
Computing Bounds for Fault Tolerance
using Formal Techniques∗

Görschwin Fey André Sülflow Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{fey,suelflow,drechsle}@informatik.uni-bremen.de

ABSTRACT
Continuously shrinking feature sizes result in an increasing suscep-
tibility of circuits to transient faults, e.g. due to environmental ra-
diation. Approaches to implement fault tolerance are known. But
assessing the fault tolerance of a given circuit is a tough problem.

Here, we propose the use of formal methods to assess the robust-
ness of a digital circuit with respect to transient faults. Our formal
model uses a fixed bound in time to cope with the complexity of the
underlying sequential equivalence check. The result is a lower and
an upper bound on the robustness. The underlying algorithm and
techniques to improve the efficiency are presented. In experiments
the method is evaluated on circuits with different fault detection
mechanisms.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance; B.6.3 [Logic Design]: Design AidsVerification

General Terms
Verification, fault tolerance, robustness

Keywords
Fault Tolerance, SAT, Formal Verification

1. INTRODUCTION
According to Moore’s Law the number of components per area

increases at an exponential rate in integrated circuits. One conse-
quence is an increase of externally induced transient faults [20].

Techniques to cope with transient faults are available on the pro-
duction level [26] or the design level [1, 10]. Even first tools to
improve fault tolerance are available [25].

Proving robustness with respect to transient faults is difficult.
Simulation or emulation based methods [6, 18] can only cover a
small portion of the states and the input space of a circuit. A for-
mal analysis determines the probability of a fault to propagate to
a primary output (see e.g. [16]). But the computational effort is
extremely high.

∗This work has been funded in part by DFG grants DR 287/19-1
and FE 797/5-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

Methods commonly applied for formal verification can prove fault
tolerance of an implementation. The approach of [3] proposes to
use symbolic methods for the classical analysis of fault trees. But
the faults have to be specified manually. Similarly, [13] and [15]
rely on symbolic methods. These approaches analyze fault toler-
ance with respect to mutations of the implementation. As a re-
sult, [13] decides whether an implementation is fault tolerant or
not, while [15] also provides data about the state space. Both tech-
niques use the original circuit as a specification. The authors of
[19] determine fault tolerance with respect to given formal proper-
ties. Only faults in state bits are considered. None of the techniques
mentioned so far provides insight about circuit structures that are
not fault tolerant.

The technique proposed here is similar to [11] and uses the same
fault model. A circuit is classified as robust if no fault tampers the
output behavior. Detailed feedback about components that are not
fault tolerant is returned. Thus, the approach in [11] provides a
good basis, but has several limitations when considering practical
problems. For example the formal analysis may have to consider a
large number of time steps before providing a result and reachabil-
ity analysis is required to get accurate information.

In contrast, our approach is more efficient and fits practical re-
quirements. The main contributions of our work are:

• Practical model for robustness checking

We explain why a full formal analysis is an overkill in prac-
tice and how a fault detection mechanism helps to prove fault
tolerance.

• Fault tolerance within a lower and an upper bound

While running, our technique delivers bounds on the fault tol-
erance by determining robust, non-robust and non-classified
components. Non-classified components point to potential
Silent Data Corruption (SDC).

• Restricted observation window for formal analysis

Restricting the observation time significantly improves the
performance.

• Avoiding full reachability analysis

Full reachability analysis is often too expensive. We show
how to use a light-weight reachability analysis when assess-
ing fault tolerance.

Experimental results evaluate the approach and the performance of
the algorithm. The formal approach expectedly requires long run
times, but proves fault tolerance with respect to any possible input
stimulus. Even circuits where full reachability analysis is not fea-
sible are effectively handled by our algorithm. The optimization
techniques, i.e. the consideration of structural information and the
reuse of learned information, improve the performance by a factor
of up to 11.

g

pg

g’

Figure 1: Fault modeling
X(0) X(1) X(t)

...

...

Y(t)

Y’(t)

S(0)
S(1) S(2)

S’(1)

Y(0)

Y’(0)

S’(2)

P=1G’

Y(1)

Y’(1)

C

C’

C C

C’ C’

d

d

d

Figure 2: Sequential comparison
This paper is structured as follows: The underlying fault model

and a basic approach to determine the robustness are discussed in
the next section. Section 3 introduces a model bounded in time that
also yields bounds on the robustness of a circuit. The incremental
algorithm is explained in Section 4, while Section 5 presents opti-
mization techniques to improve efficiency. Experimental results are
given in Section 6. Section 7 concludes the paper.

2. FAULT MODEL AND BASIC APPROACH
We consider a synchronous sequential circuit C with Primary In-

puts (PIs) X , Primary Outputs (POs) Y and state bits S. The number
of components in C is denoted by |C|. Here, a component may be a
gate, a module or a source level expression in the hardware descrip-
tion language. Our fault model assumes that a faulty component
behaves non-deterministically in one time frame, i.e. the value of
the output of the component does not depend on the values of the
inputs. We consider single faults only and justify in Section 3 why
this is sufficient. A component g is robust iff the output behavior
of C cannot change when g is faulty. Let T be the set of robust
components in C, then the robustness of C is given by |T|/|C|.

