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Abstract—Continuously shrinking feature sizes cause an in-
creasing vulnerability of digital circuits. Manufacturing failures
and transient faults may tamper the functionality. Automated
support is required to analyze the fault tolerance of circuits.

In this paper, ROBUCHECK is presented - a design tool to
analyze the fault tolerance of digital circuits. Engines based on
simulation and formal methods are integrated to identify compo-
nents that require additional fault protection. Consequently, an
overall estimation of fault tolerance of the circuit is determined.

I. INTRODUCTION

The increasing soft error rate caused by continuously shrink-

ing feature sizes demands for fault tolerance in digital circuits.

Transient or permanent faults may tamper the functionality of

the circuit. Precautions against soft errors are taken at different

design levels, e.g. architectural level, algorithmic level, or

layout level [21], [18].
Design tools are required to verify and analyze the fault

tolerance of circuits. Various techniques have been developed.

On the one hand there are simulation- or emulation-based

methods and on the other hand there are formal methods.
Methods based on simulation (e.g. [17], [3]) are fast but

cannot cover the complete input space and state space in

combination with all potential faults in reasonable time. In

contrast, formal methods (e.g. [8], [9], [15], [13]) are complete

by proving the fault tolerance with respect to the whole

input space. The integration of simulation-based methods and

formal methods is very powerful. Simulation yields results

even for very large systems where formal methods reach their

limits. But in contrast, formal methods guarantee completeness

and by this find corner case problems that would be missed

by simulation. Previous work does not describe a tool that

integrates the different approaches.
In this paper, the ROBUCHECK–framework to analyze the

fault tolerance of circuits is presented. ROBUCHECK uses the

underlying model of [9] to measure fault tolerance with respect

to transient faults. The fault tolerance is checked for any part in

the circuit, e.g. combinational logic and state elements. For this

purpose, simulation and formal analysis are integrated in one

framework. Moreover, the paper compares the formal engines

in terms of time and space complexity, respectively.
The presented framework can be embedded into the clas-

sical design-flow of digital circuits as shown in Figure 1.
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Fig. 1. Embedding in the design flow

When a Register Transfer Level (RTL) description is available

ROBUCHECK is used to analyze the circuit. Given a circuit

description, ROBUCHECK determines components that require

additional protection. Now, a designer uses the provided

information to improve the fault tolerance for non-robust com-

ponents. By iterating with ROBUCHECK, the designer checks

the implemented fault protection logic to achieve the expected

level of fault tolerance. The iteration stops, if required level

of fault tolerance is achieved.

ROBUCHECK integrates the previous work of [8], [9], [19],

[11], [10] to a full framework for automatic analysis of fault

tolerance. By this, additional methods for the classification

of single components and the usage of application specific

constraints are provided. Moreover, a visualization back-end

supports the designer during further design steps to improve

the fault tolerance.

The paper is structured as follows: The next section gives

an overview over ROBUCHECK and introduces the model used

during the analysis. Section III describes the underlying proof

engines in more detail. Finally, some use cases illustrate the

application of ROBUCHECK in Section IV. Section V presents

conclusions.

II. MODELING AND SYSTEM OVERVIEW

The underlying model and analysis methods are introduced

in Section II-A and Section II-B, respectively. Section II-C

gives an overview of the whole system.
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Fig. 2. Analysis

A. Model

ROBUCHECK supports the classification of fault tolerance

with respect to transient faults in the circuit [9]. For this

purpose, a circuit is divided into components, e.g. gates or

hierarchical structures. A component is classified non-robust,

if a fault at the component may tamper the output behavior.

A transient fault at a component is modeled by changing the

value at the component non-deterministically.

Using components as a base for the classification, allows

to restrict the analysis to single faults of components that

may correspond to multiple gate level faults in practice. For

example, using the n-bit output of an adder as component

covers all failures at the output and all failures of the internal

gates of the adder. As a result ROBUCHECKreturns unpro-

tected components as well as an overall estimation of the fault

tolerance of the circuit.

