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Abstract—Additional lines are required to implement an irre-
versible function as a reversible circuit. The emphasis, partic-
ularly in automated synthesis methods, has been on using the
minimal number of additional lines. In this paper, we show that
circuit cost reductions can be achieved by adding additional lines.
We present an algorithm for line addition that can be targeted
to reducing the quantum cost of a circuit or the transistor count
for a CMOS implementation. Experimental results show that the
cost reduction can be significant even if (1) only a small number
of lines (even one) is added and (2) other circuit optimizations
have already been applied.

I. INTRODUCTION

The amazing developments in microelectronic technology
and the looming limitations are well known and well doc-
umented. Both, transistor density and power dissipation are
crucial issues for designing current high performance digital
circuits. For these reasons, researchers expect that in 10-20
years current technologies will reach their limits (see e.g. [1]).
It is thus important to consider alternative technologies. Re-
versible logic offers one such alternative due to its applications
in the domains of low-power design, quantum computation,
and bio-computing.

Landauer and Bennett showed in [2], [3], that power dis-
sipation is not only caused by non-ideal behavior of transis-
tors and materials, but also by a more fundamental reason.
Each time information is erased (e.g. when the irreversible
AND operation is computed), energy is dissipated as well.
Only if computation is information-lossless, can zero energy
dissipation be achieved. This holds for reversible logic since
only bijective operations are allowed (i.e. each input pattern
is mapped to a unique output pattern). Practical reversible
circuits have been built that exploit these properties [4]. In
fact, these circuits were powered by their input signals only
and did not need additional power lines.

Quantum computation is of interest, since it potentially al-
lows exponential speed-up of computation for many important
problems. This is because qubits, in contrast to traditional bits,
can assume a probabilistic superposition of the base states 0
and 1. As a result, a set of qubits can represent multiple states
at the same time enabling enormous computational speed-up.
Quantum circuits have been developed working with 8, 16,
and, recently, 28 qubits (see e.g. [5]). Reversible logic acts as
a framework for quantum computation since all quantum gate
operations are inherently reversible.

For the reasons cited above, reversible circuits and logic
synthesis have in recent years become well studied topics.
Many synthesis approaches for reversible logic have been
proposed (e.g. [6]–[15]). Except for very small cases, these
methods do not produce minimal results. Thus, post-synthesis
optimization is applied to reduce the cost of a circuit.

For example, template matching [11], [16], [17] is a search
method which looks for gate sequences that can be replaced
by alternative cascades of lower cost. The run-time increases
with both the number of applied templates and the number of
gates in the circuit and as a result can be quite high. But for
many circuits substantial improvement are achieved.

As a second example, Zhong and Muzio [18] showed how
analyzing cross-point faults can identify redundant control
connections in reversible circuits. Removing such control lines
reduces the cost of the circuit. However, the computation
needed to determine such redundancies is extremely high.

In this paper, we propose a post-synthesis optimization
technique which reduces the cost of the circuit by adding
further signal lines to the circuit. The general idea is to use
the new lines for “buffering” factors of gate control lines so
that they can be reused by the other gates in the circuit. This
reduces the size of these gates and thus decreases the cost
of the circuit. Both, quantum cost (used in quantum circuits)
and transistor count (used in CMOS implementations) are
considered.

A fast algorithm is presented along with results that show
it can be quite effective even if only a small number of lines,
even 1, are added. Since we consider the addition of lines
to a circuit (not to the functional specification), our approach
is applicable to circuits designed by any automated synthesis
method and in fact to circuits designed by hand.

Experiments show that applying our approach circuit cost
can be reduced by up to 70% with adding only a single
line. Thus, even for quantum realizations (where qubits and
hence the number of circuit lines are limited) adding a further
line is beneficial as it reduces the quantum cost significantly.
So, the designer can trade off the additional expenses of a
further circuit line for a significant reduction of quantum cost.
For CMOS realizations, the observed reductions are more
moderate. However, here the cost of adding a new line to
the circuit is negligible, so that the proposed optimization is
worthwhile for such circuits as well.

In previous work, it has already been observed that more
circuit lines usually lead to lower (quantum) cost (see e.g. [19]
or recently [20]). Moreover, the authors of [21] even showed
that some functions cannot be synthesized for certain gate
libraries unless one additional line is added. However, in this
paper these observations are exploited for the first time by
proposing a constructive post-synthesis optimization approach
for reversible logic.