As suggested in [11] we use an instance of Boolean satisfiability
(SAT) to measure robustness. In the following the output signal of
component g is associated to variable g as well. A fault is modeled
as follows (the formulation is similar to SAT-based diagnosis [21]):
For a component g, a fault predicate pg and a new variable g′ are
introduced; then g is replaced by pg → g′ = g as shown in Figure 1.
Consequently, the value of g′ is specified by the circuit structure if
pg = 0. But if a fault at g is asserted by pg = 1, g′ may take any
value. Given a circuit C, the circuit C′ is created by replacing each
component as explained above. Then, P denotes the set of fault
predicates and G′ denotes the set of newly introduced variables to
replace the outputs of components.

Now, the SAT instance is created as shown in Figure 2: The cir-
cuit C is unrolled for td time frames as in bounded model checking
[2]; the unrolled circuit is compared to the copy C′ connected to
td −1 instances of C; the POs in the final time frame td are forced
to be different; only one variable in P may take the value 1. This
SAT instance is satisfied iff the output behavior of the faulty and the
original circuit differ in time frame td . This may only happen, when
a faulty value is injected at component g with pg = 1, i.e. compo-
nent g is not robust. By finding all satisfying assignments, the non-
robust components are retrieved. Once a component g has been
found non-robust, further solutions for this component are blocked
by inserting the constraint pg = 0 into the SAT instance. All non-
robust components are calculated by iteratively incrementing td .

Note, that this model already provides an improvement over [11].
Fault injection is only required in the first time step instead of all
time steps. If the set of initial states S(0) is equal to the set of

f

datadata

reset Encode Decode

Channel

Figure 3: Transmission system
reachable states S∗, the exact value of the robustness is determined
when reaching the maximal sequential depth1 of the correct circuit
and a faulty circuit [11]. In the following we assume that S(0) is
equal to S∗ until relaxing this constraint in Section 3.2.

3. BOUNDS FOR ROBUSTNESS
In this section we adjust the notion of robustness and the model

to practical requirements. As a “side effect” the computational ef-
fort decreases. First we justify an observation window to restrict
the number of time steps considered by the formal analysis. Then
we explain how to relax reachability analysis in the context of our
approach.

3.1 Observation Window
After detecting an internal malfunction some action has to be

taken at the system level in practice. Otherwise the effects of mul-
tiple faults may accumulate and may cause a disastrous failure.
Therefore, we assume that a fault detection signal f exists. If a
malfunction occurs, this is signaled by setting f within a given time
bound of no more than td time steps. Assuming a very low proba-
bility for more than one fault within td time steps, this is safe. By
this we retrieve exact bounds for the robustness while restricting the
formal analysis to an observation window of td time steps.

We apply a case split to determine the robustness of a component
g. Assume component g behaves faulty, then the robustness of g is
assessed as follows:

1. Component g is robust, if

(a) f = 1 within td time frames before or when a faulty
value at the POs occurs or

(b) f = 0, a faulty value at the POs does not occur and after
td the same state is reached as in the fault free circuit.

2. Component g is non-robust, if
a faulty value at the POs occurs within td time frames and
before f = 1.

3. Component g is not classified, if
f = 0, a faulty value at the POs does not occur and the state
differs from the fault free circuit after td time frames.

To guarantee that a circuit is robust, neither non-robust nor non-
classified components must remain. A non-robust component is a
threat – a fault in this component may cause wrong output values.
Knowledge about non-classified components is also essential. A
fault in such a component cannot directly influence the output val-
ues, but changes the internal state of the circuit, i.e. causes SDC. If
this is not detected within the required observation time td , an un-
detected error is immanent in the circuit. Effects of multiple faults
may accumulate and eventually cause erroneous output.

The same model also handles circuits that directly correct faults
instead of flagging a fault. In this case f is assumed to be constantly
0. As a result case 1(a) of the case split given above does not occur.

EXAMPLE 1. A (7,4)-Hamming-Code recognizes and repairs sin-
gle faults [12]. Figure 3 shows a transmission using an encoder for
4 bit data, a bit-wise serial channel and a decoder. A failure in
the transmitted code word is flagged by setting f . The timing is
summarized like this:
1The sequential depth is the longest trace without repeating a state.

Table 1: Hamming model
t |T| |S| |U| Rlb % Rub %
0 5 2 277 1.76 99.30
1 54 28 208 18.72 90.34
2 83 41 170 28.23 86.05
3 112 53 133 37.58 82.21
4 141 65 96 46.69 78.48
5 170 79 57 55.56 74.18
6 217 93 0 70.00 70.00

X(0) X(1) X(t)

...
R(0) R(1) R(2)

C C C

i

R(t)

S

i

κ

...

