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Abstract—Modelling at the Electronic System Level (ESL) is
the established approach of the major System-on-chip (SoC)
companies. While in the past ESL design covered design method-
ologies only, today also verification and debugging is included. To
improve the verification process, testbench automation has been
introduced highlighted as constraint-based random simulation.
In SystemC – the de facto standard modelling language for
ESL – constraint-based random simulation is available through
the SystemC Verification (SCV) library. However, the underlying
constraint-solver is based on Binary Decision Diagrams (BDDs)
and hence suffers from memory problems.

In this paper, we propose the integration of new techniques
for stimuli generation based on Satisfiability Modulo Theories
(SMT). Since SMT solvers are designed to determine a single
satisfying solution only, several strategies are proposed forcing the
solver to generate more than one stimuli from different parts of
the search space. Experiments demonstrate the advantage of the
proposed approach and the developed strategies in comparison
to the original BDD-based method.

Keywords-Constraint-based random simulation, SAT Modulo
Theories, SystemC Verification Library

I. INTRODUCTION

The Electronic System Level (ESL) emerged to deal with
both, the (ever increasing) design complexity and the re-
sulting verification crisis. Hence, the languages for ESL de-
sign, e.g. SystemVerilog or SystemC, have been enhanced to
support inevitable verification methodologies like assertions
and testbench automation. Especially the second methodology,
highlighted as constraint-based random simulation, is a key
technique to cope with current and future designs [1], [2], [3].
Thereby, stimuli from specified constraints are generated by
means of a constraint solver so that corner case scenarios are
triggered. In doing so, design bugs will be found that might
otherwise remain undetected.

In the context of SystemC – the de facto standard modelling
language for ESL – constraint-based random simulation is
available in the SystemC Verification (SCV) library. Here, the
underlying constraint-solver uses Binary Decision Diagrams
(BDDs) [4] for constraint representation and subsequent stim-
uli generation. Due to the well-known limits of BDDs, com-
plex arithmetic or non-trivial implications can not efficiently
be handled by SCV constraints.

In this work, we introduce an alternative to the BDD-
based stimuli generation. Motivated by the solving paradigms
introduced in the recent past, the BDD-based constraint solver
is replaced by a Satisfiability Modulo Theory (SMT) approach.
SMT extends Boolean Satisfiabily (SAT), a solving technique
on the pure Boolean level that has been intensely studied over
the last two decades. SMT maintains all benefits of SAT but
furthermore allows the exploitation of additional information
due to the representation of the instances on the word level.
This often gives significant speed-ups compared to pure SAT
solving (see e.g. [5], [6], [7]).

While, at a first glance the substitution of BDDs by SMT
techniques seems to be simple, two major tasks have to be
tackled:

1) BDDs represent all solutions of a constraint at once.
Hence, if the BDD can be built, stimuli generation
is nothing else than a linear traversal from the root
node to a 1-terminal respecting a uniform distribution.
In contrast, SMT solvers return a single solution only.
Thus, strategies have to be developed to determine more
than one stimuli with good distributions.

2) For SAT solving, MiniSat [8] is the state-of-the-art
solver today. However, in the domain of SMT the results
are not so clear as e.g. the recent SMT competition
shows [9]. Moreover, most of the SMT solvers (in partic-
ular the most efficient ones) are closed source. Thus, the
proposed strategies for determining good distributions
can only use the provided interface of an SMT solver
restricting the strategies to a certain extend.

To the best of our knowledge SMT-based stimuli generation
has not been considered so far. In [10], an SMT-like static
analysis is used to reduce the search space before applying
SAT- or BDD-based stimuli generation. Besides that, only
approaches exploiting SAT techniques have been proposed.
Thereby, similar issues must be addressed. In [11], a special-
ized SAT algorithm in combination with so called randomized
XOR constraints are used to achieve even distributed solutions.
Instead, the authors in [12] presented a sampling algorithm that
combines concepts from the Metropolis-Hastings algorithm,
Gibbs sampling, and WalkSAT to efficiently generate solutions
to the constraints with an approximately uniform distribution.
In our work, we propose a variety of strategies (including
special blocking constraints, solution selection, and handling
overconstraining) considering the particular needs of currently
available SMT solvers.

