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Abstract
Due to the increased speed in modern designs, testing

for delay faults has become an important issue in the post-
production test of manufactured chips. A high fault coverage
is needed to guarantee the correct temporal behavior. To-
day’s ATPG algorithms have difficulties to reach the desired
fault coverage due to the high complexity of modern de-
signs. In this paper, we describe how to efficiently integrate
the reuse of learned information into state-of-the-art SAT-
based ATPG algorithms and, by this, reduce the number
of unclassified faults significantly. For further reduction, a
post-classification phase is presented. Experimental results
for ATPG for delay faults on large industrial circuits show
the robustness and feasibility of the approach.

1. Introduction
An important task in the design flow is the post-production

test of each manufactured chip. Test patterns generated by
Automatic Test Pattern Generation (ATPG) algorithms are
applied to ensure that no erroneous chip is delivered to
customers. However, classical ATPG algorithms like FAN
[1] or SOCRATES [2] have difficulties to cope with the
increased complexity of modern circuits. A high fault cov-
erage is needed – in particular for designs in safety-critical
application, e.g. in the field of automotive electronics.

Moreover, due to the increasing speed in modern chip
design, testing of delay faults becomes more and more
important. For delay testing, at least two time frames have
to be considered. ATPG for delay fault models is computa-
tionally more complex than e.g. ATPG for stuck-at faults.
Therefore, it needs generally more run time and results in a
larger number of unclassified faults, i.e. the fault coverage
is typically lower than e.g. the fault coverage for stuck-at
faults.

Recently, ATPG algorithms based on Boolean Satisfia-
bility (SAT) [3]–[6] turned out to be an efficient com-
plement to existing classical ATPG algorithms. SAT-based
algorithms do not work on a netlist but on a Boolean
formula represented in Conjunctive Normal Form (CNF).
Due to the homogeneity of the CNF, efficient techniques
such as Boolean Constraint Propagation (BCP) [7], non-
chronological backtracking and conflict-based learning [8]
can be applied to speed up the search. Especially due to the
use of conflict clauses, SAT-based ATPG algorithms are very
robust for hard-to-test faults and can classify many faults
for which classical ATPG algorithms cannot find a solution
in reasonable time [6]. However, many faults still remain
unclassified during delay test generation.

1.1. Previous Work
A promising concept to reduce the number of unclassified

faults is the reuse of pervasive conflict clauses which was
introduced for ATPG for stuck-at faults in [4]. Pervasive
conflict clauses depend only on the circuit’s function and
are fault independent. In [4], only the plain concept was
introduced and no results concerning the benefit were given.

An incremental SAT engine was proposed in [9]. In this
work, the SAT solver is never released and conflict clauses
are shared between subsequent similar SAT instances. This
concept was applied for stuck-at test generation in [10].
Furthermore, a circuit-based learning strategy based on
stuck-at fault partitioning was proposed. However, the use
of fault dropping in industrial practice decreases the benefit
significantly. Moreover, the computational overhead caused
by the use of an external database restricts the amount of
learned information.

The reuse of learned information for SAT-based ATPG for
Path Delay Faults (PDF) was presented in [11]. However, the
reuse is based on the time consuming task of unsatisfiable
core extraction to identify path segments which cannot
sensitized together.

1.2. Contribution
In this paper, we consider the problem of delay test

generation and present efficient techniques to prune the
search space by information learned during ATPG for pre-
vious faults. Due to a tight integration into a SAT-based
ATPG algorithm, dynamically learned conflict clauses can
be efficiently passed from one target fault to another and, by
this, reduce the number of unclassified faults significantly.
This approach works in an incremental manner but differs
from incremental SAT, because subsequent SAT instances
do not have to be similar to exploit the advantages.