The remainder of this paper is structured as follows: Section
II provides the necessary background on reversible circuits
for this paper. The general idea of the proposed approach is
introduced in Section III while Section IV describes the algo-
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rithm in detail. Experimental results are reported in Section V
and the paper concludes with observations and suggestions for
further research in Section VI.

II. REVERSIBLE LOGIC CIRCUITS

In this section, we provide the background on reversible
circuits necessary to make this paper self-contained. Readers
interested in a more extensive introduction to the subject
should consult the literature, e.g. [22].

Definition 1. A multiple-output Boolean function Bn → Bn

is reversible if it maps each input pattern to a unique output
pattern. Otherwise, the function is termed irreversible.

A reversible function can be realized by a circuit G =
G1G2 . . . Gk comprised of a cascade of reversible gates Gi

with no fan-out or feedback [22]. A reversible gate, itself
realizes a reversible function. Many reversible gates have
been proposed [22]. In this paper, we concentrate on multiple
control Toffoli and multiple control Fredkin gates which are
defined as follows:

Definition 2. A multiple control Toffoli gate (MCT) with
target line xj and control lines {xi1 , xi2 , . . . , xik

}, maps
(x1x2 . . . xj . . . xn) to (x1x2 . . . (xi1xi2 . . . xik

) ⊕ xj . . . xn).
Note that all control lines must be 1 for the target to be
inverted and an MCT gate is thus a controlled inversion of
the target line. An MCT gate with no control always inverts
the target line and is the well-known NOT gate. An MCT gate
with a single control line is called a controlled-NOT (CNOT)
gate. The case of two control lines is the original gate defined
by Toffoli.

Definition 3. A multiple control Fredkin gate (MCF) with
target lines xp and xq, and control lines {xi1 , xi2 , . . . , xik

},
maps (x1x2 . . . xp . . . xq . . . xn) to (x1x2 . . . xq . . . xp . . . xn)
if all the control lines have value 1. An MCF gate is thus
a controlled swap of the target lines. An MCF gate with no
control always swaps the target lines. The case of a single
control line is the original gate defined by Fredkin.

An MCT gate is denoted MCT (C; t) where C is the
possibly empty set of control lines and t is the target line. An
MCF gate is denoted MCF (C; tp, tq) where C is the possibly
empty set of control lines and tp and tq are the target lines.
Note that the control lines and unconnected lines pass through
both types of gate unchanged. For drawing circuits, we follow
the established convention of using the symbol ⊕ to denote
the target of an MCT gate, × to denote the targets of an MCF
gate, and solid black circles to indicate control connections.

Example 1. The circuit in Figure 1 realizes the irreversible
benchmark function RD53 (taken from RevLib [23]) as a
reversible circuit. Note that two constant input and four
garbage outputs are required.

The number of gates in a cascade is a very poor measure of
its complexity since the costs of MCT and MCF gates depend
on the number of control lines and the target technology. Thus,
we use two distinct cost models in this paper: transistor cost
and quantum cost. While the transistor cost model estimates
the cost of the circuit in terms of the number of CMOS
transistors, the quantum cost model estimates the cost of the
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Fig. 1. A Reversible Circuit Realizing RD53.

TABLE I
MCT GATE QUANTUM COST.

m (n − m) ≥ cost m (n − m) ≥ cost
1 1 8 5 62
2 1 8 1 100
3 5 8 0 253
4 13 9 6 74
5 2 26 9 1 128
5 0 29 9 0 509
6 3 38 10 7 86
6 1 52 10 1 152
6 0 61 10 0 1021
7 4 50 > 10 m − 3 12m − 34
7 1 80 > 10 1 24m − 88
7 0 125 > 10 0 2m − 3

circuit in terms of the number of elementary quantum gates.
More formally:

Definition 4. Transistor cost model: The transistor cost of
an MCT or MCF gate is 8 × m where m is the number of
control lines in the gate [24]. The transistor cost of a circuit
composed of MCT and MCF gates is the sum of the transistor
costs of the individual gates.

Definition 5. Quantum cost model: The quantum cost of an
MCT gate is given in Table I1 where m is the number of
control and target lines for the gate and n is the number of
circuit lines. The quantum cost of a circuit is the sum of the
quantum costs of the individual gates. The quantum cost of
an MCF gate with m control and target lines is calculated as
the cost for an MCT gate with that number of lines plus 2.