The remainder of this paper is structured as follows: The
next section briefly describes the SCV library, BDD-based
constraint solving, and the main concepts of SMT. After
discussing the limits of BDD-based constraint solving our
SMT-based approach is introduced in Section III. Section IV
describes strategies to generate distributed solutions. Finally,
experimental results as well as conclusions with outlooks
on future work are given in Section V and Section VI,
respectively.

II. PRELIMINARIES

To keep the remainder of this paper self-contained, this
section briefly introduces the SystemC Verification Library
which enables constraint-based random simulation for Sys-
temC. Afterwards, SMT and the respective solve engines
are reviewed. Readers wishing more in-depth treatment are
referred to the references.



s t r u c t c s t r : p u b l i c s c v c o n s t r a i n t b a s e {
s c v s m a r t p t r <s c u i n t <64> > a , b , add r ;
SCV CONSTRAINT CTOR( c s t r ) {

SCV CONSTRAINT( a ( ) > 100 ) ;
SCV CONSTRAINT( b ( ) == 0 ) ;
SCV CONSTRAINT( add r ( ) >=0 && addr ( ) <=0x400 ) ;
}
} ;

Fig. 1. Example constraint

A. SystemC Verification Library
The SCV library was introduced in 2002 as an open source

C++ class library [13], [14], [15] on top of SystemC [16],
[17]. In the following we focus only on the basic features of
the SCV library for constraint-based randomization.

Using the SCV library, constraints are modelled in terms
of C++ classes. That way constraints can be hierarchically
layered using C++ class inheritance. In detail a constraint is
derived from the scv_constraint_base class. The data
to be randomized is specified as scv_smart_ptr variables.

Example 1: Fig. 1 shows an example of an SCV constraint
with the name cstr. Here, the three unsigned integer variables
a, b, and addr are randomized. The conditions on the variables
a, b, and addr are defined by expressions in the respective
SCV CONSTRAINT() macro.

Internally, a constraint in the SCV library is given by the
corresponding characteristic function, i.e. the function is true
for all solutions of the constraint. This characteristic function
of a constraint is represented as a BDD, a canonical and
compact data structure for Boolean functions [4]. For stimuli
generation a weighting algorithm is applied to the constraint
BDD to guarantee a uniform distribution of all constraint
solutions and hence maximizing the possibility for entering
unexplored regions of the design state space (see [13] and for
improvements see [18], [19]). As BDD package CUDD [20]
is used in the SCV library.

B. SAT Modulo Theory
SAT Modulo Theory (SMT) is an extension of the Boolean

satisfiabiliy problem (SAT problem) which is defined as fol-
lows:

Definition 1: Let f be a Boolean function. Then, the SAT
problem is to determine an assignment α to all variables of f
such that f(α) = 1 or to prove that no such assignment exists.
In the former case f is satisfiable; otherwise f is unsatisfiable.

Usually, the Boolean function f is given in Conjunctive
Normal Form (CNF), i.e. a product-of-sum representation.
For this representation, several (backtracking) algorithms (so
called SAT solvers) have been proposed in the past (e.g. [21],
[22], [23], [8]). Most of them are based on three essential
procedures: (1) The decision heuristic assigns values to free
variables, (2) the propagation procedure determines implica-
tions due to the last assignment(s), and (3) the conflict analysis
tries to resolve conflicts by backtracking that occur during the
search. Thereby, advanced techniques as e.g. efficient Boolean
constraint propagation [23] or conflict analysis [22] are ex-
ploited. These enable the consideration of problems with more
than hundreds of thousands of variables and clauses. Thus,
today SAT solvers are core solve engines for many application
domains. Thereby, the real world problem is transformed into
CNF and then solved by using a SAT solver as black box.

However, due to the increasing complexity of many prob-
lems, researchers investigated the use of higher levels of
abstractions than CNF – by still exploiting the established SAT
techniques. This leads to the development of SMT solvers.