Keeping all learned information causes a large memory
overhead. Therefore, different strategies to identify unim-
portant clauses are presented to achieve a good trade-
off between the memory consumption and the number of
unclassified faults. Furthermore, we propose the use of a
Post-Classification Phase (PCP). In particular, in this phase,
faults are classified which were aborted in the beginning of
the ATPG run. Experimental results for transition delay and
path delay test generation on large industrial circuits show
the robustness and feasibility of the proposed approach.

The rest of the paper is structured as follows: Section 2
briefly presents the basics of SAT-based delay test genera-
tion and introduces pervasive conflict clauses. The efficient
integration of dynamic learning is presented in Section 3.



The concept of a PCP is proposed in Section 4. Section 5
introduces different dynamic learning strategies for experi-
mental evaluation and Section 6 presents the experimental
results. Conclusions are drawn in the last section.

2. Preliminaries
In Section 2.1, the most common delay fault models are

introduced. Section 2.2 deals with the basics of SAT-based
ATPG. The concept of pervasive conflict clauses is presented
in Section 2.3.

2.1. Delay Fault Models
The most accurate delay fault model is the Path Delay

Fault Model (PDFM) [12]. It captures small as well as large
delay defects on a path from an input to an output.

The target of ATPG is to generate a test that initializes
the desired transition and sensitizes the off-path inputs of p
according to a sensitization criterion. By this, the transition
is propagated to an output (observation point). An off-path
input is not located on p but drives a gate g which is located
on p. Two time frames t1, t2 have to be considered during
ATPG in order to initialize and launch a transition.

The sensitization criterion defines the quality of the gener-
ated test pattern. Test patterns generated with the non-robust
sensitization criterion guarantee the detection of the PDF
if no other delay fault is present. The robust sensitization
criterion is superior to the non-robust sensitization criterion
because it guarantees the detection of a delay fault if other
delay faults occur in the circuit. Robust test patterns are
harder to obtain than non-robust test patterns. For more
details about sensitization criteria, we refer to [13].

The major drawback of the PDFM is the exponential
number of paths in modern circuits. Testing all paths is
therefore not applicable in practice. Usually, a small number
of critical paths is extracted for ATPG.

The Transition Delay Fault Model (TDFM) [14] is less
accurate than the PDFM. Here, the delay on a connection is
assumed to be large enough that it can be observed along
any sensitized sub-path from the fault site to an output. The
number of faults is linear in the number of connections.
Consequently, it provides a better fault coverage in practice
than the PDFM and is therefore widely used in industry.

2.2. SAT-based ATPG
To apply a SAT solver to a circuit-oriented problem,

e.g. ATPG, the problem is formulated as a Boolean formula
in CNF. A CNF Φ in m Boolean variables is a conjunction
of n clauses. Each clause is a disjunction of literals. A literal
is a Boolean variable (x) or its complement (x). The CNF
Φ is satisfied if all clauses are satisfied. A clause is satisfied
if at least one literal of the clause is satisfied. The CNF Φ
is said to be unsatisfiable iff no solution can be found that
satisfies Φ. The task of a SAT solver for a given Φ is to find
a satisfying assignment or to prove that no such assignment
exists.

In the following, the circuit-to-CNF conversion is briefly
described. More information can be found in [15]. A
Boolean variable is assigned to each connection in circuit
C. The CNF Φg for each gate g in C is derived from the

characteristic function which can be constructed using the
truth table. The CNF ΦC representing the circuit’s function
is then constructed by the conjunction of the CNFs of all
gates g1, . . . , gn ∈ C:

ΦC =
n∏

i=1

Φgi

If two time frames have to be considered, two Boolean
variables – one for each time frame – have to be assigned
to each connection and the CNF for each gate has to be
extracted for both time frames. Here, the variables of the
corresponding time frame have to be used. This procedure
and the correct modeling of flipflops is described in detail in
[16]. If additional values, e.g. unknown or static values, are
needed, a multiple-valued logic and a corresponding Boolean
encoding have to be used; for further details see e.g. [6],
[17].

