AUTOMATIC DEBUGGING OF SYSTEM-ON-A-CHIP DESIGNS

Frank Rogin’, Rolf Drechsler?, Steffen Ruilke'

' Fraunhofer Institute for Integrated Circuits, Division Design Automation, 01069 Dresden, Germany
{frank.rogin,steffen.ruelke}@eas.iis.fraunhofer.de
2 University of Bremen, Institute of Computer Science, 28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

ABSTRACT

Designing System-on-a-Chip (SoC) using sys-
tem-level languages is becoming a standard in
industry. However, the non-deterministic semantics
of such parallel languages could yield failures that
are hard to debug. In this paper, we present a new
approach that supports automatic debugging of SoC
designs written in SystemC using a method that iso-
lates failure-inducing process schedules.

I. INTRODUCTION

Designing SoCs requires new design methods
to address corresponding challenges such as an
increasing design complexity, or the co-design of
hard- and software. System-level design is a prom-
ising approach where SystemC is one of the most
popular design languages enabling concepts such
as object-orientation, high-level modelling, and con-
currency. Unfortunately, language features such as
multithreading and event-based communication
increase program complexity and introduce non-
determinism in the system behavior. Thus, debug-
ging SystemC designs can be challenging, in partic-
ular in the face of errors such as deadlocks or races.

This paper introduces a new approach that
automates the debugging of SoC designs written in
SystemC. Here, the delta debugging algorithm nar-
rows down the difference between a passing and a
failing process schedule. The resulting schedule can
be used by the designer to debug the actual failure
cause in the design more quickly and systematically.

Delta debugging was developed by Zeller and
Hildebrandt [1] for the software domain. They used
the algorithm to isolate failure causes in the program
input, in process schedules of parallel programs, or
due to code changes. Misherghi and Su present
Hierarchical Delta Debugging [2] that uses data
semantics to handle more complex problems.

A number of specialized approaches detect and
debug certain hard to find errors in parallel pro-
grams: Cheung et al. present an approach [3] that
monitors a SystemC simulation and reports a dead-
lock based on a synchronization dependency graph.

A similar approach is used in the Metropolis
environment [4]. Both approaches dynamically
report deadlocks while delta debugging performs a
post-mortem analysis and suggests a fix.

A number of tools, e.g. [5], [6], [7], instrument
software programs to detect race conditions. Lock-
set-based tools associate and evaluate lock candi-
date sets used to protect a shared location. The
happens-before analysis algorithm uses clocks to
compare time stamps when a shared location is
accessed. Code instrumentation hampers an appli-
cation of proper tools in production systems. More-
over, dynamic race detectors are not sound, i.e.
they only check code that is actually executed which
is similar to our approach. Finally, these tools are
only able to find races while delta debugging is a
more general approach.

Based upon an abstraction of the implemented
system, formal verification is used to verify particular
program properties such as liveness [8], [9]. Due to
the state explosion problem, formal techniques do
not scale very well for complex concurrent systems
but if the analysis terminates, the results are precise
and sound. Our approach bases on simulation and
can handle complex, real-world system designs.

Several tools use static analysis to detect race
conditions or deadlocks in programs, e.g. [10], [11].
Since static analysis relies on conservative approxi-
mations, false alarms are a problem for the accep-
tance of these techniques.

The paper is organized as follows: Section Il
presents the debugging approach. In Section Il its
application for SystemC process schedules is
detailed while Section IV summarizes experimental
results. Finally, Section V concludes the paper.

Il. AUTOMATIC DEBUGGING APPROACH

A. Requirements

The basic idea of the presented debug proce-
dure is a systematic test of each difference between
a failing and a passing test case, and to check
whether the failure still exists. If the failure disap-

pears, the cause for that particular failure is found.
An algorithm implementing the described procedure
shall meet the following requirements:

* Narrowing down strategy. A strategy has to nar-
row down the difference between passing and
failing test cases systematically and efficiently.

* Rating strategy. An automated test function has
to assess a newly created alternate test case
whether the failure has disappeared.