Here, the satisfiability problem is expressed e.g. by Quantifier-
Free Bit-Vector (QF BV) logic which is defined as follows:

Definition 2: A bit-vector is an element ~b =
(bn−1, . . . , b0) ∈ Bn. The index [ ] : Bn × [0, n) → B
maps a bit-vector ~b and an index i to the ith component of
the vector, i.e. ~b[i] = bi. The conversion from (to) a natural
number is defined by nat : Bn → N (bv : N → Bn) with
N = [0, 2n) ⊂ N and nat(~b) := Σn−1

i=0 bi · 2i (bv := nat−1).
Problems can be specified by using bit-vector operations as

well as arithmetic operations. Let ~a,~b ∈ Bn be two bit-vectors.
Then, the bit-vector operation ◦ ∈ {∧,∨, . . . } is defined by
~a ◦ ~b := (~a[n − 1] ◦ ~b[n − 1], . . . ,~a[0] ◦ ~b[0]). An arithmetic
operation • ∈ {∗,+, . . . } is defined by ~a•~b := nat(~a)•nat(~b).
For brevity, in the following nat(~a) is also written as a.

Satisfiability problems in QF BV logic are solved either
by (1) using a combination of a traditional SAT solver and
a specialized (bit-vector) theory solver (see e.g. [24], [25]),
(2) pre-processing the instance exploiting the higher level of
abstraction before bitblasting it to a traditional SAT solver (see
e.g. [26], [27]), or (3) using specialized solvers that directly
work on the bit-level of the problem (e.g. [28], [29]).

III. SMT-BASED STIMULI GENERATION

This section introduces the SMT-based approach for
constraint-based stimuli generation. As described in Sec-
tion II-A, the current constraint-solver of the SCV library
uses BDDs. Limits of this method are discussed in the first
part of this section. Then, we introduce the SMT approach
which replaces the BDD-based constraint-solver. Using this
as a basis, strategies to determine good distributions are given
in the next section.

A. Limits of BDDs
In the SCV library, constraints are represented by means of

BDDs. This allows a compact representation of the respective
characteristic function. Furthermore, a uniform distribution
among all possible stimuli is ensured.

The flow of the BDD-based stimuli generation is depicted in
the upper part of Fig. 2. By instantiating the SCV constraint,
an expression tree of the constraint is generated. Afterwards,
this tree is traversed to build the respective BDD. Stimuli
are obtained by randomly selecting a weighted 1-path of
the BDD which represents a satisfying assignment to the
constraint [30]. Using the improvements for the SCV library
as described in [18] a uniform distribution results, even if
constraint variables are fixed to certain values.

However, even though BDDs are very successful as a com-
pact data-structure for large Boolean functions, their capabili-
ties are limited. More precisely, for many (practical relevant)
functions no compact BDD can be built. As an example,
it has been proven, that BDDs representing multiplication
always have exponential size with respect to the number of
input variables regardless of the variable ordering [31]. Since
arithmetic operations like multiplication often occur in SCV
constraints, this becomes the bottleneck of stimuli generation
for many systems.

Besides that, also the above mentioned uniform distribution
of stimuli is often sub-optimal. In many cases a uniform
distribution is desirable not with respect to all solutions,
but with respect to the control parts of the device under
verification. For example, if stimuli for an Arithmetic Logic
Unit (ALU) are generated, each ALU-operation should be
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tested by the same number of stimuli. However, using the
current BDD-based SCV implementation this is not possible
(see also Section V).

B. Integrating SAT Modulo Theories
To overcome the mentioned limitations (in particular the ca-

pability problems), SMT-based constraint solving is proposed
in this section. To this end, the BDD engine is replaced by
an off-the-shelf SMT solver as depicted in the lower part of
Fig. 2. This requires the SCV constraint to be encoded as an
SMT instance first.

Table I shows the operations available in the SCV library
as well as their counterparts in QF BV logic. As can be seen,
most of the SCV operations can be represented directly by
QF BV operations. The same holds for most of the variable
definitions that can be converted to bit-vector variables as
defined in Definition 2. In doing so, the SCV constraint can be
easily encoded as an SMT instance which is afterwards passed
to the respective solver. In contrast to BDDs, this lifts the solve
process from the Boolean level to a higher abstraction, where
the original operations (in particular arithmetic) are preserved
and thus the solve engine can exploit more information.

As a drawback, SMT solvers are designed to determine a
single satisfying solution, i.e. only one stimulus is generated
for each instance. To generate more than one stimulus, solu-
tions must be blocked, otherwise the same solution is found
again due to the deterministic behavior of the SMT solver.
Therefore, new constraints excluding already found solutions
from the solution space are added. Then, the solver is restarted
which leads to a new solution and stimulus, respectively. This
is repeated until either the desired number of stimuli have
been generated or the instance becomes unsatisfiable (i.e. all
solutions have been determined).