The ΦC has to be extended by the fault-specific con-
straints ΦF for generating a test for fault F . Only a small
necessary part of the circuit has to be included in the CNF
(ΦF

C) for reasons of efficiency. For example, for the PDFM,
only the support of the output of the path is contained in
ΦF

C . More formally, a test for F is generated by evaluating
the following formula:

ΦF
test = ΦF

C · ΦF

2.3. Pervasive Conflict Clauses
The generation of additional implications, i.e. learning,

to speed up ATPG was first proposed in [2] and have been
improved continuously thereafter, e.g. in [18]. State-of-the-
art SAT solvers, e.g. [7], [8], [19], [20], employ an inherit
learning feature. They benefit significantly from the use
of conflict clauses. If a conflict occurs during the search,
the conflict is analyzed and a conflict clause is generated,
i.e. learning is performed. In a circuit-oriented problem, a
conflict clause corresponds to a conflicting value assignment
of connections. The recorded conflicts can be used to derive
additional implications efficiently.

Conflict clause generation is done by resolution of those
clauses which are responsible for the conflict. Such a clause
avoids that the SAT solver reenters this non-solution search
space again. By this, large parts of the search space are
pruned and the search is accelerated. A procedure to generate
powerful conflict clauses is presented in detail in [21].

As stated in Section 2.2, the CNF is composed of two
parts: the circuit part and the fault-specific part. Conflict
clauses which have their source only in clauses from the
circuit part are fault independent and are called pervasive
conflict clauses [4] (or pervasive clauses in the following).
They can be reused in subsequent SAT instances to prune
search space without running in the conflict first. On the
other hand, conflict clauses which are generated using at
least one clause from the fault-specific part are fault depen-
dent. Those have to be discarded after solving the CNF.

3. Integration of Dynamic Learning
In this section, it is shown how dynamic learning can

be efficiently integrated in SAT-based ATPG algorithms. An
external database is used in [10]. The pervasive clauses are



extracted after each run and transformed into a gate level
representation. Each time a new SAT instance is built, each
clause in the database is checked whether is can be reused
for the current SAT instance. If it can be reused, the clause is
transformed from the gate level representation to CNF. The
transformation steps and the check procedure took much
run time and limited the amount of learned information.
In contrast, we propose the use of an internal database in
combination with an efficient watch-list strategy to overcome
this disadvantage.

Crucial for an efficient transfer of pervasive clauses is
a permanent variable assignment to connections1. Due to
a permanent variable assignment, all pervasive clauses can
be stored in the internal database “as is”. Thus, expensive
transformation steps are avoided. Newly learned clauses can
be stored efficiently inside the SAT solver by using pointers.

3.1. Pervasive Conflict Clause Identification
In this section, it is described how pervasive clauses can

be identified. When building the SAT instance for fault F ,
it is easily possible to distinguish between fault independent
clauses (ΦF

C) and fault dependent clauses (ΦF ). All learned
clauses that have their source in at least one fault dependent
clause have to be discarded and cannot generally be reused
for subsequent SAT instances. Two methods are used:

• ID identification – The variable with the highest ID is
defined as a fixed upper limit u after the permanent
variable assignment has been done. If new variables
have to be defined for ΦF , e.g. describing faulty cir-
cuitry, only variables with an ID larger than u are used.
Thus, if a learned clause contains at least one variable
with an ID larger than u, the clause is discarded.

• Literal identification – The literal λ is added to each
fault dependent clause c that do not use only new – fault
dependent – variables. The literal λ is set to false by an
incremental assumption [20] before each run. By this, c
keeps the original meaning – λ is redundant. Because λ
is only used in one phase, each conflict clause derived
from c contains also λ and can easily be identified.

In summary, each learned clause c = (l1 + . . . + ln) is
checked after each run and discarded if the following holds:

n∨
i=1

((li = λ) ∨ (ID(li) > u))

Otherwise, c is a pervasive clause.