To prevent system failures, appropriate actions have to be

taken if a transient fault occurs in a circuit. In practice,

mechanisms to achieve fault tolerance have to handle a fault

within a short period of time after the occurrence. Otherwise

the fault may propagate through the system. More precisely,

the fault should be corrected or reported within a predefined

number of clock cycles. Consequently, the analysis can be

limited to an observation window of k cycles which – as a

side effect – reduces the complexity of the analysis.

Based on this model ROBUCHECK partitions components

into three classes:

• A component is robust, if its failure cannot affect the

output behavior or the internal state of the circuit.

• A component is non-robust, if its failure may affect

the output behavior within the predefined observation

window.

• A component causes Silent Data Corruption (SDC),

if its failure cannot affect the primary outputs within

the predefined observation window but may corrupt the

internal state. For brevity, we also say that “a component

is classified as SDC”.

Based on this classification, bounds of the fault tolerance of

a circuit are defined. The lower bound is the percentage of

robust components. The upper bound is given by the percent-

age of components classified as robust or SDC. Additionally,

the model of [9] also exploits fault detection logic flagging

a fault signal after detecting a fault. This extension is also

included in ROBUCHECK.

B. Analysis

As suggested in [9], each component g is extended by fault

injection logic that allows to replace the original value of g

with a non-deterministic value. A transient fault is modeled

by activating the fault injection logic at g.

In Figure 2 a schematic view of the model for the analysis

is shown. The circuit under verification C and a copy C ′ with

fault injection logic are compared. Both circuits start in the

same arbitrary state denoted by S(0) and are stimulated by

the same input traces. According to the transient fault model

a single fault is injected in the first time frame, indicated by E.

For each time frame, it is check whether a fault affects the

outputs or state elements, respectively (indicated by == ?).

Based on this analysis components are classified robust, non-

robust, and SDC.

The constraints on S(0) significantly influence the computed

fault tolerance. If S(0) is too restrictive, i.e. not all reachable

states are considered while analyzing the design, too many

components may be classified as robust. On the other hand,

if non-reachable states are allowed on S(0) components may

be classified non-robust with respect to that scenario that does

not occur during normal operation. Computing the reachable

state set based on Binary Decision Diagrams (BDDs) [2] is

often infeasible in terms of memory and run time. A trade-

off between accuracy and computational overhead is possible.

ROBUCHECK integrates exact computation of reachable states

based on BDDs [2], but also supports the computation of over-

and under-approximations [9].

Furthermore, constraints can be added to compute fault

tolerance with respect to a given specification [19]. For ex-

ample, if a program runs on a fault tolerant CPU, the data of

the program has to be taken into account. By constraining

input traces and memory states, only relevant data of the

desired program is considered, such that the fault tolerance

with respect to the program is computed.

C. System Overview

Figure 3 gives an overview of our framework. ROBUCHECK

automatically computes the fault tolerance given the following

input: i) the design under verification (in Verilog [12] or

BLIF format [7]); ii) the component model for the analysis,

e.g. register transfer level or gate level; iii) the length of the

observation window (k time steps).

Non-formal and formal engines are integrated into

ROBUCHECK to perform the analysis: a simulation-based

engine (SIM), an engine based on Sequential Equivalence

Checking (SEC), and an engine based on Automatic Test

Pattern Generation (ATPG). All engines use the same analysis

model (see Section II-A), but have specific advantages and

disadvantages.

The simulation engine provides a rough estimate about the

fault tolerance of the circuit. First components are classified

non-robust which reduces the search space for the following

formal analysis. A formal analysis based on SEC analyzes

the remaining components using a formal model of the full

circuit [9]. A model adapted from ATPG is capable to formally

analyze the fault tolerance of single components. The SEC-

engine and the ATPG-engine use a solver for Boolean Satisfi-
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Fig. 3. ROBUCHECK

ability (SAT) as a back-end [5], [6]. In the last decades, SAT

solvers have become very efficient due to sophisticated tech-

niques like e.g. conflict-analysis [14], Boolean constraint prop-

agation [16], and incremental learning [20]. The SEC-engine

and the ATPG-engine are core features of ROBUCHECK.

