
Robustness Check for Multiple Faults using Formal

Techniques

Stefan Frehse Görschwin Fey André Sülflow Rolf Drechsler

Institute of Computer Science

University of Bremen

28359 Bremen, Germany

{sfrehse,fey,suelflow,drechsle}@informatik.uni-bremen.de

Abstract—Feature sizes in VLSI circuits are steadily shrinking.
This results in increasing susceptibility to soft errors, e.g. due to
environmental radiation. Precautions against soft errors can be
taken on all design stages, e.g. the architectural level, algorithmic
level, or on the layout level. Whether the final implementation
contains flaws or really provides robustness to soft errors remains
to be checked.

Here, we propose an approach to formally verify the robustness
of a circuit with respect to multiple soft errors. We propose a
fault model that prunes the exponentially sized space of multiple
soft errors and an algorithm that automatically analyzes a given
circuit.

Keywords-robustness, multiple event upsets, soft errors, formal
verification

I. INTRODUCTION

Moore’s law is still valid due to continuously shrinking

the feature sizes in VLSI circuits. The small feature size

allows for low-power circuitry operating at high frequencies

and for assembling millions of components on a chip. On the

other hand less energy is required to drive smaller transistors.

Consequently, the soft error rate increases. In the future these

issues have to be considered during chip design [1].

Upsets or bit-flips caused by environmental radiation are

one source of soft errors. A Single Event Upset (SEU) causes

a single bit-flip. Multiple SEUs distributed in time may

accumulate in the state of the circuit or a single particle

with high energy may cause multiple soft errors in spatially

close components of the circuit. This is denoted as Multiple

Event Upset (MEU) in the following. The number of MEUs

is exponential in the number of time frames considered and

the number of components of the considered circuit.

Numerous techniques at all design stages are available to

catch soft errors before they manifest in the output response

or in the state of a circuit: error correcting codes [2] have

been proposed, redundancy in time [3] or space [4] is applied,

circuit structures are widened and thereby hardened during

layout [5], [6]. But when implementing these techniques

in a design, bugs may be introduced. Therefore, like the

functionality, also the robustness of an implementation has to

be verified.

Simulation-based and emulation-based techniques [7], [8] to

validate this kind of robustness have been proposed. But even

for small circuits these approaches can only cover a small

portion of the input space and state space even for single

errors. Considering MEUs further decreases the coverage

achieved.

Formal approaches cover all input stimuli, any state of a

design and any fault. First approaches have been presented in

[9]–[12]. The work in [10] requires manual interaction. The

techniques in [9], [10], [12] are restricted to single errors. The

approach in [12] provides a measure for robustness. Even if

the formal approach cannot finish, bounds on robustness are

returned. Only the algorithm presented in [11] covers MEUs,

but does not propose any run time improvements to handle the

huge space of potential faults.

Here we propose an approach to formally verify robustness

with respect to MEUs. Modeling upsets is similar to [12] and

the bounds on robustness are extended to MEUs. The main

contributions of our work are:

• A fault model for MEUs that prunes the search space,

• a measure for robustness with respect to MEUs,

• an algorithm to automatically verify robustness, and

• bounds on robustness while the algorithm proceeds.

Our algorithm runs fully automatically and can therefore be

seamlessly integrated into the design flow, serving as a push-

button tool. Experiments on non-robust benchmarks from the

ITC’99 benchmark set and on derived robust circuits show the

effectiveness of our technique.

The paper is structured as follows: Section II reviews

preliminaries. The fault model for MEUs is motivated and

described in Section III. Section IV explains the algorithm,

the robustness measure and the bounds. Experimental results

are reported in Section V. Finally, conclusions are stated in

Section VI.

II. PRELIMINARIES

A. Boolean Satisfiability – SAT

The Boolean Satisfiability (SAT) problem is a decision

problem that asks whether there exists a variable assignment

of a Boolean formula f : B
n → B such that the formula

evaluates to one. If such an assignment exists the formula is

called satisfiable, otherwise unsatisfiable. The SAT problem

is in the class of the NP-complete problems, proved by

Cook in 1971 [13]. Problem instances coming from practical

problems [14] can often be solved effectively by state-of-the-

art SAT solvers [15], [16]. The most common form of Boolean

formulas for SAT solvers is the Conjunctive Normal Form

(CNF).