3.2. Variable-based Activation
Not all stored clauses should be reused in each SAT

instance. Subsequent SAT instances may target faults from
other regions of the circuit. A pervasive clause learnt from
one part of the circuit is useless if that part is not included
in the current SAT instance. Due to the large number
of pervasive clauses in industrial designs, checking each
single clause is not feasible and may outweigh the benefit.
Therefore, the concept of variable-based activation is intro-
duced. Here, the internal database is modeled as a watch-list
(similar to the watch-list used for fast BCP presented in [7]).

1. However, this causes some overhead in the search algorithm of the
SAT solver which can be adjusted by a slight modification.
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Figure 1. Illustration of a watch-list example
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Figure 2. Progress of (active) learned clauses - p57k transi-
tion faults

A list of clauses is assigned to each variable xi of the
circuit. These clauses are said to be “watched” by xi. When a
new pervasive clause p is learned, one variable xq contained
in p is chosen. Then, p is added to the list of xq , i.e. p is
“watched” by xq . In the following, the set of clauses which
is watched by variable xq is denoted by ω(xq). An example
watch-list is illustrated in Figure 1. The variables are denoted
by x1, . . . , xn, and c1, . . . , c5 are pervasive clauses.

By this, the set of pervasive clauses for ΦF
test can be effi-

ciently determined. All learned clauses which are “watched”
by variables contained in ΦF

test can be added directly to
ΦF

test. In other words, when the CNF Φg for gate g with
output variable vg is added to ΦF

test, the “watched” clause
set ω(vg) is added, too. The clauses of ω(vg) are said to be
“active” for ΦF

test. Those clauses which come from other
parts of the circuits do not have to be considered and,
therefore, cause no run time overhead. These clauses are
“inactive” for ΦF

test.
However, a learned clause p = (l1+. . .+ln) is only useful

for ΦF
test if all variables are contained in ΦF

test. Otherwise,
at least one variable remains unconstrained and can satisfy
p. Nonetheless, it is sufficient to let a learned clause be
“watched” by one variable. This is because the overhead of
determining whether all variables are contained in ΦF

test is
higher than adding some “useless” clauses to ΦF

test.

4. Post-Classification Phase
In this section, the use of a post-classification phase is

motivated and described. Consider the diagram shown in
Figure 2. In this diagram, the progress of the number of
learned clauses of ATPG for TFs for an industrial design
is shown. On the abscissa, the progress in terms of targeted
faults is denoted. The number of learned clauses is presented
on the ordinate. The upper line shows the total number



Table 1. Number of Learned Clauses
Path Delay Fault Model Transition Delay Fault Model

Circ paths all Act 1/4 Act 1/2 DL 3 DL 20 targets all Act 1/4 Act 1/2 DL 3 DL 20
b14 1,666 2,855 1,222 1,746 1,097 2,314 20,163 22,335 11,985 16,978 9,143 21,324
b15 3,696 1,862 1,193 1,777 890 1,803 25,087 25,349 10,831 17,553 4,730 18,555
b17 10,000 13,903 6,955 9,343 4,910 12,456 80,996 90,580 39,050 61,327 21,340 63,530
b18 10,000 18,217 10,187 14,465 6,921 17,786 301,012 670,081 315,590 536,267 103,238 367,080
p44k 10,000 7,576 8,274 8,770 7,925 7,214 65,484 93,077 56,478 73,486 31,475 92,567
p57k 10,000 816,963 505,244 663,183 83,921 485,227 14,921 414,227 180,443 287,797 51,456 232,409
p77k 10,000 0 0 0 0 0 180,679 620,815 434,153 488,908 98,757 560,056
p80k 10,000 587,137 252,765 400,175 73,913 369,813 16,729 120,645 47,636 71,298 24,550 98,252
p88k 10,000 61,267 33,013 46,976 22,469 60,838 56,024 63,340 35,504 48,397 22,861 55,609
p99k 10,000 119,056 50,751 77,790 17,267 86,254 41,668 292,777 97,156 173,223 34,603 171,128