Even if these models provide better cost estimates than
simple gate count they are still only approximations. In par-
ticular, they do not take into account transistor or elementary
quantum operation reductions that can be made by combining
the realizations of MCT and MCF gates that are adjacent, or
can be moved to be adjacent, in the circuit. Achieving such
reductions in a systematic manner is a complex optimization
problem that we leave for future research. Instead we use the
well-established cost metrics defined above.

Quite often, the objective in synthesizing a reversible circuit
is not only to realize a reversible but also an irreversible
Boolean function. This requires the irreversible function to
be embedded into a reversible one which requires the addition
of constant inputs and garbage outputs defined as follows:

Definition 6. A constant input to a reversible circuit is one
that is set to a fixed value to achieve the desired functionality.

Definition 7. A garbage output from a reversible circuit is
one which is a don’t-care for all possible input conditions.

1Using the calculations introduced in [19] and further optimized in [17]
and [25].



In [25], it was shown that at least g = �log2(μ)� garbage
outputs are required to embed a completely-specified irre-
versible function into a reversible function, where μ is the
maximum number of times a single output pattern is repeated
in the truth table of the irreversible function. Thus, an n-input,
m-output irreversible function has a total of m + g outputs,
m+g ≥ n. This requires the addition of c ≥ 0 inputs such that
n+c = m+g. The new lines must be assigned constant input
values. The interest here is what circuit cost savings can be
achieved if more than the minimal number of lines are added
to a circuit.

III. GENERAL IDEA

Most reversible synthesis approaches produce circuits using
the minimal number of signal lines which is equal to (n+c) =
(m+g), i.e. the number of inputs and outputs of the reversible
function (reversible embedding) that is realized. Optimization
approaches, such as the two noted in Section 1, have also
concentrated on using the minimal number of lines. In this
section we show how extending the circuit by additional signal
lines can improve the cost of a reversible circuit. Hence, the
additionally added line is denoted as a helper line in the
following.

Definition 8. Let G be a reversible circuit. A helper line2 is
an additionally added circuit line

• whose input is set to a constant value 0 and
• whose output is used as a garbage output.

Having a helper line available, values can be “buffered”
on this line so that they can be later reused by other gates. In
doing so, control lines can be saved as shown by the following
definition.

Definition 9. Let G be a reversible circuit and h be a helper
line. Then, a gate MCT (C, t) of G can be replaced by the
sequence MCT (F, h), MCT (h ∪ Ĉ, t), MCT (F, h) where
C = F ∪ Ĉ, F ∩ Ĉ = ∅, and F 
= ∅. In the following this
replacement is referred as factoring the initial gate, and F is
a factor of MCT (C, t).

The terminology “factoring” and “factor” are natural since
partitioning the control set C into F and Ĉ is essentially
factoring the AND function for the control lines. This factoring
depends on the fact that 0⊕x1x2 . . . xk = x1x2 . . . xk, i.e. that
the result of a factor can be “buffered” by a constant line
assigned to 0.

By applying Definition 9 to gates in a circuit, control lines
can be removed. Since the number of control lines directly
influences the circuit cost, this may lead to less costly circuits.
However, this is only the case, if the total cost of the added
gates is less than the cost saved by factoring the control lines.
By substituting in a single gate only, this can not happen for
the transistor count cost model but it can for the quantum cost
model. If more than one gate can be substituted, higher cost
savings are achieved (reductions for the transistor cost model
are also observed).

These ideas are clarified in the following example.

2Note that the helper line works as an ancillary line. However, since the
term ancillary line is already used in other contexts, we use the term helper
line for clarity.
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(a) Original Circuit. (b) Factored Circuit.

Fig. 2. Example of Control Factoring.

Example 2. Consider the cascade of Toffoli gates depicted in
Fig. 2 (a). The gates in this cascade have a common control
factor F = {x0, x1}. Hence, the cost of this circuit can
be reduced as shown in Fig. 2 (b) by adding an additional
line h (at the top of the circuit) as well as the Toffoli
gates TOF (F, h) before and after the cascade. This leads
to additional quantum cost of 2 × 5 = 10. However, the
factored gates reuse the result of F (dashed rectangle in
Fig. 2 (b)) leading to a reduction of one control line per gate.
The removed control lines are shown as white circles. In total
this reduces the quantum cost from 104 to 59 and the transistor
count from 144 to 136, respectively.