B. Sequential Circuit Model

We consider a synchronous sequential circuit C with Pri-

mary Inputs PI(C), Primary Outputs PO(C) and State ele-

ments S(C). The number of components of the circuit C is

denoted by |C|. Here, a component may be a gate, module or

a source level expression in a hardware description language.

A circuit can be converted in linear time and space into a

CNF with respect to the circuit size [17].

III. FAULT MODEL

This section first discusses MEUs and our notion of robust-

ness. Then the fault model and further properties to prune the

search space are introduced.

A. Multiple Event Upsets and Robustness

In the following our notion of MEUs is described. A single

upset on the logical level is modeled as proposed in [12] by

non-deterministically changing the values of an internal wire.

A MEU is composed of multiple SEUs. Relevant data to

uniquely describe a MEU is the following: at which compo-

nents of the circuit the upsets occur and at which point in time

the value of a component is changed.

Example 1: For example some MEUs of a sequential

circuit are shown in Figure 1: α1 = (a@t=1, a@t=k),
α2 = (a@t=1, b@t=k), α3 = (b@t=1, a@t=k) and α4 =
(a@t=1, b@t=k, c@t=k+l).

Any algorithm that evaluates the robustness of a circuit with

respect to MEUs has to adequately model which components

are affected at which point in time. For complexity reasons we

restrict the observation time to a window of tmax time frames.

This restriction is required for complexity reasons but is also

justified by practical assumptions. A MEU should be detected

within a short period of time signaled by a fault detection

signal flt, cause Silent Data Corruption (SDC) or disappear.

In more detail there are three alternatives after a MEU occurred

in a circuit:

1) The effect propagates to the outputs within tmax time

frames, causing incorrect output behavior. The circuit is

non-robust with respect to this MEU.

2) The MEU may manifest in the state, is not detected,

and remains hidden in the system. The effect may be

observable at the outputs at a later point in time. The

circuit is non-classified with respect to this MEU –

which corresponds to a SDC.

3) The effect disappears or is recognized by fault detection

logic. The circuit is robust with respect to this MEU.

In the following we consider a MEU as being non-robust,

non-classified or robust, respectively.

C(1)

. . .

C(k)

. . .

C(k + l)

a
@t=1

b
@t=1

a
@t=k

c
@t=k+l

b
@t=k

Figure 1. Multiple faults in a sequential circuit

B. Fault Model

To simplify the representation our fault model abstracts

from the points in time, this is modeled by Abstracted MEUs

(AMEUs). Moreover, we abstract from the order of the single

events composing a MEU by defining an equivalence relation

on AMEUs. Thus, multiple MEUs are mapped to a single

AMEU.

Assume a MEU is found to be non-robust, computed by

solving a SAT-Problem. This MEU is mapped to an AMEU

that is also determined non-robust. Additionally, all equivalent

AMEUs are also considered non-robust without further search.

By this, the set of non-robust MEUs is over-approximated. For

diagnosis and to improve the fault tolerance, the AMEU can

be enriched with time information to reconstruct the complete

scenario for better understanding.

The abstraction by AMEUs prunes the search space that has

to be explored by the algorithm to prove robustness.

To model AMEUs, a single component g ∈ C has to be

represented multiple times to model multiple faults of a single

component.

Given a circuit C and a component g ∈ C. To represent

g multiple times in a set, g is marked with a superscript k

denoted by g(k). The set

MC(k) = {g(k)|g ∈ C}

marks all components of C with the superscript k.

In the following η ∈ N specifies the number of flipped bits

caused by a MEU or an AMEU, repsectively. The parameter

η is called fault cardinality.

Definition 1: Let C be a circuit and η ∈ N the fault

cardinality. The set

F
C

η =

η
⋃

i=1

{α|α ⊆

η
⋃

k=1

MC(k), |α| = i}

contains all possible AMEUs up to the fault cardinality η. The

set is called AMEU-set.

The cardinality of the AMEU-set is given by

|FC

η | =

η
∑

i=1

(

η · |C|

i

)

Instead of explicitly defining the mapping of MEUs to

AMEUs we give some examples in the following.

Example 2: The MEUs of Example 1 are mapped to

AMEUs as shown in Table I.

