
Automated Post-Silicon Debugging of Design Bugs
Mehdi Dehbashi Görschwin Fey

Institute of Computer Science, University of Bremen
28359 Bremen, Germany

{dehbashi, fey}@informatik.uni-bremen.de

Abstract—As design size and complexity increase in the mod-
ern IC design, more design bugs escape the pre-silicon verification
process and slip into the silicon. Efficient automation of post-
silicon debugging procedures helps to reduce debugging time
and to increase diagnosis accuracy. This paper presents an
automated approach for post-silicon debugging of design bugs
by integrating post-silicon trace analysis, model-based diagnosis,
and diagnostic trace generation. The diagnosis accuracy increases
by automated iteration of model-based diagnosis and diagnostic
trace generation. Experimental results show the effectiveness of
the approach in reducing the number of fault candidates without
biasing the solution space.

I. INTRODUCTION

Due to the increasing design size and complexity in the
modern IC design and the decreasing time-to-market, design
bugs are more likely to escape the pre-silicon verification and
are only found after a chip has been manufactured. Therefore
the efficiency of post-silicon debugging is becoming more
critical to improve the productivity. It is also reported that
post-silicon debugging is the most time-consuming part of
the development cycle of a new chip, that is, 35% of the
entire development cycle on average [1]. In this situation,
automating post-silicon debugging is a valuable task which
can significantly reduce the development time.

The post-silicon validation process is started by applying
test vectors to the IC or by running a test program, such as end-
user applications or functional tests, on the IC until an error is
detected [2] [3]. The erroneous behavior and golden responses
obtained by system simulation constitute a counterexample.
Having a counterexample, post-silicon debugging is carried out
to localize and rectify the root cause of the erroneous behavior.
But debugging often remains a manual task that consumes a
significant portion of the development cycle. Thus, automated
debugging approaches are necessary to reduce the time of
the IC development cycle. Automated debugging identifies the
potential sources of an observed error by using the available
counterexamples. Each potential source of the error is returned
as a fault candidate which is a set of components of the circuit.
Each fault candidate can fix all erroneous behavior of the
counterexamples under consideration.

One main challenge of post-silicon debugging is the limited
observability of internal signals. To address this problem,
various on-chip solutions for internal signal observation have
been proposed including ones based on Design-for-Test (DFT)
structures such as scan chains [4] [5], and based on Design-for-
Debug (DFD) structures such as trace buffers [1] [6] [7]. The

This work has been funded in part by the German Research Foundation
(DFG, grant no. FE 797/6-1). We would like to thank André Sülflow and the
team of Concept Engineering GmbH, Freiburg, Germany for their support.

techniques based on trace buffers store internal signal traces
in on-chip memories and are widely accepted in industry [7].

Some approaches have been proposed for automating post-
silicon debugging. The work in [3] uses trace buffer data with
self-consistency-based program analysis techniques for bug
localization. In [8], trace buffer data is analyzed to detect errors
in both the spatial and the temporal domains. The analysis
provides suggestions for the setup of the test environment
in the next debug session by giving a better estimate for
the window (time interval) of cycles the engineer should
concentrate on to catch the error. The work in [2] uses ran-
domly generated test patterns to obtain more counterexamples
for post-silicon debugging and applies automatic correction.
Automatic correction increases the computational costs and is
not guaranteed to fix an error in the desired way. Using random
counterexamples may decrease the diagnosis accuracy, and
may increase the iterations between post-silicon verification
and debugging.

The work in [9] uses model-based diagnosis to localize
bugs for a given set of counterexamples. An exact formal
debugging approach is presented in [10] which requires a
formal specification. In [11], a debugging flow is proposed
for testbench-based verification environments. However, the
flow is used only for pre-silicon debugging.

In this paper we present a flow to automate post-silicon
debugging which uses trace buffers as a hardware structure for
debugging. Post-silicon debugging is automated by integrating
post-silicon trace analysis, model-based diagnosis [9], and
diagnostic trace generation [11]. The flow closes the loop be-
tween post-silicon verification and debugging which increases
the diagnosis accuracy and decreases the debugging time.
As a result, the time of the IC development cycle decreases
significantly and the productivity increases.

