like
Prover Using Word Level Information. In Int’l Conference on Very Large Scale
Integration, pages 88-93, 2007.

4. R. Wille and D. Grofle. Fast exact Toffoli network synthesis of reversible logic. In
Int’l Conf. on CAD, pages 6064, 2007.