Note that the added line is set to constant input 0. Further-
more, the right most Toffoli gate operating on the added line
is only needed if the line is to be used for a subsequent factor.

IV. ALGORITHM

Based on the ideas presented in the last section, we now
propose an algorithm that adds one helper line and then
employs a straightforward search procedure to use that line
for optimizing the circuit. More precisely, we show how to
extract factors from Toffoli and Fredkin gates in the circuit
(the circuit may contain other types of gates). The algorithm
can be applied repeatedly to add more than one helper line.
It can also be iterated to add lines until adding a further line
results in no cost reduction. The transistor cost model or the
quantum cost model can be used and in fact the algorithm is
readily adapted to any other gate-based cost model.

Algorithm 1. Reversible Circuit Factoring Consider a
reversible circuit consisting of the cascade of gates
G1G2 . . . Gk. Let Ci denote the set of control lines for Gi

and let Ti denote the set of target lines for Gi.
1) Add a single helper line h.
2) Find the highest cost reducing factor across the circuit

as follows:
For 1 ≤ i ≤ k
If Gi is an MCT or MCF gate and the helper line h is
available, i.e. it is not being used by a previously applied
factor at this point in the circuit: For every partitioning
of Ci into {F, Ĉ} with F not empty

a) Find the lowest j ≥ i such that j = k or
(F ∩(Tj+1∪h)) 
= ∅, i.e. find the next gate Gj that
manipulates one of the lines in F so that the value
of the helper line cannot be reused any longer.
If the outputs of the circuit are reached use Gk

instead.
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Fig. 3. Reversible Circuits for RD53 with 1 Helper Line and 2 Helper Lines.

b) Determine the cost reduction that would result from
applying this factor to all applicable gates between
Gi and Gj , including the cost of introducing two
instances of the factor gate MCT (F, h).

c) Keep a record of the factor and the gate range that
leads to the greatest cost reduction.

3) If no cost reducing factor is found in 2. terminate.
4) Otherwise, apply the best factor found and repeat from

step (2) on the revised circuit.

Note that, as already mentioned above the rightmost
MCT (F, h) operating on the helper line is only added if the
helper line is going to be used for another factor.

Example 3. Figure 3 shows the result of applying our al-
gorithm to the realization of RD53 from Figure 1 using the
quantum cost metric. The applied factors are highlighted by
brackets at the bottom of the figures. While the original circuit
has quantum cost of 128, that can be reduced with 1 helper line
to 83 (top circuit) or with 2 helper lines to 66 (bottom circuit).
Adding a third helper line does not reduce the quantum cost
of this circuit further.

The order in which factors are considered typically has an
effect. We apply the algorithm to the circuit as given and then
to the circuit found by reversing the order of the original
circuit. The better of the two final circuits is taken as the
result. Thus, the presented algorithm is a heuristic. But as
the experiments in the next section show, even this simple
approach leads to good results.

V. EXPERIMENTAL RESULTS

This section provides experimental results for the pro-
posed approach. To this end, the method described above
has been implemented in C and applied to all bench-
marks from the RevLib reversible logic benchmark website
(www.revlib.org) [23] as of July, 2009. Our experiments were
run on an AMD Athlon 3500+ with 1 GB of memory. The
QMDD-based circuit equivalence checking method from [26]
was used to verify all results.

Since some of the circuits in RevLib have already been
optimized using various approaches (e.g. extensive template
post-synthesis optimization, output permutation optimization,
and other techniques), to provide a more even staring point we
pre-optimized circuits using the approach described in [11]
together with a basic set of 14 templates3. Our new opti-
mization method was then applied. This approach shows that
even for circuits optimized by other means, further significant
reductions can be achieved if helper lines and the algorithm
introduced above are used4.

Table II summarizes the obtained results for one and two
helper lines, respectively. The first three columns give the
name of the circuit (including the RevLib file ID), the number
of circuit lines, as well as the number of gates of the ini-
tial (already optimized) circuit, respectively. In the following
columns, the obtained results for quantum cost and transistor
count models are presented. The proposed approach has been
applied with one and with two helper lines to both the circuit
as given as well as in the reversed order. The better of the two
results is chosen. The percentage improvement is shown for
each case relative to the initial circuit cost, which is the cost
after template application where applicable. Finally, the last
column gives the highest CPU time (in seconds) of a single
run for each benchmark. Space does not allow us to report
the results for all circuits. Thus, small circuits that have less
than 5 lines and less than 10 gates are omitted. Furthermore,
for some circuits adding a helper line gave no improvement.
Those benchmarks are listed at the bottom of Table II.