The graphical back-end of ROBUCHECK supports the de-

signer during subsequent analysis steps. Non-robust compo-

nents and components that cause SDC are highlighted in the

design and give an overview about parts that may be influenced

by transient faults and thus require additional fault protection

mechanisms. Non-robust components are visualized using the

strong visualization capabilities of RTLvisionTM [4]. Some

of the core features are: hierarchical schematic view, source

code browsing, and cross-probing between schematic view,

and source code.

III. ENGINES

This section briefly describes the engines and improvements

to speed up the analysis. Features of the engines are discussed.

A. Simulation

Randomized fault injection computes an initial set of non-

robust components. Faults are randomly injected and random

stimuli are applied to analyze the influence on the circuit’s

behavior. Whenever an injected fault becomes visible at a pri-

mary output, the component is classified as non-robust. When

the internal state is changed, SDC occurs. Simulation cannot

determine robust components, because typically a complete

simulation of all input stimuli is infeasible. The simulation

always starts from the reset state to avoid reachability issues

discussed above. The simulation stops, if i) a pre-defined

number of traces has been simulated or ii) all components

are classified as non-robust.

Fault simulation allows for a fast classification in case

of non-robust circuits. In contrast, for very robust circuits

the simulation causes an overhead as no components can be

classified.

B. Sequential Equivalence Checking

The SEC-engine performs a formal equivalence check of

the circuit under fault assumption and a fault free version

of the circuit. Given a circuit C , a copy C ′ containing fault

injection logic for all non-classified components is created.

Both circuits are unrolled up to a pre-defined number of time

frames according to the length k of the observation window as

specified by the user. Then, the behavior of the two circuits is

analyzed assuming that at most one transient fault is injected

into C ′ within the observation window. A cardinality constraint

is applied to ensure that the fault injection logic at exactly one

component is activated.

Starting with a single time frame, the classification starts

by forcing the outputs of C and C ′ to be different. If there

exists a fault, there exists an assignment to primary inputs

and to the initial state such that the primary outputs differ; the

component where the fault occurs is classified as non-robust.

In the same way components are classified as SDC by forcing

differing states between C and C ′. While components remain

that are classified as SDC, the classification proceeds. The

formal model is iteratively extended to additional time frames.

The classification stops, if i) all components are classified as

either robust or non-robust, or ii) the user-specified length of

the observation window is reached.

This formal model is similar to the one of Bounded Model

Checking (BMC) [1]. As an advantage all components can be

classified using a single formal model. But memory and run

time limits may be reached even for circuits of moderate size.

For this reason an additional ATPG-based engine is integrated

in ROBUCHECK.

C. Automatic Test Pattern Generation

The ATPG-engine classifies a single component at a time.

By this, the formal analysis on the ATPG-like model leads to

smaller instances and single components can be classified with

respect to a larger number of time frames. While the model for

SEC always contains the whole circuit, the model for ATPG

only contains the output cone of the component under con-

sideration and the transitive input cone of all primary outputs

included. Moreover, fault injection logic is only required for

the single component under consideration and fault free parts

of C and C ′ are shared. As in SEC the analysis proceeds by

iteratively extending the analysis starting from a single time

frame up to the length of the observation window.

The classification stops, if i) the component is classified as

non-robust or robust, or ii) the model reached the length of

the observation window.

D. Comparison

Table I shows a comparison of both formal engines. SAT-

instances are denoted by Φ in the following and |Φ| denotes

the size of the SAT instance given as the number of clauses.

The size |C | of a circuit C is given by the number of basic

gates (AND, OR, etc.) required for the realization. The length

of the observation window is denoted by k.

Given a sequential circuit C , the ATPG-engine creates a

SAT-instance ΦATPG only for the relevant parts with respect

to a single component. However, in the worst case the engine

may have to consider a fault free version and a faulty version

of the whole circuit. Thus, the size of the SAT instance is in

O(|C | · k) for analyzing k time frames.