Example 2: Consider the SCV constraint given in Fig. 1.
Encoding this into an SMT instance and solving it with an
SMT solver may lead to the first stimulus a = 101, b = 0, and
addr = 1. To block this solution, an additional SCV constraint
stating a 6= 101 ∨ b 6= 0 ∨ addr 6= 1 is added. Thus, a new
valid solution could be a = 102, b = 0, and addr = 1.

IV. DISTRIBUTION OF GENERATED STIMULI

Performing SMT-based stimuli generation as described in
Section III-B leads to sub-optimal distributions of generated
stimuli. More precisely, due to the blocking of previously
found solutions two consecutive stimuli may only slightly
differ, e.g. in one variable (see Example 2). In contrast,

TABLE I
SCV TO SMT (QF BV) MAPPING

SCV SMT
EQUAL =
NOT_EQUAL not (= )
GREATER_THAN bvugt,bvsgt
LESS_THAN bvult,bvslt
GREATER_OR_EQUAL bvuge,bvsge
LESS_OR_EQUAL bvule,bvsle
AND and
OR or
NOT not
PLUS bvadd
MINUS bvsub
MULTIPLY bvmul
BITNOT* bvnot
BITAND* bvand
BITOR* bvor
BITXOR* bvxor
BITSELECT* extract
BITSLICE* extract

*Extensions from [18].

solutions from a significant different part of the search space
or triggering a new operation of the device under verification
are desired. In this section, we introduce strategies for SMT-
based stimuli generation resulting in well-distributed solutions.
Thereby, specialized types of blocking constraints, random
pre-assignments, as well as utilization of control variables
are applied. Furthermore, strategies for selecting the obtained
solutions as stimuli are presented. Finally, we show how the
case of overconstraining (caused by an iterative use of the
techniques) can be handled.

A. Determine Distributed Solutions
To achieve good distributions of stimuli, the solution space

of the respective SMT instance must be restricted, so that the
solver is forced to determine solutions from different areas of
the search space. For this task, three strategies are introduced
in the following.

The first one uses blocking constraints as already intro-
duced in Section III-B. In total, four variations of blocking
constraints are proposed:
• Total Blocking

The complete assignments to previously found solutions
are blocked. This is equal to the blocking constraints
introduced in the last section and ensures, that the same
assignments will not be determined by the solver again.
As a result, a very small part of the solution space is
blocked and further solutions might be quite similar to
the already found ones (i.e. the overall distribution might
become sub-optimal).

• Partial Blocking
Only partial assignments of the previously found solu-
tions are considered, i.e. some variable assignments are
blocked while others remain unrestricted. As a result, a
significantly larger part of the search space (the ‘sur-
roundings’ of the already found solutions) is excluded.
This forces the solver to find more different stimuli but
may lead to an early overconstraining (i.e. an exclusion
of all remaining solutions).

• Interval Blocking
Interval blocking is a special case of partial blocking,
where – based on the already found solutions – intervals
are excluded from the search space.

• Bitmask Blocking
Some bits of the assignments to previously found so-
lutions are blocked. To this end, a random bitmask is
generated and compared to the variable assignments.



s t r u c t ALU : p u b l i c s c v c o n s t r a i n t b a s e {
s c v s m a r t p t r <sc bv<2> > op ; / / c o n t r o l
s c v s m a r t p t r <s c u i n t <12> > a , b ;

SCV CONSTRAINT CTOR(ALU12) {
SCV CONSTRAINT ( ( op ( ) != 0x0 ) | |

( 4095 >= a ( ) + b ( ) ) ) ;
SCV CONSTRAINT ( ( op ( ) != 0x1 ) | |

( ( 4 0 9 5 >= a ( ) − b ( ) )
&& ( b ( ) <= a ( ) ) ) ) ;

SCV CONSTRAINT ( ( op ( ) != 0x2 ) | |
( 4095 >= a ( ) ∗ b ( ) ) ) ;

SCV CONSTRAINT ( ( op ( ) != 0x3 ) | |
( b ( ) != 0 ) ) ;

}
} ;

Fig. 3. Example constraint

Where the bitmask is one the respective assignment is
blocked.