Considering quantum cost, for most of the circuits signif-
icant cost reductions can be observed, even if only a single
line is added. Over all circuits (including the ones that gave no
improvement), adding a single line reduces the quantum cost
by 22.51% on average and in the best case (cycle17 3 112)
by just over 69%. This can be further improved if another line
is added leading to an average additional reduction of 5.10%.
If transistor cost is considered, the reductions are somewhat
smaller but still significant. When adding a single line the
transistor cost is reduced by 5.83% on average and in the
best case (cycle17 3 112) by 37%. Adding a second line
reduces the transistor count by a further 1.65%. Since two
additional lines is negligible in CMOS technologies, this is a
notable reduction as well. In addition, these optimizations can
be achieved in very short run-time. Even for circuits including
thousands of gates our approach terminates after some minutes
– in most of the cases after some seconds.

Finally, we evaluated the improvement achieved when more
than two helper lines are added. More precisely, we have
applied our method with from one to five helper lines to all the
circuits on the RevLib website (including the small ones that
have been omitted in Table II). Again, all these circuits were
pre-optimized using templates as described above. A total of
95 of the 177 circuits show an improvement in quantum cost
when a single helper line is added. Of the other 82 circuits,
64 have a very small number of lines (less than or equal to
5) and are already highly optimized due to their relatively
small size. Fig. 4 shows the improvement in quantum cost

3This took over 10 hours of computer time. Furthermore, we were not able
to apply the templates to the urf series of circuits (which are quite large)
because of run-time restrictions.

4Note, that similar results are also achieved if the proposed approach is
directly applied to non-optimized circuits.



TABLE II
EXPERIMENTAL RESULTS FOR REVLIB CIRCUITS.

Quantum Cost Model Transistor Cost Model
Add 1 Line Add 2 Lines Add 1 Line Add 2 Lines