p177k 10,000 129,261 66,103 91,973 28,251 120,386 99319 2,084,080 904,505 1,355,935 193,429 912,423
p456k 10,000 112,475 53,527 77,899 23,864 74,926 158,595 4,511,460 2,548,415 3,122,967 436,570 1,623,043
p462k 10,000 13,734 7,093 9,930 4,626 13,363 319,483 234,315 140,584 187,110 108,247 215,139
p565k 10,000 169,865 74,965 122,033 14,454 100,210 107,787 930,337 568,341 741,698 185,040 583,180
p1330k 10,000 8,007 4,274 6,261 965 6,369 269,425 233,479 106,462 158,285 72,438 187,938

total 100% 52.2% 74.3% 14.1% 65.9% 100% 53% 70.5% 13.4% 50.0%

of learned clauses and the crosses presents the number of
“active” clauses for each target fault.

The diagram clearly shows that faults targeted at the
beginning of the ATPG run have access to a significant
smaller number of learned clauses than faults targeted at
the end of the ATPG run. Furthermore, our experiments
have shown that – when using dynamic learning – most
of the remaining unclassified faults appear at the beginning
of the ATPG run. The ordering of the faults clearly has an
influence on the classification. The effect can be mitigated
by using a post-classification phase. The post-classification
phase starts after all faults were targeted. In this phase, all
faults that were aborted in the ATPG run, are targeted again.
The benefit is that – in most cases – the search algorithm
has access to significantly more learned clauses than in the
previous ATPG call for these faults. Therefore, it is likely
that many faults that were aborted in the previous phase can
now be classified. Optionally, in this phase, the time limit
can be decreased to save run time.

5. Learning Strategies
SAT solvers generate a large number of conflict clauses

during their search. Keeping all pervasive clauses results in
a large memory overhead. Furthermore, the efficiency of the
BCP routine of the SAT solver can be decreased by too many
clauses. The clause size was proposed as a selection criterion
in [4]. Any clause that contains more literals than a user-
defined maximum is discarded. In [10], the maximum size
was set to only three literals. In this section, an additional
selection criterion is introduced and the selection criteria
chosen for experimental evaluation are presented.

State-of-the-art SAT solvers have an inherit feature to
judge the importance of a learned conflict clause [19]. The
importance of a learned clause is defined over the frequency
of being involved in conflicts. Therefore, all learned conflict
clauses have an activity value [19], which is increased
each time a conflict clause is considered in the conflict
analysis. Conflict clauses of lesser importance, i.e. with a
low activity value, are discarded in intervals. This feature
can be exploited as an additional selection criterion when
using dynamic learning. The following strategies are chosen
for experimental evaluation:

• all – After each run, all learned pervasive clauses are
stored in the internal database and kept for subsequent

SAT instances.
• Act 1/4 – The learned pervasive clauses are ordered

according to their activity values and the quarter having
the highest activity value is stored in the internal
database.

• Act 1/2 – The learned pervasive clauses are ordered
according to their activity values and the half part
having the highest activity value is stored.

• DL 3 – All learned pervasive clauses with at most three
literals are kept for subsequent SAT instances (as done
in [10]).

• DL 20 – All learned pervasive clauses with at most 20
literals2 are kept for subsequent SAT instances.

6. Experimental Results
In this section, the experimental results for publicly

available benchmarks (ITC’99) as well as for industrial
circuits provided by NXP Semiconductors are presented. All
experiments were carried out on a AMD 64-Bit Opteron
(32768 MB, 2,8 GHz, GNU/Linux). A modified version of
MiniSat v1.14 [20] was used as SAT solver.
6.1. Dynamic Learning Strategies

Experiments were performed for the PDFM (robust sen-
sitization) and for the TDFM. The reader is referred to
[16] and [17], respectively, for the concrete SAT modeling.
A set of 10,000 paths with a length of at least 50 gates
are chosen for PDF testing. At most 15 paths start from
the same input to target different parts of the circuit. For
the TDFM, all possible faults are targeted. Here, fault
dropping is enabled during test generation. Table 1 shows
the number of learned clauses for each strategy. The name
of the circuit is given in column Circ. For the industrial
circuits, the name denotes roughly their size. For example,
p1330k contains over 1.3 million elements. Furthermore, the
number of targeted paths (column paths) and targeted faults
of strategy all (column targets) are presented. The average
relative number of all learned clauses is given in the last row.
It is notable that strategy DL 3 keeps only a small number
of clauses compared to the other strategies. The reason why
no learned clauses are kept for p77k (PDFM) is that the
untestability of each path was trivial to detect.