Figure 4: Constraining initial state
• Encoding and transmission to the channel: 1 time step

• Transmission: 4 time steps (registers in the channel)

• Decoding, writing to the output, setting f : 1 time step

The determined robustness depends on the value of td:

• td < 6: The data from t = 0 did not arrive at the POs, yet.
Faults in the decoding logic are detected within 1 time frame
by setting f . Therefore these components are classified.
Faults in the channel change the state, but not all data has
been decoded, yet. These faults are undetected, yet, and
the components cannot be classified. While incrementing td ,
more and more components are classified.

• td = 6: The input data reaches the POs. Faults that can be
detected are flagged. All components are classified.

• td > 6: Faults injected at t = 0 do not influence the state of
the model after more than 6 time frames.

Let T be the set of components classified as robust; S the set of
components classified non-robust and U the set of components not
classified, yet. Then, C = T∪S∪U. Now, a lower bound Rlb and
an upper bound Rub for the robustness of the circuit C are given by:

Rlb =
|T|
|C|

= 1− |S∪U|
|C|

and Rub =
|T∪U|
|C|

= 1− |S|
|C|

EXAMPLE 2. The bounds determined for the hamming model of
the previous example are shown in Table 1. The bounds approach
each other, until all components are classified for t = 6.

3.2 Reachability
Up to now we assumed, that S(0) was the set of reachable states

S∗. Consequently, the approach determined exact bounds for the
robustness. In practice, reachability analysis is often not feasible
due to the computational complexity. For example the computation
of S∗ with a Binary Decision Diagram (BDD) [4] often requires
a large amount of main memory or exceeds run time limitations.
Therefore we relax this requirement in the following.

In practice the bounds derived above for the robustness depend
on the set of states S(0) applied in the initial time frame of the
formal analysis. Assume that an overapproximation S↑ and an un-
derapproximation S↓ of the reachable states are available, i.e. S↓ ⊆
S∗ ⊆ S↑.

When considering the subset S↓ some states reachable during
normal operation are excluded. Therefore some components may
not be activated even though relevant during normal operation, e.g.

when the ADD-operation in a CPU is never activated. These com-
ponents are classified as robust instead of non-robust. The robust-
ness determined when using S↓ is larger than the real value. There-
fore, when calculating an upper bound of the robustness using S↓ is
safe, i.e. Rub(S↓)≥ Rub(S∗).

Similarly, considering unreachable states using S↑ decreases the
calculated robustness. Consider a circuit with Triple Modular Re-
dundancy (TMR). In the fault free case the three redundant mod-
ules are in the same state. Consequently, any internal fault of one
module is masked and all component are robust. But when also un-
reachable states are considered where the state of the three modules
deviates, a fault may change the output behavior of the overall cir-
cuit. Additional components may be classified as non-robust and it
is safe to use the overapproximation to determine a lower bound on
the robustness, i.e. Rlb(S↑)≤ Rlb(S∗).

No full reachability analysis is required. Instead we apply light-
weight approximations.

For S↓ we integrate partial reachability analysis into the formal
analysis using the structure shown in Figure 4. The original circuit
C is unrolled for t i time frames and starts from a set of states R(0)
known to be reachable, e.g. the reset state. Then, S↓ contains any
state reachable from R(0) within t i time steps as k is left uncon-
strained. The unrolling depth t i controls the accuracy: S↓ remains
an underapproximation of the reachable states when t i is smaller
than the state space diameter2.

When leaving R(0) unconstrained, R(t i) provides an overapprox-
imation S↑ of the reachable states. But for our experiments we use a
faster approach that assumes all states are reachable. Alternatively,
in case of TMR circuits an invariant can force the states of the three
redundant modules to be equal.

Of course, these light-weight approximations may be replaced by
more elaborate approaches like the SAT-based procedure in [5]. In
this case compactly representing S(0) is crucial.

4. ALGORITHM
This section provides an incremental algorithm to transform the

calculation of bounds for the robustness into a sequence of SAT in-
stances [7]. A SAT solver [9] is used to determine the solutions.
Parameters for the algorithm are the circuit C, the set of states to
be considered Suse and the size of the observation window td . The
algorithm is based on the approach introduced in Section 2: The
original circuit C and a copy C′ are unrolled for an increasing num-
ber of time frames t ∈ [0 . . . td]. The initial states of both copies
are identical. The POs of time frame t are forced to different val-
ues. Circuit C′ contains fault injection logic in time frame 0. If all
fault predicates pg are set to 0, both copies behave identically. The
problem is unsatisfiable.

To analyze single faults, fault injection logic in time frame 0 is
sufficient which reduces the search space compared to [11]. This is
valid, because all states in Suse are considered as initial states of the
formal analysis, i.e. S(0) = Suse. Also at most one fault predicate
may take the value 1. The model supports faults in state elements
as well as in combinational logic or at primary inputs.