Example 3: Let Cex = {a, b, c} be a circuit with three

components and η = 2 faults are considered. The sets

MCex(1) = {a(1), b(1), c(1)} and MCex(2) = {a(2), b(2), c(2)}

Table I
MAPPING MEUS TO AMEUS

MEU AMEU

(a@t=1, a@t=k) {a(1), a(2)}

(a@t=1, b@t=k) {a(1), b(1)}

(b@t=1, a@t=k) {a(1), b(1)}

(a@t=1, b@t=k, c@t=k+l) {a(1), b(1), c(1)}

mark the components to get a representation of a single

component for multiple time frames. The set of all faults is

given by:

F
Cex

2 = {{a(1)}, {b(1)}, {c(1)}, {a(2)}, {b(2)}, {c(2)}}

∪ {{c(1), b(2)}, {a(1), c(2)}, {a(1), b(1)}, {c(1), a(2)}}

∪ {{c(1), c(2)}, {a(2), b(2)}, {a(1), c(1)}, {b(1), c(1)}}

∪ {{b(1), a(2)}, {b(2), c(2)}, {a(1), b(2)}, {b(1), c(2)}}

∪ {{a(2), c(2)}, {a(1), a(2)}, {b(1), b(2)}}

The superscript should only reflect the number of times

a certain component was involved in a MEU. An AMEU

{a(1), a(2)} is of interest, because component a has been

hit two times by a MEU. But no MEU is mapped to the

AMEU {a(1), a(3)} or to {a(2), b(3)}. Instead {a(1), a(2)}
and {a(1), b(1)} will be used, respectively. Here we define

an equivalence relation to reduce the number of AMEUs

to be considered. Distinct but equivalent AMEUs do not

necessarily cause the same errors. The designer still knows

the components that are non-robust.

Two AMEUs β and β̃ are considered equivalent, iff the

number of occurrences of each component in β and β̃ is equal.

This can formally be defined as an equivalence relation ∼. Let

β ∼ β̃ = {(β, β̃) ∈ F
C

η × F
C

η | ∀g ∈ C : cnt(β, g) = cnt(β̃, g)}

be the relation on two equivalent AMEUs, whereas β is an

AMEU and g is a component of a circuit. The function cnt
counts the occurrences of a component in an AMEU:

cnt({a(i)} ∪ β, g) = cnt(β, g) +

{

1 if g = a

0 otherwise

cnt(∅, g) = 0

The relation ∼ is reflexive, symmetric and transitive. The

equivalence class [β]∼ of an AMEU β contains all equivalent

AMEUs with respect to ∼. All AMEUs in an equivalence

class are considered non-robust, if one member is non-robust.

This is valid in terms of our conservative approach. If one

member is non-robust, then all the other members are also

potentially vulnerable for non-robustness. This equivalence

relation speeds up the classification and AMEUs can be

classified non-robust without finding a corresponding non-

robust MEU.

An additional property of AMEUs further speeds up

the classification of non-robust and non-classified AMEUs.

Adding another single fault to a non-robust MEU causes faulty

behavior, independent of the value of the fault injection. This

is extended to AMEUs. If an AMEU β is non-robust, then all

AMEUs which include β are also non-robust:

∀γ ∈ F
C

η : β ⊂ γ ⇒ γ is non-robust

In general, the implication-set contains all AMEUs which

result from one AMEU.

Definition 2: Given a circuit C, the fault cardinality η and

a subset M ⊆ F
C
η . Furthermore let β ∈ F

C
η be an AMEU, then

the set

I
impl(M,β) = {γ|γ ∈ M,β ⊆ γ}

represents all AMEUs which include β. The set is called

implication-set.

Example 4: Consider Example 3 and let β = {a(1)} be a

non-robust AMEU. The implication-set for β results in:

I
impl(FC

η , β) = {{a(1)}, {a(1), c(2)}, {a(1), b(1)}}

∪ {{a(1), c(1)}, {a(1), b(2)}, {a(1), a(2)}}

Here, five AMEUs are classified as non-robust additionally,

since β is non-robust. Moreover, fault equivalence is exploited.

If β = {a(1)} is non-robust then γ = {a(2)} is also non-robust.
Consequently, the implication-set of γ results in five additional

classifications. In total during the classification of β ten addi-

tional classifications are computed. These implications reduce

the complexity and save run time during the classification.