2. The number 20 was chosen due to the distribution of learned clause
sizes in experimental evaluations. Preliminary studies have shown that this
size is more beneficial than a size of 10 as used in [4].



Table 2. Experimental Results - Robust Path Delay Test Generation
w/o DL all Act 1/4 Act 1/2 DL 3 DL 20

Circ Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time
b14 0 0:50m +3M 0 0:56m +3M 0 0:57m +3M 0 0:57m +3M 0 0:58m +3M 0 0:55m
b15 0 1:52m +0M 0 1:47m +0M 0 1:55m +0M 0 1:50m +0M 0 1:49m +3M 0 1:47m
b17 0 4:47m +2M 0 5:15m +1M 0 5:23m +1M 0 5:16m +1M 0 5:21m +1M 0 5:13m
b18 6 5:39m +4M 0 5:54m +3M 0 6:03m +3M 0 6:01m +2M 0 5:59m +3M 0 5:57m
p44k 0 1:20h +0M 0 20:03m +1M 0 21:30m +1M 0 20:46m +1M 0 24:56m +0M 0 19:54m
p57k 1539 49:56m +159M 93 1:22h +96M 382 1:14h +131M 191 1:19h +9M 927 56:41m +62M 108 52:08m
p77k 0 1:00m +0M 0 1:03m +0M 0 1:03m +0M 0 1:02m +0M 0 1:03m +0M 0 1:03m
p80k 547 17:11m +117M 140 20:08m +40M 248 17:10m +74M 207 18:23m +8M 335 16:28m +45M 155 17:36m
p88k 0 7:58m +7M 0 6:56m +4M 0 7:17m +5M 0 7:02m +2M 0 7:05m +7M 0 6:52m
p99k 34 4:46m +16M 3 4:26m +5M 5 4:22m +9M 3 4:23m +0M 4 4:25m +8M 5 4:21m

p177k 223 32:28m +23M 16 31:25m +16M 79 37:31m +19M 41 34:22m +11M 177 35:07m +20M 21 31:29m
p456k 171 30:19m +14M 16 27:16m +6M 27 27:12m +9M 18 27:17m +3M 35 28:20m +6M 7 26:34m
p462k 0 8:53m +3M 0 9:10m +2M 0 9:12m +2M 0 9:11m +2M 0 9:13m +3M 0 9:11m
p565k 115 9:56m +32M 31 9:37m +10M 47 9:26m +20M 41 9:32m +2M 82 9:31m +10M 32 9:20m
p1330k 0 19:47m 2M 0 20:39m +2M 0 20:39m +2M 0 21:34m +0M 0 20:47m +2M 0 20:40m

total 2635 4:36h +382M 299 4:06h +189M 788 4:03h +279M 501 4:06h +44M 1560 3:46h +173M 328 3:33h

Table 2 reports the results for the PDF test generation. The
results for the TDFM are shown in Table 3. The number of
faults that could not be classified within the time interval of
seven MiniSat restarts3 are presented in columns entitled Ab.
Columns named Time present the overall run time for ATPG.
The memory overhead compared to the version without
dynamic learning (column w/o DL) is shown in columns
Mem. Time is given either in CPU minutes (m) or CPU
hours (h). Memory overhead is presented in Megabyte (M ).
The results are summed up for all circuits in the last row.