The algorithm in Figure 5 shows the incremental algorithm that
determines the lower and upper bound for the robustness. Once a
component is classified, this information is used in the following
iterations to reduce the run time. Given a circuit C, a copy C′ with
fault injection logic is created (Lines 2–5). Both copies are con-
verted into Conjunctive Normal Form (CNF) [23] (Line 6). The
initial states of both copies are forced to be equal (Line 7). The ini-
tial states S(0) for the formal analysis are restricted to Suse (Line 8).
Whether the algorithm computes exact bounds, a lower bound or
an upper bound for the robustness depends on Suse as explained in

2The state space diameter is the largest length of the shortest trace
between any two states.

1 f u n c t i o n r o b u s t n e s s (C , Suse , td)
2 c r e a t e a copy C′

0 of C
3 foreach component g ∈ C′

0
4 r e p l a c e g by g′[g, pg] ;
5 done
6 c o n v e r t t o SAT i n s t a n c e ;
7 f o r c e i n i t s t a t e s o f C′

0 and C0 t o be e q u a l ;
8 f o r c e S(0) = Suse
9 c o n s t r a i n ∑ pg == 1 ;

10
11 T := /0 ;
12 S := /0 ;
13 U := a l l components g ∈ C′

0 ;
14 t := 0 ;
15 whi le (t ≤ td && U 6= /0)
16 i f (t > 0) then
17 c r e a t e a copy C′

t of C ;
18 c r e a t e Ct and c o n n e c t t o C′

t ;
19 f i
20 c o n n e c t P I s o f C′

t and Ct ;
21 c o n s t r a i n f = 0 in Ct ;
22 cmpPOs := a t l e a s t one p a i r o f POs d i f f e r s ;
23 cmpFFs := a t l e a s t one p a i r o f FFs d i f f e r s ;
24
25 add c o n s t r a i n t UR := (cmpPOs & ! f) = 1 ;
26 S′ := e x t r a c t A l l S o l u t i o n s () ;
27 remove c o n s t r a i n t UR;
28
29 add c o n s t r a i n t UC := (! f & !cmpPOs & cmpFFs) = 1 ;
30 U′ := e x t r a c t A l l S o l u t i o n s () ;
31 remove c o n s t r a i n t UC;
32 ∀g ∈ U′ : remove c o n s t r a i n t pg = 0 ;
33
34 T′ := U \ (S′ ∪ U′) ;
35 ∀g ∈ T′ : add c o n s t r a i n t pg = 0 ;
36
37 T := T ∪ T′ ;
38 U := U′ ;
39 S := S∪S′ ;
40
41 t := t +1 ;
42 remove cmpPOs ;
43 remove cmpFFs ;
44 done ;
45 re turn (T,S,U) ;
46 end f u n c t i o n ;

Figure 5: Algorithm
1 f u n c t i o n e x t r a c t A l l S o l u t i o n s ()
2 M := /0 ;
3 whi le (s a t i s f i a b l e) do
4 G = {g|pg == 1} ;
5 M := M∪G ;
6 add c o n s t r a i n t pg = 0 ;
7 done ;
8 re turn M;
9 end f u n c t i o n ;

Figure 6: Retrieving all solutions
Section 3.2. The number of fault predicates with value 1 is limited
to one (Line 9).

Then, the sets of robust (T), non-robust (S), and non-classified
(U) components are initialized (Lines 11–13). In the beginning all
components are non-classified. Next, the sets are incrementally up-
dated for time frame t, starting at t = 0 up to t = td (Lines 14–44).
As soon as all components are classified, i.e. U = /0, the algorithm
terminates. Fresh copies of C are appended to the unrolled circuits
for t > 0 (Line 16–20). A constraint forces C to behave fault free
(Line 21). Additional logic compares the POs in time frame t (Line
22), where cmpPOs = 1 indicates a different value for fault free and
faulty copy. Similarly, cmpFFs compares the states (Line 23).

Then the components S′ that can be classified as non-robust in
time frame t are determined (Lines 25–27). The POs are forced
to different values and the fault detection signal f is forced to 0
(Line 25). Each satisfying solution provides a component that is
non-robust. The newly classified non-robust components S′ are re-
turned by the subroutine extractAllSolutions shown in Figure 6. The
subroutine extracts one non-robust component per satisfying solu-
tion (Line 4) and forces the fault predicate of this component to 0
afterwards (Line 6).

The main routine in Figure 5 proceeds by removing the con-
straints on POs and f (Line 27). Next, the algorithm determines
the remaining non-classified components U′ in a similar way (Lines
29–31). In case of non-classified components the constraints pg = 0
are removed (Line 32) before the next iteration for t +1 starts.

Now, the newly classified set of robust components is available
(Line 34). These components do not have to be considered in fur-
ther iterations and their fault predicates are fixed to 0 (Line 35).

Finally, the sets T, S and U are updated by adding or assigning
the newly classified components, t is increased, and the additional
logic to compare POs and states is removed (Lines 37–43).

If non-classified components remain and td has not been reached,
the next iteration starts (Line 15). Otherwise the algorithm termi-
nates and returns the three sets T, S and U. As explained above the
parameter Suse determines whether exact values or approximations
are returned.