In the flow, a designer investigates the sensitized paths
leading to the erroneous behavior on a schematic view of
the circuit. The sensitized paths leading to the erroneous
behavior are highlighted by the fault candidates discovered by
model-based diagnosis. Then, diagnostic trace generation tries
to create more counterexamples which help the designer by
explaining the erroneous behavior with fewer fault candidates.
Thus the designer can focus on a small section of the circuit
to do the final rectification spending a short time.

In the remainder of this paper, our approach to automate
post-silicon debugging is presented in Section II. Section III
presents experimental results on benchmark circuits. Sec-
tion IV concludes the work.

Diagnostic Traces

CEs

Debugging

 Diagnostic Trace
 Generation

 Diagnostic Trace
 Validation

Initial CEs

Fault Candidates

New CEs

Trace Analysis

Spec

Design

Spec

TB

Design

Fig. 1. Automated post-silicon debugging of design bugs

II. AUTOMATED POST-SILICON DEBUGGING OF DESIGN
BUGS

For post-silicon debugging usually there are three main
components: specification, design, and chip. Specification as
a golden model can be a formal specification or a high
level simulation model or a testbench. The specification is
used for creating the expected correct output of a trace in
the debugging process. A design can be a circuit which is
represented at Register Transfer Level (RTL) by Hardware
Description Languages (HDL). After that, logic synthesis gen-
erates the gate level design, and the place-and-route process
creates the transistor level design for chip manufacturing. After
manufacturing the chip, post-silicon verification is started by
running a test program, such as an end-user application or
functional tests. In this case, signal traces are stored in trace
buffers. Then, a specification is used to validate the stored
traces. After detecting an inconsistency between the recorded
traces and the specification, this inconsistency is returned as a
counterexample. Then, post-silicon debugging starts to localize
the bug.

Figure 1 shows our overall approach which consists of four
steps. These steps are analysis of trace buffer data, model-
based diagnosis (debugging), diagnostic trace generation, and
diagnostic trace validation. At the first step, trace buffer data

CUD Trace Buffer

i1

o1

in

om

Control Logic

. . .

. . .

...
...

...

s 1

s h

sel i

sel s

sel o

sel i sel s sel o

Fig. 2. Hardware structure

which is obtained after running a test program on the chip
should be analyzed and compared with the expected correct
outputs obtained from the specification. If there is an inconsis-
tency between trace data and golden data, this inconsistency
or erroneous behavior is represented as a counterexample to
be used for debugging.

The second step of the approach is debugging. Differ-
ent techniques have been proposed for automated debugging
which rely on simulation, Binary Decision Diagrams (BDD),
and Boolean Satisfiablity (SAT) [12]. Among these techniques
SAT-based debugging [13] as an effective approach to model-
based diagnosis [14] has been shown to outperform previ-
ously proposed simulation-based and BDD-based techniques
by orders of magnitude in certain cases [12]. In SAT-based
debugging, the circuit is first enhanced with a correction model
by adding a multiplexer at the output of each component. If the
correction model is inactive, the circuit behaves according to
its implementation. If the correction model is active, the output
of a component may be replaced with a value for correcting
the erroneous behavior [9].

The result of SAT-based debugging is a set of fault can-
didates. Each fault candidate is a potential source of a bug,
i.e. a component of the circuit that can be modified to
correct the erroneous behavior. In the first iteration SAT-based
debugging starts by calculating fault candidates for the initial
counterexamples.

The third step of the approach, called diagnostic trace gen-
eration in Figure 1, is responsible to generate diagnostic traces
which may further reduce the number of fault candidates. The
inputs of this step include the faulty design and the set of fault
candidates. This step generates diagnostic traces by heuristic
methods presented in [11]. As a high quality counterexample
aims at reducing the number of fault candidates effectively,
each diagnostic trace activates a small number of fault candi-
dates and observes their behavior on outputs. Therefore, the
counterexamples derived from diagnostic traces are likely to
reduce the number of fault candidates.