The results show that the number of unclassified faults
can be significantly reduced by the proposed use of dynamic
learning for both fault models. Keeping all learned clauses
reduced the number of aborted faults for all circuits to only
11% for the PDFM and to only 0.8% for the TDFM.

Especially the reduction for the hard-to-test circuits p177k
and p456k (TDFM) is remarkable. However, the disadvan-
tage of strategy all is the high memory consumption. The
circuit p456k (TDFM) needs for example over 1GB of
additional memory. In contrast, the amount of additional
memory used by strategy DL 3 is negligible. However, the
number of unclassified faults is increased by a factor of
five (PDFM) and by a factor of 20 (TDFM) compared to
strategy all. The activity-based strategies Act 1/4, Act 1/2
have less aborts than strategy DL 3, but they suffer also from
their high memory consumption, especially for the TDFM.
See for explanation the overall number of learned clauses
presented in Table 1.

The best trade-off between the number of unclassified
faults and the memory consumption can be achieved by strat-
egy DL 20. Here, only 1.5% of the number of unclassified
faults of w/o DL remain unclassified for the TDFM. The
number is – compared to strategy all – also only slightly
increased for the PDFM (12%). At the same time, the
memory consumption of DL 20 can be significantly reduced.
Although the number of unclassified faults is higher than for
strategy Act 1/2 for the TDFM, strategy DL 20 should be
preferred due to the smaller memory consumption. The run
time can also be decreased as a side effect of this strategy.

In summary, the strategy DL 20 is the first choice for
both delay fault models. If only few memory resources are
available, a fair reduction can be achieved by using DL 3.

3. A restart is defined as a certain number of conflicts (100 at the
beginning). After each restart, this number is increased (by 50%).

6.2. Post-Classification Phase
The experimental results of the proposed post-

classification phase are presented in Table 4. Due to
page limitation, results are only reported for the strategies
all and DL 20 and only the industrial circuits are
considered. The post-classification phase is not applied for
the ITC’99 benchmarks, because no aborts were produced.
For comparison, column w/o DL shows the number of
unclassified faults without dynamic learning. Column
entitled Time presents the additional time needed for the
post-classification phase. The number of faults that were
aborted in the previous phase but could be classified
during the post-classification phase is given in column Diff.
Column Ab. shows the overall number of unclassified faults
after the post-classification phase.

Roughly 4% of the ATPG run time is needed for the
post-classification phase for all circuits for the PDFM. For
the TDFM, the percentage is only 2% of the ATPG run
time. About 80% of the remaining unclassified PDFs can
be classified in this phase in total. For the TDFM, still
43% of the previously unclassified faults can additionally
be classified. As a result, the number of unclassified PDFs.
decreases to only 2.2% (DL 20: 2.8%) of those of w/o
DL. The number of unclassified TDFs further decreases
to only 0.5% (DL 20: 1.2%).In summary, the use of the
post-classification phase can further reduce the number of
aborted faults significantly. The run time overhead for the
post-classification phase is negligible.

7. Conclusions
A high fault coverage for delay faults is needed to

ensure that manufactured chips meet their timing specifica-
tion. This requires robust ATPG algorithms producing only
very few aborts. In this paper, we presented how dynamic
learning techniques can be efficiently integrated into SAT-
based ATPG algorithms. Dynamically learned information
can easily be passed to subsequent SAT instances by the
proposed techniques. This prunes the search space for other
target faults as well.

Different learning strategies were presented to reduce
the high memory overhead. As a result, a good trade-off
between run time, memory consumption and robustness of
the ATPG algorithm is achieved. Experiments on publicly
available benchmarks and on industrial circuits show that



Table 3. Experimental Results - Transition Delay Test Generation
w/o DL all Act 1/4 Act 1/2 DL 3 DL 20