B. Methodology

A simple and often used debug procedure is
simplification which removes aspects from a failing
test case as long as they are irrelevant to produce
the observed failure. A more efficient approach is
delta debugging, abbreviated dd, (see [1] for
details). It bases on isolation where a minimal differ-
ence between a passing and a failing test case is
calculated. Whenever the new test fails, the failing
test case cr is "reduced" while if the test passes,
the passing test case ¢, is "increased". Hence, the
algorithm narrows down the minimal difference
between a passing and failing test case.

Despite the automated procedure to isolate an
actual failure cause, a human user is often more
creative during debugging, and thus possibly finds
the failure cause faster. Nevertheless, an automated
procedure is less error prone and systematically
tests the complete search space.

lll. DEBUGGING OF PROCESS SCHEDULES
The non-deterministic SystemC scheduler can

cause many failures that are difficult to debug manu-

ally, e.g. deadlocks or data races. To apply delta
debugging in the SystemC context, a debugging
environment has to provide the following features:

» Deterministic record/replay. The SystemC
scheduler is extended by a record/replay facility
for simulation runs that allows to handle process
activations in terms of process schedules.

» Isolating failure causes. The dd algorithm auto-
matically narrows down the failure-inducing
minimal difference between a passing and a
failing process schedule. The resulting schedule
produces a failure iff a particular method or
thread process is activated at a specific point in
time during simulation.

* Root-cause analysis. The system design is
debugged while replaying the reported failure-
inducing process schedule. Here, the debug-
ging environment presented in[12] aids the
designer in locating the failure-causing defect.
Fig. 1 depicts the particular debug process.

‘ User activates schedule recording

Resimulate

| SystemC Design |

\

Debugging Environment (record)

Recorded process schedule
Pass or fail
of schedule?

chedules available?

-
o,
@

Passing
schedule

no schedule

Deterministic record yes

Start delta debugging * + Passing/failing schedule

4
SystemC Design |

Debugging Environment (replay)

Test result - pass/fail/unresolved ‘ Passing/failing schedu|esw

Isolating failure cause v

 J Minimal process schedule

Y Debug process activations

SystemC Design |

Debugging Environment (replay)

Root-cause analysis

Y Actual failure cause

Figure 1: Isolating failure-inducing process schedules

First, the simulation is run in the record mode to
capture a process schedule that is subsequently
tested for pass or fail. As soon as a passing and a
failing schedule are available, the failure-inducing
difference is isolated between them using dd. After
analysis, the reported minimal process schedule is
used to debug the erroneous simulation.

A. Deterministic record/replay facility

A SystemC design executes all its method and
thread processes in a non-preemptive fashion. Each
process activation is determined by the execution
logic and is represented by a particular point in time.

Definition 1. A tuple (t;, 5,,) with the simulation time
t, with 0<t;<t,, and the n" delta cycle &, with
n>1 is called an activation time point. T is the set
of all activation time points.

Definition 2. Let T be the set of all activation time
points for a SystemC design D. A 4-tuple
S = (P, T, =, f) is called process schedule of D with

* P: the finite set of instantiated method and
thread processes in D,

» T : the finite set of activation time points for D,

* n: the sequence m = (t;,84), ... , (tang> Ocng) OF
activation time points, and

» f: the function f: (t,9,) — P* assigning each
activation time point a number of processes to
be consecutively activated at this time point.

If the record mode is enabled during simulation,
the debugging environment records all activated
processes at the different activation time points until
the specified end time t,,, is reached.

A recorded process schedule S is replayed dur-
ing the activated replay mode in five phases:

1. Initialization phase. This phase initializes all pro-
cesses in P and sets the simulation time t; to
the first recorded activation time point in &, i.e.
(t,8,) withi=0andn = 1.

2. Evaluation phase. All processes p € f(t;, §,) are
executed in the recorded order.

3. Update phase. This phase performs needed
channel updates to propagate data created by
previously activated processes.

4. Delta notification phase. After delta notifications
have been processed, the next element of &t is
retrieved. In case, processes become active at
(t;09,4,1), nissetto n=n+1 and step 2 is
executed, again. Otherwise step 5 is processed.

5. Timed notification phase. The timed notifica-
tions are processed. If &t is finished, the simula-
tion stops. Otherwise step 2 is called with the
current element of 1.