TABLE I
COMPARISON OF FORMAL ENGINES

ATPG SEC

Size of SAT instance O(|C | · k)
two copies of C

Θ(|C | · k)
two copies of C plus fault
injection logic per comp.

Number of SAT instances |C | 1

Reuse of learned information for a single component;
for all time frames

for all components;
for all time frames

SAT-calls
r = #robust comp.,
n =#non-robust comp.,
u =#classified as SDC

O((r+n+u) · k) = O(|C | · k) O((n+u) · k)

Size of the search space 2|PI|k+|FF|+l 2|PI|k+|FF|+|C |·l

The SEC-engine always considers the whole circuit in the

SAT instance ΦSEC, i.e. the size of ΦSEC is in Θ(|C | ·k) when

considering k time frames. The size of the instances and the

memory usage of ATPG is smaller than for the SEC approach,

i.e. |ΦATPG| ≤ |ΦSEC|.
The second row gives the number of SAT-instances typi-

cally created by the engines. ATPG requires up to one SAT

instance per component that is iteratively extended to the full

observation window. The SEC approach only uses a single

SAT instance to classify all components.

This also explains the utilization of learned information in

the third row. ATPG learns information for a single component,

drops the SAT instance afterwards and starts from scratch for

the next component. The SEC engine accumulates learned

information for all components.

The number of SAT calls depends on the robustness of

the circuit. The ATPG engine handles each component indi-

vidually and thus requires one call per component and per

time frame. The SEC engine is more efficient on circuits with

a large number of robust components. Here, only one SAT

call is required to determine a large set of robust components

simultaneously.

Consequently, both engines are working on slightly different

search spaces. In principle, the SAT solver searches for full

assignments for all variables in the SAT instance. But given

the structural knowledge, after assigning values to variables

describing the initial state, the values of primary inputs and

the faulty values any other variable receives an assignment by

simulation (or Boolean constraint propagation in a SAT solver,

respectively). As shown in the last row, the ATPG engine

determines values for all flip-flops (FF) for the initial state, for

the primary inputs PI for all k time frames considered and for l

bits defining the output value of the faulty component, leading

to a search space of 2|PI|k+|FF|+l assignments. The SEC engine

additionally classifies which component is faulty, described by

a search space of 2|PI|k+|FF|+|C |·l assignments.

The formal engines create copies of the circuit in the

problem instances. Compared to this, the overhead to run the

simulation is very small. The simulation runs directly on the

internal circuit graph of ROBUCHECK. But only a single input

trace is considered at a time. Moreover, only a single fault can

be injected at a time to perform a correct analysis. Only if

the fault is injected at a component sensitized under the trace

and in the given state, erroneous output values or SDC can

be observed. As a result, simulation is relatively weak even

in identifying non-robust components but it is very fast and

handles large circuits.

IV. USE CASES

In this section, use cases for different circuits and different

configurations of ROBUCHECK are presented.

A. Detecting Implementation Weaknesses

The aim of ROBUCHECK is in verifying the fault tolerance

of a digital circuit and providing an overall measurement

of the robustness. The following use case demonstrates the

effectiveness of ROBUCHECK.

Assuming a designer has implemented a circuit with precau-

tions against transient faults using Triple Modular Redundancy

(TMR) of the functional units with voter logic. All signals in

the TMR modules are protected against transient faults given

a correct implementation of the voter logic. This correctness

can be checked using ROBUCHECK.

Exemplarily, the plain ITC’99 circuit b01 was extended to

a TMR implementation. The resulting circuit has two inputs

and outputs with overall 226 signals and 198 gates.

Due to the TMR implementation, the circuit masks single

faults and contains 98% robust components. Only primary

inputs and the logic that drives the primary output may be

affected by transient faults.