TABLE I
DIAGNOSIS ACCURACY, TIME, AND MEMORY

 Characteristics of Benchmarks Initial Results Results after Automation

Circuit #C #FC #CE #FC #CE #Trace Time Mem

or1200_alu 436 5 1 3 5 41 24.6 54

or1200_ctrl 1865 7 6 7 13 12 3035.1 2332

or1200_genpc 732 20 3 12 8 296 880.8 1154

or1200_if 463 5 3 1 9 6 123.6 652

or1200_lsu 793 3 2 2 9 10 294.7 1163

or1200_operandmuxes 376 11 3 7 8 62 165.1 330

or1200_wbmux 278 7 10 7 15 13 94.2 865

In the step of diagnostic trace validation, diagnostic traces
are validated by the specification, because it is not guaran-
teed that the diagnostic traces really create erroneous output
responses in the design. A diagnostic trace which creates
erroneous output behavior is a counterexample. The new
counterexmples created by the diagnostic traces discriminate
the behavior of fault candidates and explain the erroneous
behavior of fault candidates for a designer more precisely.
If there is no new counterexample, the algorithm returns
to the third step for generating more diagnostic traces. By
creating the new counterexamples, debugging is iterated to
likely increase the diagnosis accuracy with the new set of
counterexamples. Thus, the automation may decrease the
number of fault candidates. Finally, the small set of fault
candidates reduced by automation is shown in the schematic
view of the circuit, and designer can rectify the bug by only
focusing on a small number of fault candidates.

A. Hardware Structure

Figure 2 shows the hardware structure used to collect initial
counterexamples. The hardware structure is based on the trace
buffer as a DFD solution. Control logic is responsible to
detect trigger conditions so it can determine when and which
data signals will be sampled in the trace buffer. The trigger
conditions can be based on time, event, or a mixture of both.
The control logic tries to sample signals in a way that the
best verification coverage is obtained. For verifying the trace
buffer data after running a test program, some inputs, outputs
and internal states of the circuit need to be stored in the trace
buffer. The signals that need to be sampled at the same time
should have independent entries to the trace buffer.

The control logic may divide the trace buffer into multiple
segments [15]. These segments may belong to signals within
different entities or signals related to different events. Also
segmentation may be based on the sampling period [8]. For
example a trace buffer can have two segments, the first
segment for samples from clock cycle 100 to 500, the second
segment for samples from clock cycle 800 to 1200. Also the
control logic can control the trace buffer as a circular buffer
[3]. In this case, information related to the last events can
be recovered from the trace buffer. After finishing the test

program or detecting an error, the control logic serializes the
content of the trace buffer and sends it back to the off-chip
debugger software via a low-bandwidth interface such as JTAG
[15]. This data constitutes the initial counterexamples.

III. EXPERIMENTAL RESULTS

This section evaluates our approach empirically with re-
spect to diagnosis accuracy, time, and memory. The hardware
structure is written at RTL with Verilog hardware description
language. The experiments are run on the modules of the
OpenRISC CPU from OpenCores [16]. A matrix multiplica-
tion program is used as a test program to be run by OpenRISC
in the ModelSim environment. The experiments are executed
for each module independently. For each experiment, a random
single logic bug is inserted into the RTL code. The logic bugs
constitute the largest fraction of the design bugs [17] where
the design bugs are classified into the logic bugs, algorithmic
bugs, and timing bugs.

The trace data related to a time window is recorded in the
trace buffer of the corresponding module. The time window
is set to be 8 cycles. Each window contains initial states at
the first step of the window, inputs, and output results at the
end of the window. The size of the trace buffer is different for
different modules, but the maximum size is assumed to be 8K
× 32 bits.

For specification, we use the Verilog modules as a black
box module giving access only to module inputs, module
outputs, and some of the internal registers (states) which
would be available in a high level specification, too. For
each time window, the recorded initial states and inputs are
applied to the RTL design. Then, output results are compared
to the output results of the corresponding window in the
trace buffer to detect inconsistencies and to constitute initial
counterexamples.

After having initial counterexamples, the RTL design is
unrolled for 8 time steps for debugging. The techniques
described in the paper are implemented using C++ in the
WoLFram environment [18]. The visualization is performed
by RTLvision PRO [19].

Table I presents the experimental results with respect to the
diagnosis accuracy, time, and memory. The first and second

Fig. 3. Initial fault candidates

columns show the module name and the total number of
components (#C) considered for SAT-based debugging. The
third and fourth columns present the debugging result in the
first session when debugging tries to find the potential number
of fault candidates (#FC) with the initial counterexamples
(#CE). Columns 5-7 show the result when the heuristic
method is used for generating the diagnostic traces. The final
number of fault candidates found by debugging on all available
counterexamples is presented in column 5. The total number
of counterexamples (initial counterexamples + created coun-
terexamples by diagnostic traces) is presented in column 6.
Column 7 presents the number of diagnostic traces generated
by the heuristic method (#Trace). Columns 8 and 9 show
the required run time (Time), and the maximum memory
consumption (Mem). Run time is measured in CPU seconds,
and the memory consumption is measured in MB.