Circ Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time Mem Ab. Time
b14 0 3:03m +2M 0 2:57m +1M 0 2:46m +2M 0 2:53m +1M 0 2:52m +2M 0 2:55m
b15 0 3:56m +4M 0 3:59m +1M 0 3:43m +2M 0 3:48m +0M 0 3:38m +2M 0 3:50m
b17 0 17:52m +15M 0 16:50m +5M 0 15:52m +9M 0 16:08m +1M 0 15:56m +6M 0 16:07m
b18 3 1:53h +132M 0 2:36h +52M 0 2:07h +101M 0 2:36h +5M 0 1:48h +37M 0 2:02h
p44k 59 5:35h +17M 0 1:22h +9M 0 1:20h +13M 0 1:20h +1M 2 3:53h +8M 0 1:29h
p57k 275 1:03h +79M 6 41:10m +26M 13 34:41m +49M 10 37:15m +1M 13 34:18m +21M 11 33:43m
p77k 5421 1:18h +30M 0 27:49m +3M 0 27:39m +9M 0 26:46m +22M 6690 1:57h +18M 0 26:58m
p80k 30 11:26m +17M 4 7:48m +4M 4 8:10m +8M 6 7:52m -2M 6 7:57m +9M 6 7:45m
p88k 0 34:02m +6M 0 27:13m +2M 0 26:15m +3M 0 26:26m +0M 0 26:47m +4M 0 27:04m
p99k 81 22:41m +49M 9 16:39m +10M 11 15:05m +27M 13 15:46m +1M 36 18:06m +16M 32 15:46m

p177k 23422 85:26h +556M 14 38:03h +217M 48 24:08h +338M 22 27:56h +11M 1652 32:23h +92M 241 21:59h
p456k 35970 16:12h +1184M 488 19:17h +611M 1049 15:52h +821M 516 15:28h -1M 2120 7:59h +135M 721 8:34h
p462k 554 6:26h +9M 2 5:27h +1M 12 5:36h +5M 9 5:31h -1M 58 5:44h +4M 3 5:25h
p565k 638 4:45h +140M 14 4:36h +70M 126 4:45h +101M 52 4:37h +4M 71 4:32h +43M 12 4:33h
p1330k 3 10:50h +29M 0 10:29h +10M 0 10:23h +17M 0 10:26h +4M 3 10:30h +15M 2 10:32h

total 66456 128:23h +2269M 537 84:15h +1022M 1263 66:26h +1505M 628 70:11h +47M 10651 70:36h +412M 1028 56:50h

Table 4. Experimental Results - Post-Classification Phase
Path Delay Fault Model Transition Delay Fault Model

w/o DL all DL 20 w/o DL all DL 20
Circ Ab. Time Diff Ab. Time Diff Ab. Ab. Time Diff Ab. Time Diff Ab.
p44k 0 – – 0 – – 0 59 – – 0 – – 0
p57k 1539 +4:00m -89 4 +3:14m -99 9 275 +0:09m -1 5 +0:12m -2 9
p77k 0 – – 0 – – 0 5421 – – 0 – – 0
p80k 547 +5:07m -98 42 +4:08m -101 54 30 +0:16m 0 4 +0:19m -2 4
p88k 0 – – 0 – – 0 0 – – 0 – – 0
p99k 34 +0:02m -2 1 +0:02m -3 2 81 +0:02m -8 1 +0:11m -6 26

p177k 223 +0:40m -16 0 +0:50m -21 0 23422 12:14m -7 7 +16:38m -27 214
p456k 171 +0:12m -13 3 +0:06m -6 1 35970 +1:16h -201 287 +37:36m -200 521
p462k 0 – – 0 – – 0 554 +0:31m -1 1 +0:37m -2 1
p565k 115 +0:26m -23 8 +0:21m -25 7 638 +0:06m -13 1 +0:04m -12 0
p1330k 0 – – 0 – – 0 3 – – 0 +0:01m -2 0

total 2629 +10:27m -241 58 +8:41m -255 73 66453 +1:29h -231 306 +55:38m -253 775

the integration can reduce the number of aborts significantly.
Therefore, the proposed approach is well suited to cope with
the high delay fault coverage demands of the chip industry.
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