Since the dd algorithm generates virtual new
process schedules without any knowledge of the
SystemC simulation and program semantics, the
schedule consistency has to be checked for validity.
A schedule is discarded (unresolved test result), if
* a process is activated twice at (t, 5,) without

being notified during a delta notification in ¢;,

+ the schedule file specifies the execution of a
process at (f, d,) that was already activated at
(t,9,_,) and where its execution was sus-
pended by a timed waiting statement,

+ the simulation logic determines a process that
becomes ready to run at (t;, 5,) through imme-
diate event notification but the recorded sched-
ule does not contain a proper activation, or

* aprocess suspends its execution at (¢, 5,) and
is waiting for a certain event but the process
schedule instructs its activation at (t;, .5,)
without the particular event notification has
been occurred.

B. Isolating Failure Causes

The implementation of the dd algorithm is
straightforward (see [1]). Solely, the calculation of
the difference A between a passing process sched-
ule cp = Sp = (P, Tp, mp, fp) and a failing schedule

Table 1: lllustrating the first steps of the dd algorithm

Sk p Cr Ap Apq CpYUApy
0 0,1H"—>A (0,1)—>B 1 1 0,1 —>A
1 0,1H"—>B (0,1)—>A -1 -1 (0,1 —B
2 0,1HY—>A (5,3)—>8B 1 0 (5,3) > B
3 (5,3) >B [(54) —A] -1 0 [(5,4) = A]
4 (5,3) > A [(54) —A] 0 0 [(5,4) = A]

Cg = Sg = (P, Tk, ng, fr) needs to be defined. To do
this, each process activation in f, and fz is
assigned a unique slot number s,. The n" activa-
tion of a process p e P, written p”, is for instance
p" =s, in cp and p" = s, in cg. So, the differ-
ence between ¢ and cp for p” is calculated by
AplS,,] = S—S,,, sothat cp, U Ap= cr. The reduc-
tion step ¢\ Ar is implemented by a "reversed
delta" Ar which is calculated by Ag[s,] = s,,— Sk,
so that ¢ U Ar = ¢p. To mix both schedules, they
have to be possibly aligned using dummy slots that
are filled with virtual process activations.

The dd algorithm divides Ap and Ar into n dis-
joint parts with Ap=Ap,U..UA;, and
Ap = Ap 14U ... UAg . Hence, new schedules are
iteratively created by cp U Ap ; and cp U Ag ; where
the new target slot of a process activation is calcu-
lated by counting back the particular slot difference.
The activation time point (t,,) of a process is
taken from the target schedule, i.e. ¢, in case of
CeUAg; and cg in case of cp UAp ;. Then, the
new schedule is checked for consistency and is sim-
ulated to check for pass or fail.

Example 1. Table 1 shows the calculation of Ag
(column 4) as described in the paragraph above for
two process schedules cp and cg (column 2 and 3).
Using the first delta part Ar, generates a new
schedule (column 6) which is simulated afterwards.

C. Root-Cause Analysis

Finally, the reported minimized process sched-
ule is replayed. The system-level debugging fea-
tures presented in [12] allow to debug the location of
the defect that caused the actual failure using the
reported minimal process schedule.

IV. EXPERIMENTAL RESULTS

Fig. 2 sketches the general architecture of a
SystemC design definitely producing a deadlock
after a random time. Four types of threads try to
acquire four different resource types. During simula-
tion each thread instance tries to lock two particular
resource instances one after another to start "work-
ing". In case a lock does not succeed, the thread
waits for a random time and tries a relock. Since a

Thread A-1 | [Thread A2 | [ThreadB-1 | [Thread B2 |

1
1 2 1 2

1 2

Y Y
Resource 1 Resource 2

2
(Reso‘l:rce 3) (Resource 4)
A A

1

2 1

[ThreadC-1 | [ThreadC-2 | [ThreadD |

Figure 2: Architecture of the deadlock example

@ 5500 ps
@ 4 ns 23:

17: C-2 @ 6 ns
17: D 25: C-2
17: B-2 25: A-1
@ 4500 ps 25: C-1
19: 25: B-2
@ 5 ns 25: B-1
21: D

Figure 3: Extract of an exemplarily recorded process schedule

thread keeps the first resource locked, while it is
waiting for the availability of the second one, a dead-
lock will randomly occur. To test for a deadlock, a
resource allocation graph is created from the evalu-
ated simulation log. The graph allows to precisely
detect a deadlock whenever a cycle is found. Fig. 3
shows an extract of a recorded process schedule for
the SystemC design in Fig. 2.