IV. ALGORITHM

This section introduces the algorithm to evaluate the robust-

ness of a circuit. The algorithm uses a SAT engine to determine

all non-robust MEUs and non-classified MEUs. These are

mapped to AMEUs to keep track of the search space already

explored. Essentially, a Sequential Equivalence Check (SEC)

of the original circuit compared to the circuit after injecting a

MEU is performed.

A. Overview

Figure 2 gives an overview. Injection of an upset at a single

component is shown in Figure 2(a). The output signal of a

component g ∈ C is associated to variable gt at time frame

t. For a component gt at time frame t fault injection logic

is inserted. A fault predicate at
g and a new variable g̃t are

introduced. The output gt is replaced by at
g ⇒ (g̃t = gt).

If the fault predicate is off, i.e. at
g = 0, then the component

behaves normally. Otherwise if the fault predicate is activated,

i.e. at
g = 1, any value can be injected in the circuit.

To determine non-robust MEUs, a SAT instance is created as

shown in Figure 2(b). Similar to bounded model checking the

circuit C(t) and C′(t) are unrolled for td time frames. For every

unrolled time frame the PIs of both circuits are connected. The

initial state S(0) of both circuits is constrained as equal. By

allowing any reachable state for S(0) the algorithm remains

complete. The POs at time frame td are forced to be different.

Finally, a cardinality constraint as shown in Figure 2(b) is

added to the SAT instance to constrain that less than η + 1
components are modified and at least one single fault occurs

in the first time frame. The injection of at least one fault

at
g

gt g̃t

gt...

(a) Fault injection

X(0)

S(0)

=

Y(0)

Y′(0)

S(1)

S′(1)

C(′0)

C(0)

X(1)

=

Y(1)

Y′(1)

S(2)

S′(2)

C′(1)

C(1)

g̃1

X(td)

6=

Y(td)

Y′(td)
C′(td)

C(td)

. . .

g̃td
g̃0

P

g∈C

td
P

i=0
ai

g ≤ η ∧
P

g∈C

a0
g = 1

(b) Sequential model

Figure 2. Sequential model with fault injection logic

in the first time step, further shrinks the search space. The

algorithm remains complete, because any reachable state is

considered at S(0). The reachable states can be computed by

e.g. reachability analysis based on BDDs [18].

The SAT instance is satisfied iff a set of fault predicates

P = {ak1

g , ak2

h , . . . , akl

j } with |P | ≤ η are activated and the

injected values lead to a difference at the primary outputs.

The MEU (g@t=k1 , h@t=k2 , . . . , j@t=kl) represented by fault

predicates is classified as non-robust and the corresponding

AMEU is added to the set of non-robust AMEUs. The fault

predicates of α are blocked in the SAT instance to get all

non-robust AMEUs by computing all satisfying solutions. If

no more MEUs can be classified non-robust within the time

bound td, td is incremented until tmax is reached. The circuit

C(t) and the copy C′(t) are appended to the existing model.

The computation of the non-robust MEUs is repeated.

After reaching tmax, non-classified AMEUs are determined

analogously. Here, differing states and flt = 0 from time

frame 0 to time frame tmax are constrained.

B. Pseudo Code

The pseudo code is shown in Algorithm 1. Parameters are

the circuit C, the fault cardinality η and the bound tmax for

the maximum number of time frames considered.

The circuit C and a copy C′ are unrolled for t ∈ [0, . . . , tmax]
time steps (line 4). At least one fault predicate is activated in

the first time step (line 7). The initial states of C and C′ are

constrained to be equal (line 8). For each component the fault

injection logic, described above is inserted (line 10–12). To

reduce the number of blocking clauses when searching for all

satisfying solutions, an extended fault injection logic is used.

A fault predicate is extended by two new variables, wt
g and wg .