5. OPTIMIZATION TECHNIQUES
The algorithm presented so far solves multiple sequential equiv-

alence checking problems and sequential equivalence checking is a
hard problem itself. Therefore, optimization is required to improve
the performance.

Knowledge about structural dominators is known to be often help-
ful in CAD algorithms. For example, the output of a fanout free
region is a dominator for all nodes within the region. The notion
of dominators is more general. A component g is dominated by a
component e, if any path from g to a primary output or state bit
passes along e. Thus fault effects from g must propagate along
e. If component e is robust, component g is robust as well. We
determine dominators using the algorithm from [14]. Then, the al-
gorithm to determine robustness runs in two steps. First, faults are
only injected into components that dominate others. Second, the
dominated components of non-robust and non-classified domina-
tors are considered for a detailed classification. This speeds up the
overall run time because the search space is pruned.

Instead of sequential equivalence checking also sequential Auto-
matic Test Pattern Generation (ATPG) may be used as the under-
lying engine. In this case one problem instance is created per fault
that has to be considered. As an advantage, the size of the problem
instance shrinks by only including those parts of the circuit that may
be influenced by the particular fault. Moreover, similar to combi-
national ATPG, propagation constraints can be used to improve the
performance of the engine [22, 8]. For an evaluation we used a
SAT-based sequential ATPG engine. However, on the circuits con-
sidered the algorithm of Section 4 using equivalence checking was
faster than the ATPG approach. This can be explained by the struc-
tural similarity of the problem instances. The algorithm of Sec-
tion 4 creates one problem instance for all faults. This problem
instance is kept and extended by further copies of the circuit until
td is reached. Using the concept of incremental SAT [24], the proof
engine keeps learned information for reuse in subsequent calls. Us-
ing ATPG, independent problem instances are created for all faults
and similar information has to be learned from scratch. Therefore,
we choose the algorithm based on equivalence checking for further
experiments.

6. EXPERIMENTAL RESULTS
Experimental results are provided in the following. Our bench-

mark suite contains different types of sequential circuits that allow
to explain the results by considering the structure of the circuits:

• without fault tolerance,

• with Triple Modular Redundancy (TMR) and

• with fault detection.

The circuits without fault tolerance are taken from the ITC’99 bench-
mark suite named by their original names b01–b13. Using these
circuits, fault tolerant TMR circuits were created. The circuit was

 0

 20

 40

 60

 80

 100

-1 0 1 2 3 4 5 6 7 8 9 10

R
o
b
u
st

n
e
ss

 (
%

)

t^d

hamming_lower
hamming_upper

b05_lower
b05_upper
b07_lower
b07_upper

Figure 7: Robustness vs. td

replicated three times and a combinational majority voter drives the
POs. These TMR circuits have the same sequential depth as the
original circuit.

To create circuits with fault detection, the TMR circuits were ex-
tended with a signal f . While the states of the three instances are
identical, no fault is detected, i.e. f = 0. Otherwise a fault is sig-
naled, i.e. f = 1. Faults at the PIs do not activate f , because the
TMR instances behave equivalently. Additionally, the Hamming
model introduced in Example 1, provides fault detection. In all
cases PIs, FFs and gates were considered as components.

All experiments were carried out on an AMD Athlon(tm) 64 X2
Dual Core CPU (3.0GHz, 4GB RAM, Linux). The SAT solver
Chaff [17] with incremental SAT extension [24] has been used. The
consideration of structural dominators improved the performance
by a factor of up to 11 (see Section 5).

First, we analyze the influence of the observation window td on
the robustness. Next the influence of constraints on S(0) and the
quality of approximate bounds are evaluated and finally discussed.
Note, that a comparison to [11] is not given due to differing models,
i.e. the bounds, the fault signal f and handling reachability.
6.1 Influence of td

Figure 7 exemplarily visualizes the exact bounds retrieved for
three circuits using S∗ while extending the observation window.
Note, the initial bounds are marked with td =−1.

As already discussed in Section 3, the exact value for the robust-
ness of the Hamming model is retrieved at td = 6 where lower and
upper bound converge. In case of b05 and b07 the bounds approach
each other quite rapidly in the beginning, but do not meet within 10
time frames. While 15% of the components cannot be classified for
b05, only 2% remain non-classified for b07. This shows that the
convergence behavior of the bounds significantly depends on the
design. The incremental algorithm may be stopped as soon as the
bounds are close enough or no progress can be observed.
6.2 Influence of t i

Table 2 summarizes further results. The overapproximation S ↑
does not constrain S(0). For S ↓ the approach shown in Figure 4
was used, R(0) denotes the reset state and t i was set to 0, 1, or 10,
respectively. BDD-based exact reachability analysis provides S∗.

Columns |C| and |FF | give the number of components and state
holding elements in the circuit, respectively. Column td denotes the
length of the observation window required to classify all compo-
nents. At td = 10 the algorithm has been stopped. Columns |U | and
time give the number of non-classified components and the run time
in seconds for computation, respectively.