The formal engines are quite effective. Both formal engines

compute the exact fault tolerance within 20 seconds (SEC:
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TABLE II
INFLUENCE OF STATES

Name Lower Bound Upper Bound
Approx. Exact Approx.

b10 0.0% 0.4% 1.7% 1.7%
b10-par 81.3% 83.2% 83.2% 83.2%
b10-tmr 1.5% 8.9% 97.8% 97.8%
b10-tmrflt 97.8% 97.8% 97.8% 97.8%

12s, ATPG: 19s). In comparison to this, the engine based on

simulation required 50 seconds to simulate over two million

traces and 10.000 cycles. In this setting simulation and formal

analysis determined the same robustness values. However, no

proof can be given by the simulation engine whether there are

more non-robust components contained in the circuit or not.

Here, the formal engines provide a proof within a short run

time.

Figure 4 visualizes the results using the graphical back-end

of ROBUCHECK. Most components are robust (denoted by

output signal in green color or, if printed in greyscale, in light

grey). Only faults occurring directly at the primary inputs or at

the primary output cause erroneous output. The corresponding

non-robust components are marked in red or dark grey. The

circuit does not contain components that, if failing, only cause

SDCs without corrupting the output data.

B. Robustness Computation

In order to compute the exact robustness of a digital circuit,

the set of reachable states must be known. But the computation

of reachable states is expensive. Our approach is also able

to use an approximation of the set of reachable states to

approximate the robustness of a circuit [9] as explained in

Section II-B. To demonstrate the outcome, the ITC’99 circuit

b10 has been extended with: i) a parity checker for fault

detection (b10-par), ii) TMR without fault detection (b10-tmr),

and iii) TMR with fault detection (b10-tmrflt). Table II lists

results of the robustness computation for the exact and the

approximate approach. As explained in Section II-A a lower

and an upper bound are calculated. If all components are

classified the lower and the upper bound meet at a precise

value. Whether all components can be classified within the

observation window of 10 time steps depends on the circuit.

Consider the exact values at first. In case of b10-tmr silent

data corruption is not detected. Therefore a large set of

components remains non-classified resulting in a wide gap

between the lower bound of 8.9% and the upper bound of

97.8%. For the other circuits most but not all components are

classified. The approximate values are close to the exact values

for both bounds showing a good quality for the approximate

approach.

The advantage of the approximate approach are shorter

run times in all cases. The exact approach was 2 to 1000

times slower. In particular, the approximate approach can even

handle those circuits where the exact set of reachable states is

not available.

C. Detailed Example

In this section a detailed example is presented. The circuit

consists of three counters with voter logic. Figure 5 shows

an overview. All state elements are initialized to 0. When the

signal count is one, the internal counters are incremented by

one. Otherwise the internal value does not change. The output

value gives the current value of the counters. Moreover,

the three counter modules are synchronized at every sixth

clock cycle. The number of cycles that passed after the last

synchronization is given by the output cycle. After five clock

cycles majority voting is used to determine the value loaded

into each of the three submodules.

In Figure 6 the result of ROBUCHECK is presented. Results

for the exact set of reachable states are shown in Figure 6(a).

While the observation window is extended (along the x-axis)

more and more components are classified as being either

robust or non-robust. The upper bound decreases quite fast

to the final value of 82% – propagation of fault effects can

be done very fast in this circuit. The lower bound reaches

the final value only after analyzing six time frames. This is

the number of clock cycles required to re-synchronize the

counters, i.e. after six time frames SDC corruption is corrected.

Figure 6(b) considers an approximate check. The under-

approximation of reachable states leads to an upper bound

for the robustness. Non-robust components are classified

effectively for this circuit. In contrast an overapproximation of

reachable states which yields a lower bound for the robustness

remains relatively inaccurate. Here, a better approximation of

the reachable states can be applied.

This example shows how some insight into the circuit

helps to determine the observation window required to fully

analyze the circuit. Moreover, while ROBUCHECK is running,

intermediate results of the analysis are available until the full

observation window is reached.

V. CONCLUSION

The tool ROBUCHECK analyzes whether a circuit can be

corrupted by transient faults like single event upsets, etc.

Multiple engines are integrated to facilitate a high coverage of

the functional space of the circuit. The formal engines even

ensure that the full functional space under any potential fault

is analyzed. But the formal approach cannot be applied to very

large circuits. In this case a simulation based engine helps to

identify non-robust components in the circuit.
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