The first variable is created for each time frame and the second

for all time frames. The fault predicate at
g is the conjunction

of wt
g and wg . By this, a component can be blocked for all

Algorithm 1: COMPUTEROBUSTNESS

Input: C the circuit, η number of faults, tmax max time to unroll
Output: (T, S, U) set of the robust, non-robust and non-classified

AMEUs
begin1

T = S = ∅;2

for t = 0 to tmax do3

create copies of C(t) and C′(t) of C;4

constraint PI(C(t)) ⇔ PI(C′(t));5

if t = 0 then6

add constraint
P

g∈C
a0

g ≥ 1;7

add constraint S(C(t)) ⇔ S(C′(t));8

end9

foreach gt ∈ C′(t) do10

replace gt by g′t[gt, at
g] and at

g ⇔ wt
g ∧ wg ;11

end12

cmppo = create miter of all PO(C(t), C′(t));13

// compute non-robust AMEUs;14

add constraint NR = cmppo ∧ flt = 1;15

S′ = EXTRACTALLSOLUTIONS(η, FC
η));16

remove constraint NR;17

S = S ∪ S′;18

remove cmppo;19

end20

// compute non-classified AMEUs;21

cmps = create miter of all S(C(tmax), C′(tmax));22

cmppo = create miter of all PO(C(tmax), C′(tmax));23

add constraint NC = flt ∧ cmppo ∧ cmps = 1;24

U = EXTRACTALLSOLUTIONS(η, FC
η \ S);25

remove constraint NC;26

T = FC
η \ U \ S;27

return (T, S, U);28

end29

time frames, by blocking the variable wg to evaluate to true.

Due to this construction only one blocking clause is required

for all permutations of a set of components.

The miter circuit for SEC is created (line 13). Now the

algorithm determines the non-robust MEUs. The constraint NR

is created to determine all MEUs which cause a difference at

Algorithm 2: EXTRACTALLSOLUTIONS

Input: η – fault-card., U′ – set of non-classified fault candidates
Output: M – set of all solutions
begin1

M = ∅;2

for k = 1 to η do3

constraint limit:
P

g∈C

Ptd

i=0 ai
g = k;4

while SOLVER.SOLVE() do5

α = {g@t=i
ij

| al
g = 1} = {g@t=1

i1
, . . . , g

@t=tk
ik

};6

β = AMEU(α);7

A = ∅;8

foreach β̃ ∈ [β]∼ do9

A = A ∪ Iimpl(U′, β̃);10

end11

M = M ∪ A;12

U′ = U′ \ A;13

insert blocking clause for all [β]∼ by blocking wg14

end15

remove constraint limit;16

end17

return M;18

end19

the POs, while the fault signal flt does not detect a fault.

The solutions are extracted by the method EXTRACTALLSO-

LUTIONS and afterwards the constraint NR is removed. The

extracted non-robust AMEUs are added to the set S (line 18).

Then, the comparison logic of the miter circuit is removed and

a new iteration with an incremented time frame is started.

After unrolling the circuit tmax times the non-classified

MEUs are determined analogously to the non-robust MEUs

(line 22–26). Finally, the robust fault candidates can be com-

puted as shown in line 27. The sets of robust, non-robust and

non-classified AMEUs are returned.

The extraction of non-robust and non-classified AMEUs

is done by the method EXTRACTALLSOLUTIONS in Algo-

rithm 2. This method receives the fault cardinality (η), the

set of non-classified AMEUs (U) and returns the extracted

AMEUs (M). Each iteration increments the number of the

injected faults (line 3). The number of injected faults is

limited by a cardinality constraint in line 4. The while-loop

(line 5) extracts all solutions. If a solution exists, the MEU

α is extracted. The corresponding AMEU is extracted and

all equivalent AMEUs are added to the set of solutions. The

AMEUs are now classified and have to be removed from the

set U
′ (line 13). Afterwards, a blocking clause is inserted to

the SAT instance.

In our implementation the algorithm stores the sets of

AMEUs by using Binary Decision Diagrams [18] to have a

compact set representation and to efficiently manipulate sets.

C. Robustness Measure

After determining the set of non-robust AMEUs S, the set of

non-classified AMEUs U and the set of robust AMEUs T with

respect to a time bound td, a lower bound and an upper bound

on the robustness of the circuit can be given by extending

the bounds of [12] from SEUs to AMEUs. Robustness is

considered as the ratio of the number of robust AMEUs to

the total number of AMEUs:

Rlb =
|T|

|FC
η |

= 1 −
|S| + |U|

|FC
η |

Rub =
|U| + |T|

|FC
η |

= 1 −
|S|

|FC
η ||

These bounds can also be determined when the algorithm

does not progress to time frame tmax within the allowed

computational resources. Instead, intermediate results can be

returned.