While increasing t i more reachable states become observable at
S(0) and thus the accuracy of the approximate upper bound in-
creases. For example, the results in Table 2 show a significant
improvement for b08 and b10 between t i = 1 and t i = 10. But
the overhead for computing reachable states “on-the-fly” increases
when increasing t i – more run time is required.

Additionally, for TMR circuits the number of components known
to be non-classified increases. Some components classified as ro-
bust for small values of t i become non-classified, e.g. when a fault
in one of the three TMR instances does not affect the output behav-
ior but changes the state.

The TMR circuits with fault detection mechanism immediately
detect the error in one of the instances and thus an early classifi-
cation as robust is possible. Already for t i = 0 the upper bound is
nearly correct and requires far less computation time in comparison
to TMR circuits without fault detection. Only components close to
PIs remain non-classified. Therefore td has to be increased while
the faulty values are not observable at the POs.

6.3 Quality of approximate bounds
For non-TMR circuits, the bounds Rlb(S ↑) and Rub(S ↓), t i = 10

are close to the exact ones Rlb(S∗) and Rub(S∗). Only for b05 and
b13 the exact bounds differ significantly. Here, increasing t i or td

may help to improve the accuracy of the approximate bounds.
For TMR circuits the distance between lower and upper bound

is large. The lower bound Rlb(S ↑) is not tight enough, because
the initial states of the TMR instances are allowed to differ. Either
an exact analysis or a manual invariant is required to improve the
accuracy. Experiments using an invariant to force identical initial
states, yielded an almost exact lower bound Rlb(S ↑). Due to page
limitation no details are reported here.

The approximate bounds for circuits with fault detection are close
to the exact bounds. Constraining the specification to fault free be-
havior by setting f = 0 in Ct forces the submodules to start in iden-
tical states. Consequently, the lower bound becomes more accurate
and an exact analysis is not required.

6.4 Discussion
As shown in Table 2, BDD-based reachability analysis often ex-

ceeds the run time limitation. Thus, no exact information about
fault tolerance can be computed. Our approximation algorithm still
provides a partial classification of components giving insight about
fault tolerance of the circuits.

For both, the approximate as well as the exact bounds, non-clas-
sified components are left for some circuits. Here, a large difference
between upper and lower bound due to non-classified components
always points to potential immanent undetected errors that do not
yet materialize in the output response. Such SDC may lead to faulty
output responses in combination with other faults. Thus, the knowl-
edge about the non-classified components is mandatory.

In summary, the main focus of the experiments is on the for-
mal model and the formal algorithm to determine robustness. The
proposed model fits practical needs by restricting the observation
window. The approximate bounds provide information about fault
tolerance even when an exact analysis cannot be applied. For some
circuits run time is a bottleneck. Here, providing a set of manual
invariants decreases the run time and increases the accuracy.

7. CONCLUSIONS
We presented an approach to formally prove the robustness of a

circuit. The algorithm works on a bounded number of time steps
and determines a lower bound and an upper bound on the robust-
ness. Approximate sets of reachable states are sufficient to deter-
mine these bounds. An incremental algorithm and additional opti-
mization techniques are provided. The results show that even if only
a small number of time steps is considered, an exact value of the ro-
bustness can often be obtained. Otherwise a subset of non-robust
and robust components is provided, that can be used for further
design modifications. Especially, for circuits with fault detection
mechanism accurate values are determined efficiently.

Future work focuses on improving the effectiveness for very large
circuits. That is, using multiple engines like simulation, sequential
ATPG and the proposed algorithm within a single framework or by
using abstraction and hierarchical information. Moreover, assess-
ing robustness in presence of multiple faults remains an open issue.

Table 2: Influence of constraints on initial states

S↑ S↓, t i = 0 S↓, t i = 1 S↓, t i = 10 S∗

circuit |C| |FF | td Rlb % |U | time(s) td Rub % |U | time(s) td Rub % |U | time(s) td Rub % |U | time(s) td Rlb % Rub % |U | time(s)
Without fault tolerance
b01 64 5 4 0.00 - 0.19 5 10.94 - 0.26 4 1.56 - 0.25 4 0.00 - 0.50 4 0.00 0.00 - 0.24
b02 34 4 3 0.00 - 0.05 4 44.12 - 0.06 4 20.59 - 0.06 3 0.00 - 0.13 3 0.00 0.00 - 0.09
b03 199 30 9 0.00 - 6.41 10 22.61 12 9.11 10 5.53 3 7.66 9 0.50 - 13.10 9 0.50 0.50 - 6.23
b04 832 66 5 0.00 - 60.57 3 86.78 - 8.32 5 64.90 - 29.65 5 0.00 - 131.34 b