Example 3: Again, consider the SCV constraint given in
Fig. 1. The following constraints can be added to generate
distributed solutions:
Total Blocking: a! = 101 ∨ b! = 0 ∨ addr! = 1
Partial Blocking: a! = 101
Interval Blocking:
a < 50 ∨ a > 150 ∨ b < 0 ∨ b > 50 ∨ addr < 0 ∨ addr > 50
Bitmask Blocking:
~a[57] 6= 0 ∧ ~a[52] 6= 0 ∧ · · · ∧ ~a[0] 6= 1 ∧~b[61] 6= 0 ∧ . . .

As second strategy, variables are (partially) pre-assigned to
direct the SMT solver into other parts of the search space.
Thereby, random values are used and applied to randomly
chosen bits of the SCV variables. In doing so, widespreaded
solutions may result, but the possibility of overconstraining
increases since a pre-assignment can be applied for which no
satisfying solution exists any longer.

Finally, the third strategy exploits information of control
and data paths of the device under verification. Here, in
addition to the SCV constraint, the verification engineer also
provides whether an SCV variable belongs to the control path
(e.g. the variable controls the operation of an ALU). Then, to
obtain well-distributed solutions with respect to all possible
operations of the device under verification, the following
strategies can be applied:
• Force a Change

Two consecutive solutions include different assignments
to the control variables. This ensures, that consecutive
stimuli are generated, triggering the simulation of two
different operations.

• Assign Control Signals
Pre-assigning the control variables to (random) values.
This ensures, that different (random) operations are sim-
ulated.

Example 4: Consider the SCV constraint in Fig. 3, which
is used as basis for stimuli generation of an ALU. The
variable op is marked as control variable that selects the
respective operation to be performed.

Force a Change: Let op = 1, a = 411, b = 31 be a
determined solution. Then, the constraint op 6= 1 is added
for the next stimulus generation.

Assign Control Signals: Since in total there are four possible
assignments to op, for each stimulus generation run, one of
the constraints op = 0, op = 1, op = 2, or op = 3 is added,
respectively, while the previous constraint is removed.

B. Choosing Solutions
The strategies introduced so far help to obtain different

solutions. Besides that, how to select solutions as stimuli
has an effect on the resulting distributions. To this end, the
following methods are proposed:
• Skip Solutions

Instead of using each determined solution a number of
solutions can be skipped. Because the skipped stimuli are
still generated – but not used – the applied strategy still
generates constraints for these. This can help traversing
different parts of the solution space.

• Consider All Solutions
The best results regarding the distribution can be achieved
by determining all solutions. Then, each solution can
be selected with equal probability. On the other hand,
this obviously requires a large amount of run-time and
memory, respectively. Thus, this is only possible for small
solution spaces.

• Apply FIFO
A trade-off to the consideration of all solutions is the
application of a FIFO structure. In this structure, a certain
number of solutions is stored. Each time a stimulus is
selected, older solutions are replaced by new ones.

C. Handling Overconstraining
The proposed strategies constrain the search space in dif-

ferent ways. Some strategies are very restrictive so that an
overconstraining may occur very fast, i.e. constraints are added
such that the resulting SMT instance becomes unsatisfiable.
To handle this, some of the additional constraints must be
removed. Therefore, the following strategies are proposed:
• Remove All Random Constraints

Remove all constraints including random elements (e.g.
random pre-assignments or bitmasks). This may lead to
duplications.

• Remove Old Constraints (FIFO)
Remove the oldest constraint that have been added. If
then the instance is still unsatisfiable, remove the next-
oldest element until the overconstraining is solved. For
this purpose, a FIFO structure is used to store the
constraints.

V. EXPERIMENTAL EVALUATION

The SMT-based stimuli generator as well as the strategies
for determining distributed solutions as introduced in Sec-
tion III and Section IV, respectively, have been implemented
in C++ and integrated into the SCV library. In the following
we give a comparison of the proposed techniques (using
Boolector [27] as SMT solver) and the original BDD-based
SCV library.

The following SCV constraints have been used to demon-
strate the effects1:
• bv256 neq: A comparison between two 256-bit variables
• add: An addition of two 32-bit variables where the sum

is forced to be equal to 999999
• mult32: A multiplication of two 32-bit variables where no

further restrictions are applied ( abc) and where the prod-
uct is forced to be within the interval [1027, 1072693248]
( uplow), respectively

1Due to page limitation only a small set of benchmarks is presented here.
However, the benchmarks include representatives of arithmetic, control logic,
as well as a mixture of both and thus are sufficient to show the effects.