The bounds roughly indicate whether the fault detection and

correction logic of a circuit works properly or the circuit is

susceptible to faults. For improving the implementation, the

designer can additional consider the components involved in

non-robust or non-classified AMEUs.

V. EXPERIMENTAL RESULTS

In this section the experimental results are presented. The

algorithms were implemented in C++. All experiments were

carried out on an Intel Core2 Duo (2.0GHz, 4GB RAM,

Linux). The SAT solver Zchaff [16] is used with incremental

extension. The time out is set to 2·1500s, the first 1500s are

given to the classification of the non-robust AMEUs and the

second time out limits the classification of the non-classified

AMEUs. Up to 10 time frames are considered.

If the classification of the non-classified faults exceeds the

time out, the set of all non-classified AMEUs is incomplete.

In this case only an upper limit on the lower bound can be

given, i.e. there may be more non-classified AMEUs and the

lower bound may decrease further. This is denoted by a for

aborted.

Circuits without fault tolerance mechanism were taken from

the ITC’99 benchmark suite. We modified the circuits and

applied Triple Modular Redundancy (TMR) as fault tolerance

mechanism. We denote TMR circuits with the suffix -tmr.

Some circuits are equipped with fault detection logic and

a fault signal (denoted by flt). We also created 5 and 9

modular redundant circuits named b02-5mr and b01-9mr,

respectively. The initial states S(0) are constrained to reach-

able states, determined by a BDD-based reachability analysis.

In Table II the results of the experiments are shown. The

column CIRCUIT gives the name of the circuits. Columns |C|,
|S| and η give the number of components, of state elements

and the considered fault cardinality, respectively. The time

frame reached within the given time out is shown in column

td. If the time out is reached or the circuit is unrolled for

10 time frames, a number of non-classified AMEUs remains

that is shown in column |U|. The cardinality of the AMEU-set

for every circuit and the fault cardinality are given in column

|FC
η |. The number of non-classified AMEUs and the size of

the AMEU-set are rounded. The resulting lower (Rlb) and

upper (Rub) bound of the robustness are shown in the last

two columns.

The standard benchmark circuits b01, b02, b03 and b06

can be fully classified by the presented approach. The ro-

bustness of these circuits is very low when double faults are

considered.

The TMR-circuits with a fault signal are classified almost

completely. The resulting robustness is consistent with the

expectation.

For the standard TMR-circuits the robustness is getting

lower with increasing fault cardinality. For double faults the

maximal number of considered time frames was reached for

b01-tmr and b02-tmr. With an increasing number of

components and state elements (e.g. b06-tmr), the number

of time frames reached becomes smaller and the gap of the

resulting bounds is larger. For b02-tmr the determination of

the non-classified AMEUs exceeds the time out. Still an upper

limit on the lower bound can be given. A large gap between

upper and lower bound indicates that often fault effects do not

propagate to the outputs but cause SDC.

Furthermore, for the TMR circuits equipped with a fault

signal a high robustness is computed for double faults. The

fault detection logic detects and signals faults within one time

frame. This also holds for faults manipulating the state of the

circuit causing SDC. Consequently, the bounds are very close

despite the small unrolling depth, i.e. a precise result about

the robustness of the circuits is determined.

For multiple redundancy circuits without a fault signal, the

gap of the bounds is relatively large, because of the small

reached unroll time frame within the given computational

resources. An upper limit on the lower bound for b01-9mr

is determined.

In summary, despite the exponentially sized set of MEUs

and the computational complexity of the sequential equiva-

lence check, the exact robustness computation is done for

all small circuits. Even for larger circuits bounds on the

robustness are determined by the algorithm.

VI. CONCLUSION

In this paper we proposed a fully automatic approach to

determine the robustness of a sequential circuit for MEUs. The

introduced fault model prunes the search space. To determine

non-robust components a SEC is performed. The presented

approach fully classifies the small ITC’99 circuits and provides

bounds on robustness, when a full classification cannot be

achieved within given resource limits.

For future work, we want to consider layout information to

further prune the search space. A decision heuristic for SAT

solvers adapted for the robustness check promises better run

times. Furthermore other fault mechanisms for benchmarks

will be considered.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[2] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Jour., vol. 9, pp. 147–160, April 1950.