Table 2 summarizes the analysis results run-
ning dd on the example with a clock period of 1ns.
The second column shows the initial difference
between passing and failing process schedules.
After constructing a virtual new schedule, it is written
into a file and is simulated, afterwards. Either the
new schedule results in a passing (column 4) or a
failing test outcome (column 5) or it is unresolved
(column 6) due to a violated simulation semantics
(see Section Ill.LA). As can be seen in Table 2, the
number of unresolved test outcomes has a major
impact on the algorithm performance (column 7). In
the current implementation the dd algorithm and the
SystemC simulation communicates via files which
hampers an efficient error search for long running
design simulations. Nevertheless, the experiment
demonstrates the applicability of dd to isolate fail-
ure-inducing process activations in SystemC
designs systematically in a finite and short time.

V. Conclusion

We have presented an approach that aids an
automatic debugging of complex SoC designs writ-
ten in SystemC. The approach narrows down the

Table 2: Running dd on the deadlock example

Sim.time Activations Test Pass Fail Unres. Analysis
inns difference runs tests tests tests time'
50 2,820 48 2 17 29 11s
100 16,330 158 6 17 135 40's
200 51,594 335 6 22 307 90s
300 51,972 218 4 33 181 65s
400 147,290 825 4 75 746 249 s
500 155,322 858 4 61 793 282s
1000 1,071,436 363 4 70 289 228 s
2000 7,716,550 617 11 202 404 1,831s

1. Test system. Intel Centrino Duo T2400@1830 MHz, 1GB RAM

minimal difference between a passing and a failing
process schedule using a set of experiments while
the reported difference pinpoints to the actual failure
cause. The experiments show that after a relatively
short time, the designer gets a result in any case.
So, a starting point is given especially when the
designer has no clue how to start debugging.

REFERENCES

1. A. Zeller and R. Hildebrandt, "Simplifying and Isolating Failure
inducing Input", IEEE Transactions on Software Engineering,
Vol. 28, No. 2, pp. 183-200, 2002.

2. G. Mishergi and Z. Su, "HDD: Hierarchical delta debugging",
Intl. Conference on Software Engineering, pp. 142-151, 2006.

3. E. Cheung, P. Satapathy, Vi Pham, H. Hsieh, and Xi Chen,
"Runtime deadlock analysis of SystemC designs", IEEE Intl.
HLDVT Workshop, pp. 187-194, 2006.

4. XiChen, A. Davare, H. Hsieh, A. Sangiovanni-Vincentelli, and
Y. Watanabe, "Simulation based deadlock analysis for system
level designs", DAC, pp. 260-265, 2005.

5. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson, "Eraser: A Dynamic Data Race Detector for
Multithreaded Programs”, ACM Transactions on Computer
Systems, Volume 15, Issue 4, pp. 391-411, 1997.

6. E. Pozniansky and A. Schuster, "Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs”, Principles
and Practice of Parallel Programming, pp. 179-190, 2003.

7. Y. Yu, T. Rodeheffer, and W. Chen, "RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking",
ACM SIGOPS Operating Systems Review, Volume 39,
Issue 5, pp. 221-234, 2005.

8. T.A. Henzinger, R. Jhala, and R. Majumdar, "Race checking
by context inference", Intl. Conference on Programming
Language Design and Implementation, pp. 1-13, 2004.

9. S.D. Stoller, "Model-checking multi-threaded distributed Java
programs"”, International SPIN Workshop on SPIN Model
Checking and Software Verification, pp. 224-244, 2000.

10. D. Engler and K. Ashcraft, "RacerX: Effective, Static Detection
of Race Conditions and deadlocks", ACM SIGOPS Operating
Systems Review, Volume 37, Issue 5, pp. 237-252, 2003.

11. C. Flanagan and S.N. Freund, "Detecting race conditions in
large programs", Workshop on Program Analysis for Software
Tools and Engineering, pp. 90-96, 2001.

12. F. Rogin, C. Genz, R. Drechsler, and S. Riilke, "An Integrated
SystemC Debugging Environment", Embedded Systems
Specification and Design Languages: Selected contributions
from FDL'07 (E. Villar Editor), Springer, pp. 59-71, 2008.