Initial Optimized % Optimized % Initial Optimized % Optimized % Max
Circuita Lines Gates Cost Cost Impr. Cost Impr. Count Cost Impr. Cost Impr. CPU (s)
cycle17 3 112 20 48 6063 1877 69.04 1227 79.76 3272 2040 37.65 1728 47.19 2.10
cycle10 2 110 12 19 1202 436 63.73 293 75.62 800 568 29.00 512 36.00 0.18
plus63mod4096 163 12 471 25843 12972 49.80 8865 65.70 16200 14160 12.59 13000 19.75 2.87
plus63mod8192 164 13 549 38462 19347 49.70 15798 58.93 21840 19064 12.71 16912 22.56 3.83
urf2 153 8 638 17027 9308 45.33 7052 58.58 18240 16280 10.75 15688 13.99 3.29
urf5 159 9 499 24523 13494 44.97 8576 65.03 18640 15520 16.74 13640 26.82 3.16
urf2 154 8 620 16152 8979 44.41 6849 57.60 17432 15712 9.87 15168 12.99 3.15
hwb8 115 8 610 14695 8178 44.35 6212 57.73 15336 13936 9.13 13448 12.31 2.84
hwb8 118 8 633 16526 9226 44.17 7094 57.07 17680 15936 9.86 15432 12.71 3.20
urf3 156 10 2732 128172 74431 41.93 51980 59.45 103680 91320 11.92 83104 19.85 18.87
urf1 150 9 1517 48952 28619 41.54 20532 58.06 48616 43024 11.50 40728 16.23 8.81
urf3 157 10 2674 121716 71362 41.37 50101 58.84 100544 88568 11.91 81016 19.42 18.40
hwb8 114 8 748 11941 7078 40.73 5774 51.65 14488 13640 5.85 13392 7.56 2.87
urf1 151 9 1487 45855 27209 40.66 19817 56.78 47024 41760 11.19 39648 15.69 8.51
hwb8 113 8 808 13460 8075 40.01 6656 50.55 16896 15912 5.82 15648 7.39 3.26
hwb9 120 9 1538 44708 26951 39.72 19913 55.46 46448 41496 10.66 39592 14.76 8.46
hwb9 122 9 1535 44659 26928 39.70 19904 55.43 46384 41456 10.62 39552 14.73 8.43
hwb9 123 9 1952 22482 13592 39.54 10935 51.36 28696 27760 3.26 27360 4.66 6.25
hwb8 117 8 748 7014 4365 37.77 3770 46.25 10528 10200 3.12 10120 3.88 2.32
hwb8 116 8 753 6976 4353 37.60 3771 45.94 10536 10216 3.04 10144 3.72 2.31
hwb9 119 9 2013 35967 23119 35.72 18498 48.57 44344 41400 6.64 40368 8.97 8.63
hwb9 121 9 2004 35973 23130 35.70 18499 48.58 44304 41360 6.64 40328 8.97 8.65
hwb7 60 7 166 1754 1147 34.61 1010 42.42 3168 2960 6.57 2912 8.08 0.81
mod8-10 177 5 12 84 55 34.52 44 47.62 144 144 144 0.03
hwb7 59 7 387 3939 2598 34.04 2291 41.84 6800 6472 4.82 6400 5.88 1.39
4gt4-v0 73 5 17 57 38 33.33 38 33.33 144 144 144 0.06
hwb7 62 7 328 2608 1773 32.02 1607 38.38 4632 4512 2.59 4512 2.59 1.01
4gt12-v0 86 5 15 47 32 31.91 32 31.91 136 104 23.53 104 23.53 0.05
alu-v2 30 5 19 111 76 31.53 62 44.14 240 208 13.33 176 26.67 0.08
plus127mod8192 162 13 1077 61425 42713 30.46 29736 51.59 39984 36056 9.82 31872 20.29 7.11
ham7 104 7 23 83 58 30.12 58 30.12 272 272 272 0.06
hwb7 61 7 305 3261 2289 29.81 2082 36.15 5592 5432 2.86 5408 3.29 1.12
hwb6 56 6 153 1329 937 29.50 871 34.46 2456 2392 2.61 2392 2.61 0.52
alu-v2 31 5 13 45 32 28.89 32 28.89 144 128 11.11 128 11.11 0.06
4gt4-v0 78 5 13 53 38 28.30 38 28.30 144 112 22.22 112 22.22 0.06
ham15 108 15 77 403 290 28.04 261 35.24 992 968 2.42 968 2.42 0.25
rd53 136 7 15 76 56 26.32 49 35.53 208 208 208 0.04
hwb6 57 6 65 433 322 25.64 299 30.95 976 928 4.92 928 4.92 0.29
4gt12-v0 87 5 11 43 32 25.58 32 25.58 104 104 104 0.04
4gt11 82 5 12 16 12 25.00 12 25.00 104 72 30.77 72 30.77 0.04
rd53 135 7 19 68 51 25.00 51 25.00 224 216 3.57 216 3.57 0.05
rd53 137 7 16 65 49 24.62 49 24.62 176 176 176 0.05
rd53 131 7 23 106 81 23.58 81 23.58 224 224 224 0.06
ham15 107 15 177 1174 916 21.98 823 29.90 2456 2360 3.91 2336 4.89 0.62
urf6 160 15 10740 53700 42451 20.95 42138 21.53 171840 157584 8.30 157376 8.42 144.85
sym6 145 7 59 348 279 19.83 265 23.85 744 728 2.15 728 2.15 0.18
rd53 130 7 28 230 190 17.39 174 24.35 344 344 344 0.08
mod5adder 127 6 21 121 100 17.36 100 17.36 216 216 216 0.05
one-two-three-v0 97 5 13 65 54 16.92 54 16.92 200 200 200 0.05
urf2 161 8 3250 20465 17127 16.31 16542 19.17 54416 53664 1.38 53664 1.38 11.64
4mod5-v0 18 5 11 19 16 15.79 15 21.05 88 64 27.27 56 36.36 0.04
ham15 109 15 109 206 176 14.56 169 17.96 1008 1008 1008 0.28
hwb5 53 5 62 286 247 13.64 247 13.64 824 824 824 0.18
sym9 148 10 295 1250 1080 13.60 1048 16.16 3448 3432 0.46 3416 0.93 0.82
urf3 155 10 26468 132340 114417 13.54 113886 13.94 423488 413760 2.30 413656 2.32 136.25
4gt13 90 5 15 31 27 12.90 27 12.90 128 96 25.00 96 25.00 0.05
rd53 132 7 27 118 103 12.71 103 12.71 184 184 184 0.06
cnt3-5 180 16 20 120 105 12.50 105 12.50 320 320 320 0.09
hwb5 54 5 24 72 63 12.50 63 12.50 240 240 240 0.09
urf1 149 9 11554 57770 50603 12.41 50410 12.74 184864 181712 1.71 181712 1.71 44.99
rd53 133 7 20 73 64 12.33 64 12.33 240 232 3.33 232 3.33 0.06
hwb5 55 5 26 98 87 11.22 87 11.22 296 296 296 0.07
urf5 158 9 10276 51380 45931 10.61 45650 11.15 164416 162440 1.20 162408 1.22 38.61
urf2 152 8 5030 25150 22557 10.31 22516 10.47 80480 79856 0.78 79856 0.78 17.53
urf4 187 11 32004 160020 147137 8.05 146890 8.21 512064 501392 2.08 501280 2.11 1189.77
4gt5 76 5 14 26 24 7.69 24 7.69 112 104 7.14 104 7.14 0.05
sys6-v0 111 10 23 71 69 2.82 68 4.23 280 264 5.71 256 8.57 0.07
rd53 138 8 15 43 42 2.33 42 2.33 176 168 4.55 168 4.55 0.05
rd73 140 10 23 75 74 1.33 74 1.33 288 280 2.78 280 2.78 0.06
sym9 146 12 28 108 107 0.93 107 0.93 384 376 2.08 376 2.08 0.09
rd84 142 15 31 111 110 0.90 110 0.90 408 400 1.96 400 1.96 0.10