Consider or1200_alu; trace analysis leads to one counterex-
ample. Debugging finds five fault candidates corresponding
to the initial counterexample. Then diagnostic trace gen-
eration starts. The process yields four new counterexam-
ples. Finally five counterexamples (one initial counterex-
ample + four new counterexamples) increase the diagnosis
accuracy, i.e., decrease the number of fault candidates to
three. Also for or1200_genpc, or1200_if , or1200_lsu, and
or1200_operandmuxes, the new counterexamples created by
diagnostic traces increase the diagnosis accuracy.

Figure 3 shows the initial fault candidates for or1200_if .
Firstly debugging finds five fault candidates corresponding
to the three initial counterexamples. The fault candidates are
highlighted with red color. Also the sections of code related to
fault candidates are shown. After automation and by creating

the new counterexamples, the number of fault candidates
decreases. Figure 4 shows the schematic view of the circuit
and its related code after automated debugging. Therefore the
designer focuses on a small set of fault candidates and can
rectify the bug easily. This reduces the overall development
time significantly.

IV. CONCLUSION

This paper presented an approach for automating post-
silicon debugging when some design bugs escape the pre-
silicon verification and slip into the silicon. The approach in-
tegrates four main steps. These steps are data analysis of trace
buffer, model-based diagnosis, diagnostic trace generation, and
diagnostic trace validation. Then by iterating model-based
diagnosis and counterexample generation, diagnosis accuracy
increases and post-silicon debug time decreases.

REFERENCES

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”
in Design Automation Conf., 2006, pp. 7–12.

[2] K.-H. Chang, I. L. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Int’l Conf. on CAD, 2007, pp. 91–98.

[3] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA),”
IEEE Trans. on CAD, vol. 28, no. 10, pp. 1545–1558, 2009.

[4] A. Hopkins and K. McDonald-Maier, “Debug support for complex
systems-on-chip: a review,” Proc. of Computers and Digital Techniques,
vol. 153, no. 4, pp. 197–207, 2006.

[5] B. Vermeulen, T. Waayers, and S. Bakker, “IEEE 1149.1-compliant
access architecture for multiple core debug on digital system chips,”
in Int’l Test Conf., 2002, pp. 55–63.

[6] J.-S. Yang and N. A. Touba, “Expanding trace buffer observation
window for in-system silicon debug through selective capture,” in VLSI
Test Symp., 2008, pp. 345–351.

Fig. 4. Fault candidates after automation

[7] Y. Lee, T. Matsumoto, and M. Fujita, “On-chip dynamic signal sequence
slicing for efficient post-silicon debugging,” in ASP Design Automation
Conf., 2011, pp. 719–724.

[8] Y.-S. Yang, N. Nicolici, and A. G. Veneris, “Automated data analysis
solutions to silicon debug,” in Design, Automation and Test in Europe,
2009, pp. 982–987.

[9] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[10] A. Sülflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of SAT-based debugging,” in IEEE International Symposium on Circuits
and Systems, 2010, pp. 641–644.

[11] M. Dehbashi, A. Sülflow, and G. Fey, “Automated design debugging in
a testbench-based verification environment,” in Euromicro Conference
on Digital System Design (DSD), 2011.

[12] A. G. Veneris, B. Keng, and S. Safarpour, “From RTL to silicon: The
case for automated debug,” in ASP Design Automation Conf., 2011, pp.
306–310.

[13] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp. 1138–1149, 2008.

[14] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, pp. 57–95, 1987.

[15] E. Anis and N. Nicolici, “Low cost debug architecture using lossy
compression for silicon debug,” in Design, Automation and Test in
Europe, 2007, pp. 1–6.

[16] OpenCores, http://www.opencores.org.
[17] K. Constantinides, O. Mutlu, and T. M. Austin, “Online design bug

detection: RTL analysis, flexible mechanisms, and evaluation,” in Inter-
national Symposium on Microarchitecture (MICRO), 2008, pp. 282–293.

[18] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler, “WoLFram
– a word level framework for formal verification,” in IEEE/IFIP Int’l
Symposium on Rapid System Prototyping (RSP), 2009.

[19] RTLvision PRO, Concept Engineering GmbH, http://www.concept.de.