• ALUXX: An ALU constraint as the one depicted in Fig. 3
where XX denotes the bit-width of the data variables

For measuring the distribution of the solutions the normal-
ized Hamming distance (ham) has been used. More precisely,
the sum of the hamming distances for all generated stimuli
divided by the number of all distances is applied (i.e. the
higher the value of the normalized hamming distance, the
better the distribution). Besides that, also the number of
duplicates (dupl) is considered to evaluate the quality of the
distribution.

In our experiments, for each SCV constraint 1000 stimuli
are generated using the following methods:
• BDD: The original SCV environment based on BDDs
• SMT-TB: The naive SMT-based stimuli generation using

total blocking (TB) of previous solutions
• SMT-BB OR: The SMT-based stimuli generation using

bitmask blocking (BB) to avoid previously found solu-
tions; in case of overconstraining, the oldest blocking
constraint is removed (OR)

• SMT-BB OR F64,4: The SMT-BB OR strategy (see
above) combined with a FIFO storing 64 solutions from
which 4 elements are replaced each time (F64,4)

• SMT-INT: The SMT-based stimuli generation using inter-
val constraints (INT) to avoid previously found solutions

• SMT-INT OR: The SMT-based stimuli generation using
interval constraints (INT) to block previously found so-
lutions; in case of overconstraining, the oldest blocking
constraint is removed (OR)

• SMT-PB OR: The SMT-based stimuli generation using
partial blocking (PB) to avoid previously found solutions;
in case of overconstraining, the oldest blocking constraint
is removed (OR)

• SMT-TB PAV: The SMT-based stimuli generation using
total blocking (TB) and (partially) pre-assigned variables
(PAV) to avoid previously found solutions

• SMT-TB PAV CC: The SMT-TB PAV strategy (see
above) combined with forcing changes on control vari-
ables (CC)

• SMT-TB PAV PAC: The SMT-TB PAV strategy (see
above) combined with pre-assigning of control variables
(PAC)

In the experiments, for each benchmark a timeout of 900 CPU
seconds has been set using an AMD Athlon 3500+ with 1 GB
of main memory.

The resulting run-times (in CPU-seconds) and the informa-
tion for the distribution (normalized hamming distance and
number of duplications) are given in Table II and Table III,
respectively. In case of timeout (denoted by ∗) or overcon-
straining (denoted by †) only the number of stimuli generated
so far are shown in Table II. Note that, to compare the quality
of the approaches, both tables (i.e. run-time and distribution)
must be considered together.

As can be seen, the original SCV environment (BDD)
easily handles bv256 neq and uaubc999999 but suffers from
time outs as soon as multipliers occur in the respective SCV
constraint. In contrast, the naive SMT-based approach (SMT-
TB) is able to generate the desired 1000 stimuli for all
benchmarks in reasonable time (see first two rows of Table II).
However, the distribution obtained by the SMT-based approach
is poor (see first two rows of Table III). This emphasizes the
need for advanced strategies as proposed in Section IV.

But not all developed strategies lead to the desired results
(i.e. fast stimuli generation and good distribution). More

precisely, SMT-BB OR F64,4, SMT-INT, SMT-BB OR, and
SMT-INT OR are not applicable since they cannot complete
all benchmarks within the timeout. Furthermore, SMT-PB OR
is not suitable due to the high number of generated duplicates
(e.g. for ALU12 696 of the 1000 generated stimuli are du-
plicates). Thus, all approaches listed in rows 3-7 of Table II
and Table III, respectively, are not applicable due to the high
run-time or low quality of the distribution.

In contrast, the remaining strategies SMT-TB PAV, SMT-
TB PAV CC, and SMT-TB PAV PAC (lower rows of Table II
and Table III) offer the best trade-off between run-time and
distribution. All of them directly exclude previous found
solutions and thus avoid duplicates. Furthermore, the ham-
ming distance is significantly higher than for the naive SMT
approach (SMT-TB) while the run-time remains moderate.

Finally, the effect of the strategies that incorporate control
path information are considered in detail. This is done by con-
sidering the example of ALU12. Fig. 4 shows the distribution
(with respect to the stimulated operations) for the respective
approaches (i.e. SMT-TB PAV, SMT-TB PAV CC and SMT-
TB PAV PAC) as well as for BDD and SMT-TB. Here, the
poor distribution of SMT-TB is not surprising. But also the
BDD-based approach does not lead to a uniform distribution.
Thus, to achieve a uniform distribution over all operations of
the device under verification, other methods must be used. In
this case, the strategy SMT-TB PAV PAC, which incorporates
the control variables, provides the best distribution of the
stimuli.