aTo provide an even basis for the evaluation, all circuits already went through template optimization (using the approach described in [11] together with
a basic set of 14 templates) before our approach have been applied. For brevity, small circuits (i.e. circuits that have less than 5 lines and less than 10
gates) are omitted. The circuits 0410184 169, 0410184 170, 4gt13 91, cnt3-5 179, decod24-enable 126, ham7 105, ham7 106, hwb6 58, mod5adder 128,
mod5adder 129, rd73 141, rd84 143, sym9 147 and sys6-v0 144 gave no improvement.



Helper % Average
Lines Cost Reduction Increment

1 26.58%
2 32.38% 5.80
3 34.15% 1.77
4 34.73% 0.570
5 34.97% 0.24

Fig. 4. Improvement for up to five Helper Lines.
of the remaining circuits (both, for the respective benchmarks
in the plot diagram as well as on average in the table). As
noted above, a significant improvement can be observed if
a single helper line is added. This is further increased if
more lines are applied. However, the improvements diminishes
with increasing number of helper lines. Finally, no further
improvement have been observed, if a sixth line is applied.
This is the expected behaviour since multiple helper lines are
only useful when multiple gates sharing common factors are
present.

In summary, by applying the proposed approach significant
cost reductions can be achieved if a single line is added to
the circuit (even for already optimized realizations). Further
(diminishing) improvements result if more than one helper
lines are added.

VI. CONCLUDING REMARKS

In this paper we showed that adding lines to a reversible
circuit can reduce its cost and that the reduction can be quite
significant even if only one or two lines are added. The
reduction is as expected higher for the exponential quantum
cost model than it is for the linear transistor count model.

The factoring method presented adds additional Toffoli
gates to a circuit and would thus appear to increase the delay
through the circuit. However, for the quantum model each
MCT (including Toffoli) gate represents a cascade of quantum
gates. By applying our approach we shorten the length of the
corresponding cascades and thus reduce the total number of
quantum gates. The actual delay change would have to be
analyzed for each circuit. The same is true for the transistor
model, and in that case the delay would also have to be
analyzed, albeit in quite a different manner.

The most critical issue is the fact, that additional lines
(and in the quantum case qubits) must be added to enable
the possible optimizations. Thus, the designer must trade
off if this additional expense is balanced by the subsequent
implementation reductions. Since up to 70% of the quantum
cost can be saved, this should be the case for many circuits.

For future work, alternative methods for choosing factors
should be compared to the search procedure used in this work.
Further, the possibility of introducing helper lines during the
synthesis process rather than as a post-synthesis optimization
should be investigated.
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