b05 1199 34 2 5.59 - 57.42 10 91.33 124 98.60 10 90.91 126 107.26 10 90.33 354 477.72 10 41.54 55.88 172 225.09
b06 73 9 2 0.00 - 0.18 2 16.44 - 0.15 2 2.74 - 0.22 2 0.00 - 0.50 2 0.00 0.00 - 0.24
b07 513 49 10 0.00 3 22.71 10 87.52 190 61.06 10 87.52 198 68.44 10 87.33 268 188.22 10 3.31 4.87 8 44.21
b08 232 21 10 0.00 9 5.71 10 91.38 81 11.06 10 90.08 88 13.29 10 5.17 11 35.77 10 0.00 3.88 9 5.80
b09 198 28 9 0.00 - 4.25 10 85.86 79 10.38 10 75.76 88 14.48 10 47.47 42 16.34 10 0.00 0.51 1 5.30
b10 271 17 10 0.00 1 6.65 10 62.36 40 8.88 10 32.84 8 7.80 10 1.85 4 20.83 10 0.37 1.85 4 8.73
b11 874 31 10 0.11 14 123.98 10 88.44 133 83.09 10 83.07 142 99.76 10 8.92 14 216.44 10 6.18 7.78 14 256.67
b12 1302 121 10 0.00 2 239.98 10 81.64 449 470.24 10 75.88 386 460.31 10 52.07 457 960.20 b

b13 410 53 10 0.73 8 15.60 10 66.10 112 36.31 10 62.44 108 38.86 10 52.68 105 62.04 10 2.68 7.56 20 1793.98
Tripple modular redundancy
b01-tmr 212 15 4 1.89 - 2.63 10 98.11 114 15.82 10 98.11 132 22.33 10 98.11 135 43.08 10 34.43 98.11 135 26.97
b02-tmr 112 12 3 1.79 - 0.69 10 99.11 42 2.47 10 98.21 66 4.39 10 98.21 84 9.40 10 23.21 98.21 84 5.02
b03-tmr 637 90 9 1.26 - 76.56 10 98.74 438 208.95 10 98.74 513 286.89 10 98.74 534 563.92 10 14.91 98.74 534 4336.39
b04-tmr 2579 198 5 0.62 - 697.26 a9 99.69 21 19493.90 a6 99.38 276 9730.20 a0 99.69 2483 31280.70 b

b05-tmr 3922 102 2 6.96 - 1137.48 10 99.08 450 1256.48 10 99.06 477 1419.27 10 99.06 1179 5638.39 b

b06-tmr 275 27 2 3.64 - 3.00 10 97.45 81 16.30 10 97.09 99 24.63 10 97.09 102 58.70 10 60.00 97.09 102 26.22
b07-tmr 1612 147 10 0.99 - 2046.31 10 99.50 738 834.42 10 99.50 763 925.15 10 99.50 976 2373.76 b

b08-tmr 741 63 10 1.08 35 88.05 10 99.46 292 142.78 10 99.46 330 174.77 10 99.46 690 634.43 10 5.94 99.33 692 2180.33
b09-tmr 604 84 9 3.31 - 51.67 10 99.83 315 122.03 10 99.67 405 172.53 10 99.67 423 302.18 10 24.17 99.67 456 1572.46
b10-tmr 878 51 10 1.37 3 1464.80 10 99.20 402 273.23 10 98.52 552 484.63 a9 98.06 792 17176.30 10 7.86 98.06 792 2574.79
b11-tmr 2683 93 10 0.56 42 2721.79 10 99.78 666 1261.08 10 99.52 852 1738.78 10 99.52 2412 15212.20 b

b12-tmr 3965 363 a6 0.30 9 2933.94 10 99.82 2031 6657.70 10 99.82 2067 7311.42 10 99.82 3210 19253.10 b

b13-tmr 1330 159 10 2.18 24 432.77 10 99.25 693 653.31 10 99.25 729 766.78 10 99.10 863 1526.89 b

With fault detection
b01-tmrflt 215 15 1 88.84 - 0.17 1 98.14 - 0.06 1 98.14 - 0.10 1 98.14 - 0.32 1 98.14 98.14 - 0.26
b02-tmrflt 123 12 2 88.62 - 0.07 0 99.19 - 0.02 4 98.37 - 0.05 2 98.37 - 0.11 2 98.37 98.37 - 0.12
b03-tmrflt 648 90 4 91.36 - 2.11 4 98.77 - 0.77 4 98.77 - 0.98 4 98.77 - 5.85 4 98.77 98.77 - 4138.53
b04-tmrflt 2590 198 1 95.56 - 45.29 0 99.69 - 0.96 3 99.38 - 4.91 1 99.27 - 5377.38 b

b05-tmrflt 3933 102 1 45.51 - 352.61 0 99.08 - 4.23 1 99.06 - 6.23 1 99.06 - 51.10 b

b06-tmrflt 286 27 1 71.33 - 0.56 1 97.55 - 0.09 1 97.20 - 0.13 1 97.20 - 2.38 1 97.20 97.20 - 0.50
b07-tmrflt 1623 147 1 93.53 - 17.70 0 99.51 - 0.58 10 99.51 1 3.31 10 99.51 1 25.91 b