[3] T. Austin and V. Bertacco, “Deployment of better than worst-case
design: Solutions and needs,” in Int’l Conf. on Comp. Design, 2005,
pp. 550–558.

[4] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft error
resilience,” in Design, Automation and Test in Europe, 2007, pp. 1442–
1447.

Table II
BOUNDS OF THE ROBUSTNESS FOR MULTIPLE FAULTS

CIRCUIT |C| |S| η td |U| |FC
η | Rlb% Rub%

CIRCUITS WITHOUT FAULT TOLERANCE MECHANISM

b01 64 5 2 10 - 8.26 × 1003 0.77 0.77
b02 32 4 2 10 - 2.35 × 1003 1.43 1.43
b03 199 30 2 10 - 7.94 × 1004 0.25 0.25
b06 73 9 2 10 - 1.07 × 1004 0.68 0.68
TMR-CIRCUITS

b01-tmr 212 15
2 10 3.31 × 1003 9.01 × 1004 1.64 38.42
3 3 1.38 × 1007 4.28 × 1007 0.33 32.46
4 3 3.62 × 1009 2.15 × 1010 0.03 16.87

b02-tmr 112 12
2 10 8.62 × 1003 2.52 × 1004 1.37 35.59
3 4 8.29 × 1005 6.33 × 1006 3.58a 13.40
4 4 6.69 × 1007 1.67 × 1009 1.74a 5.13

b06-tmr 275 27
2 5 7.15 × 1004 1.52 × 1005 8.87 56.06
3 3 3.04 × 1007 9.35 × 1007 2.52 34.97
4 3 3.21 × 1010 6.09 × 1010 7.02 60.10

TMR-CIRCUITS WITH A FAULT SIGNAL

b01-tmrflt 215 15 2 6 2.68 × 1002 9.27 × 1004 81.26 81.55
b02-tmrflt 123 12 2 10 1.01 × 1003 3.04 × 1004 84.67 87.99
b06-tmrflt 286 27 2 4 1.22 × 1003 1.64 × 1005 72.50 73.24
MULTIPLE REDUNDANCY CIRCUITS

b02-5mr 188 20
2 10 6.22 × 1004 7.09 × 1004 2.04 89.81
3 3 2.51 × 1007 2.99 × 1007 0.30 84.30
4 3 9.86 × 1009 1.32 × 1010 0.00 74.30

b01-9mr 656 45 2 3 7.98 × 1005 8.61 × 1005 5.98a 98.73
a aborted during the classification of non-classified AMEUs.

[5] C. Zhao and S. Dey, “Improving transient error tolerance of digital VLSI
circuits using RObustness COmpiler (ROCO),” in Int’l Symp. on Quality
Electronic Design, 2006, pp. 133–140.

[6] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combina-
tional logic,” IEEE Trans. on CAD, vol. 25, no. 1, pp. 155–166, 2006.

[7] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vi-
olante, “An FPGA-based approach for speeding-up fault injection cam-
paigns on safety-critical circuits,” Jour. of Electronic Testing: Theory
and Applications, vol. 18, no. 3, pp. 261–271, 2002.

[8] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. Austin, “CrashTest: A fast high-fidelity FPGA-based resiliency
analysis framework,” in Int’l Conf. on Comp. Design, 2008, pp. 363–
370.

[9] R. Leveugle, “A new approach for early dependability evaluation based
on formal property checking and controlled mutations,” in IEEE Inter-
national On-Line Testing Symposium, 2005, pp. 260–265.

[10] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T.
Vierhaus, “Evaluating coverage of error detection logic for soft errors
using formal methods,” in Design, Automation and Test in Europe, 2006,
pp. 176–181.

[11] G. Fey and R. Drechsler, “A basis for formal robustness checking,” in
Int’l Symp. on Quality Electronic Design, 2008, pp. 784–789.

[12] G. Fey, A. Suelflow, and R. Drechsler, “Computing bounds for fault
tolerance using formal techniques,” in Design Automation Conf., 2009.

[13] S. Cook, “The complexity of theorem proving procedures,” in 3. ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[14] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp. 193–207.

[15] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530–535.

[17] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part
2, 1968, pp. 115–125, (Reprinted in: J. Siekmann, G. Wrightson (Ed.),
Automation of Reasoning, Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[18] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