Altogether, for the general case good results are obtained by
applying the strategies SMT-TB PAV, SMT-TB PAV CC, and
SMT-TB PAV PAC. If additionally control path information
is available, a uniform distribution over all operations can be
achieved using strategy SMT-TB PAV PAC.

VI. CONCLUSIONS AND FUTURE WORK

In this work, SMT-based stimuli generation for the SCV
library has been introduced. We showed, that using an SMT
solver instead of BDDs leads to a more robust stimuli gener-
ation (in particular if complex arithmetic occurs in an SCV
constraint as this is the case for many practical relevant
problems). As a drawback, simply replacing the BDD engine
by an SMT solver leads to poor results with respect to
the distribution of constraint solutions. Thus, we proposed
several strategies forcing the solver to generate stimuli from
different parts of the search space. Our experiments show the
effectiveness of these strategies.

In future work, we plan a tight integration of the proposed
concepts into the SCV library, i.e. without generating a sepa-
rate SMT instance for each stimulus. For this purpose, e.g. the
recently published C-interface of Boolector [27] can be used.
Furthermore, strategies directly integrated in the solve engine
should be developed. More precisely, instead of excluding un-
wanted solutions by means of additional constraints, the search
process of the solver should be influenced e.g. by adjusting the
decision heuristics or by modifying propagation strategies so
that parts of the search space are pruned depending on the
current (partial) assignment.
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SMT-TB 720,40 90,13 437,15 271,12 5,57 5,91 5,94
SMT-BB OR F64,4 (∗227) (∗630) (∗161) (∗219) 97,52 (∗882) (∗579)
SMT-INT (∗559) (†3) (∗562) (†36) (†523) (†268) (∗973)
SMT-BB OR (∗950) 110,43 (∗719) (∗830) 6,80 6,72 7,64
SMT-INT OR (∗580) 10,75 (∗618) 362,74 8,24 6,37 7,20
SMT-PB OR 312,83 54,76 419,85 320,53 3,49 3,35 2,61
SMT-TB PAV 356,96 282,12 121,84 288,33 6,35 6,10 6,08
SMT-TB PAV CC 351,66 280,50 122,68 292,40 7,07 6,89 7,41
SMT-TB PAV PAC 345,59 270,89 121,50 288,64 7,71 7,31 7,16

In case of overconstraining (denoted by †) or timeout (denoted by ∗), respectively, the number of generated stimuli so far is given instead.

TABLE III
DISTRIBUTION (NORMALIZED HAMMING DISTANCE, NUMBER OF DUPLICATES)
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ham dupl ham dupl ham dupl ham dupl ham dupl ham dupl ham dupl
BDD 127.70 0 10.01 0 – – – – 6.42 0 – – – –
SMT-TB 2.50 0 5.05 0 2.50 0 3.69 0 2.50 0 2.50 0 2.50 0
SMT-BB OR F64,4 6.17 39 8.79 132 12.83 33 6.00 46 5.79 246 6.62 169 6.41 92
SMT-INT 6.35 0 6.50 0 14.61 0 3.32 0 4.96 0 4.18 0 10.19 0
SMT-BB OR 5.96 0 18.29 0 10.13 0 5.14 0 4.99 0 5.75 0 5.64 0
SMT-INT OR 5.98 0 7.46 755 7.06 0 3.69 366 5.05 6 4.85 76 7.51 0
SMT-PB OR 3.97 220 6.66 193 9.69 73 6.74 204 2.70 696 2.77 693 2.65 742
SMT-TB PAV 48.29 0 7.29 0 6.07 0 5.04 0 3.05 0 3.20 0 3.06 0
SMT-TB PAV CC 49.10 0 7.47 0 6.21 0 5.08 0 3.23 0 3.80 0 6.54 0
SMT-TB PAV PAC 47.85 0 7.38 0 6.23 0 5.17 0 3.38 0 3.97 0 6.79 0

The normalized hamming distance (ham) and the number of duplicates (dupl) for the generated stimuli (up to 1000)
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