b08-tmrflt 752 63 10 91.89 8 5.97 10 99.47 1 1.15 10 99.47 9 5.33 10 99.47 9 12.22 10 98.27 99.34 8 1747.29
b09-tmrflt 615 84 2 97.72 - 1.33 0 99.84 - 0.10 10 99.67 - 0.96 10 99.67 - 2.36 2 99.67 99.67 - 1283.33
b10-tmrflt 889 51 4 89.99 - 5.46 2 99.21 - 0.42 3 98.54 - 1.25 4 98.09 - 29.66 4 98.09 98.09 - 1172.55
b11-tmrflt 2694 93 3 96.85 - 23.31 1 99.55 - 1.65 3 99.52 - 4.58 3 99.52 - 86.68 b

b12-tmrflt 3976 363 1 97.91 - 184.09 5 99.82 - 4.59 4 99.82 - 6.16 1 99.82 - 216.73 b

b13-tmrflt 1341 159 2 89.56 - 7.70 0 99.25 - 0.65 0 99.25 - 0.90 10 99.11 8 25.31 b

hamming 284 7 6 70.00 - 20.86 6 70.98 - 19.57 6 70.65 - 21.88 6 70.00 - 38.01 6 70.00 70.00 - 21.74
aAbnormal termination of SAT solver; bBDD could not be computed within 5h

8. REFERENCES
[1] T. Austin and V. Bertacco. Deployment of better than worst-case design:

Solutions and needs. In Int’l Conf. on Comp. Design, pages 550–558, 2005.
[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1579 of LNCS, pages 193–207. Springer Verlag, 1999.

[3] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic fault tree analysis for
reactive systems. In Automated Technology for Verification and Analysis,
volume 4762 of LNCS, pages 162–176, 2007.

[4] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp., 35(8):677–691, 1986.

[5] P. Chauhan, E. Clarke, and D. Kroening. Using SAT based image computation
for reachability analysis. Technical Report CMU-CS-03-151, School of
Computer Science, Carnegie Mellon University, 2003.

[6] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Violante. An
FPGA-based approach for speeding-up fault injection campaigns on
safety-critical circuits. Jour. of Electronic Testing: Theory and Applications,
18(3):261–271, 2002.

[7] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:506–521, 1960.

[8] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schlöffel, and
D. Tille. On acceleration of SAT-based ATPG for industrial designs. IEEE
Trans. on CAD, 27(7):1329–1333, 2008.

[9] N. Eén and N. Sörensson. An extensible SAT solver. In SAT 2003, volume 2919
of LNCS, pages 502–518, 2004.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw,
T. Austin, and T. Mudge. Razor: A low-power pipeline based on circuit-level
timing speculation. In Micro Conference, 2003.

[11] G. Fey and R. Drechsler. A basis for formal robustness checking. In Int’l Symp.
on Quality Electronic Design, pages 784–789, 2008.

[12] R. W. Hamming. Error detecting and error correcting codes. Bell System
Technical Jour., 9:147–160, April 1950.

[13] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T. Vierhaus.
Evaluating coverage of error detection logic for soft errors using formal
methods. In Design, Automation and Test in Europe, pages 176–181, 2006.

[14] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

[15] R. Leveugle. A new approach for early dependability evaluation based on
formal property checking and controlled mutations. In IEEE International
On-Line Testing Symposium, pages 260–265, 2005.

[16] M. Miskov-Zivanov and D. Marculescu. Circuit reliability analysis using
symbolic techniques. IEEE Trans. on CAD, 25(12):2638–2649, 2006.

[17] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conf., pages
530–535, 2001.

[18] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco, and
T. Austin. CrashTest: A fast high-fidelity FPGA-based resiliency analysis
framework. In Int’l Conf. on Comp. Design, 2008.

[19] S. A. Seshia, W. Li, and S. Mitra. Verification-guided soft error resilience. In
Design, Automation and Test in Europe, pages 1442–1447, 2007.

[20] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvis. Modeling the
effect of technology trends on the soft error rate of combinational logic. In Int’l
Conf on Dependable Systems and Networks, pages 389–398, 2002.

[21] A. Smith, A. Veneris, M. Fahim Ali, and A.Viglas. Fault diagnosis and logic
debugging using boolean satisfiability. IEEE Trans. on CAD,
24(10):1606–1621, 2005.

[22] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Trans. on CAD, 15:1167–1176, 1996.

[23] G. Tseitin. On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2, pages 115–125,
1968. (Reprinted in: J. Siekmann, G. Wrightson (Ed.), Automation of
Reasoning, Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[24] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Design Automation Conf., pages 542–545, 2001.

[25] C. Zhao and S. Dey. Improving transient error tolerance of digital VLSI circuits
using RObustness COmpiler (ROCO). In Int’l Symp. on Quality Electronic
Design, pages 133–140, 2006.

[26] Q. Zhou and K. Mohanram. Gate sizing to radiation harden combinational logic.
IEEE Trans. on CAD, 25(1):155–166, 2006.

