
Improved Fault Diagnosis for Reversible Circuits
Hongyan Zhang Robert Wille Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany

{zhang,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Reversible circuits rely on an entirely different
computing paradigm allowing to perform computations not only
from the primary inputs to the primary outputs but also vice
versa. Recently, first physical realizations based on this paradigm
have been introduced in the domain of quantum computation and
low-power circuits. This puts key test challenges for the future on
the table. While first steps towards testing such circuits have been
made (e.g. fault models and appropriate ATPG methods have
been introduced), fault diagnosis has hardly been considered so
far.

In this paper, we consider the application of fault diagnosis
methods for reversible circuits. In particular, we propose a new
fault diagnosis approach which explicitly exploits the advanta-
geous properties of reversible circuits. Experiments show that
even though conventional methods can be applied to reversible
circuits, improvements of more than one order of magnitude are
achieved if reversibility is explicitly exploited.

I. INTRODUCTION

New technologies will emerge in the near future. While
some of them are advancements of existing approaches, other
technologies are tending towards entirely different computing
paradigms. Reversible circuits [1], [2] are one of the latter de-
velopments. Here, computations are performed in an invertible
manner, i.e. not only from the primary inputs to the primary
outputs but also vice versa. This new paradigm is required by
several emerging technologies where, currently, applications
within the domain of quantum computation [3], [4], [1] and
low-power design [5], [6] are seen as the most promising ones.

While reversible logic has been considered for decades (see
e.g. [5], [7], [3]), recently it got a fresh start by the introduction
of first physical realizations of computing machines based on
this paradigm. For example, in [8] a first (small) quantum
circuit (which inherently is reversible) was introduced which is
able to solve the factorization problem in polynomial time; for
conventional circuits only exponential solutions are available.
In [6], a first reversible circuit based on conventional CMOS
technology has been presented.

Even if all this still is basic research, these advancements
put key test challenges for the future on the table. Accordingly,
first fault models [9] as well as methods for Automatic
Test Pattern Generation (ATPG) [10], [11], [12] have been
introduced in the recent years. In comparison to conventional
circuits, the new computation paradigm causes thereby certain
difficulties, but also enables simplifications. For example,
fanout and feedback are not directly allowed in reversible
logic. This makes the design of reversible circuits harder and
requires alternative design methods (e.g. [13], [14], [15], [16]).
In contrast, controllability and observability of the respective
circuits usually are very good which generally makes test
pattern generation for reversible circuit easy.

However, while much progress has been made in the last
years in the development of appropriate design and test
methodologies, fault diagnosis of reversible circuits has hardly
been considered so far. To the best of our knowledge, only
preliminary approaches and results are available [17], [18].
Here, either simulation-based methods or so called fault tables
are applied. In both cases, all possible assignments to the
circuit under test are considered in order to detect the reason
for a faulty behavior. However, since the number of simula-
tions or the size of these fault tables increases exponentially,

these methods are only applicable for very small circuits.
Beyond that, first approaches for error debugging have been
introduced [19], [20]. Although this is related to diagnosis,
a different problem is addressed there. In contrast, efficient
approaches for diagnosis of conventional circuits have been
introduced in the past [21], [22], [23], [24]. But these have
neither been applied to reversible circuits before nor have these
been optimized for this kind of circuits.

In this work, we consider the application of conventional
fault diagnosis methods for reversible circuits. We show that
already this leads to a fault diagnosis flow which is applicable
to larger circuits. Furthermore, we propose a new fault diagno-
sis approach which explicitly exploits the advantageous prop-
erties of reversible circuits. Therefore, satisfiability solvers and
a new structural analysis is utilized. Our experimental results
show that by exploiting reversibility, diagnosis can be per-
formed significantly faster than by the pure application of the
conventional methods. In the best case, run-time improvements
of more than one order of magnitude can be achieved.

The remainder of this paper is structured as follows: Sec-
tion II briefly introduces the required basics on reversible
circuits, testing of reversible circuits, as well as the utilized
core techniques. Afterwards, conventional fault diagnosis is
reviewed and already illustrated by means of reversible circuits
in Section III. Improvements exploiting reversibility during the
fault diagnosis are presented in Section IV. Finally, experimen-
tal results are documented in Section V and conclusions are
drawn in Section VI, respectively.

II. BACKGROUND

A. Reversible Circuits
Reversible logic realizes bijective functions f : Bn → Bn

using reversible circuits. A reversible circuit G is a cascade
of reversible gates gi, i.e. G = g1g2 . . . gd. The number d of
gates is considered as the circuit size. In this work, we consider
Multiple Control Toffoli gates, in the following called Toffoli
gate for short.

Definition 1. A Toffoli gate over the set of circuit lines
X = {x1, . . . , xn} has the form g(C, xt), where C ⊂ X is
the set of control lines and xt ∈ X \ C is the target line. A
single Toffoli gate g(C, xt) realizes the bijective function

(x1, · · · , xn) 7→ (x1, · · · , xt−1, xt ⊕
∧

xc∈C

xc, xt+1, · · · , xn).

That is, if all control line variables xc are assigned to 1,
the target line xt is inverted. Under this assignment the gate is
called activated. All other input values xk with xk ∈ X \{xt}
pass the gate unaltered. Note that the set of control lines may
be empty.

Example 1. Fig. 1(a) shows an example of a reversible circuit
which is composed of Toffoli gates. This circuit has five circuit
lines and four Toffoli gates, i.e. n = 5 and d = 4. Control
lines are denoted by a •, while the target line is denoted by
an ⊕. The annotated values demonstrate the computation of
the respective gates for a certain input pattern. In this case,
gates g2 and g3 are activated.
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Fig. 1. Reversible circuit with single missing control fault

B. Testing of Reversible Circuits
As it is the case for conventional circuits, physical faults of

reversible circuits are abstracted by means of different fault
models. In the past, several fault models considering different
physical realizations have been introduced (see e.g. [9]). Most
of them require to set a certain assignment to respective gates
in order to detect a fault. The precise nature of the assignment
differs with respect to the considered fault model. Due to page
limitation, we only consider Single Missing Control Faults
(SMCFs) in the following. However, approaches proposed in
this work can easily be extended to further single fault models
just by adjusting the required assignment to the respective
gates.

Definition 2. Let g(C, xt) be a Toffoli gate of a circuit G.
Then, a single missing control fault occurs if instead of g, a
gate g

′
(C

′
, xt) with C

′
= C \ {xi}, xi ∈ C, and xi 6= xt is

executed, i.e. an SMCF occurs if a control line is missing.

In order to detect a fault, the respective gates have to be
activated so that the faulty behavior can be observed at the
outputs of the circuit. In case of an SMCF, this requires an
input assignment defined as follows.

Definition 3. Let g(C, xt) be a Toffoli gate of a circuit G. In
order to to detect an SMCF in gate g, all control lines in C
(except the missing one) have to be assigned to 1, while the
missing control line has to be assigned to 0. The assignment
of the remaining lines can be chosen arbitrarily.

Example 2. Fig. 1(b) illustrates an SMCF, which can occur
in the reversible circuit previously introduced in Fig. 1(a). The
respective assignment needed to detect this fault is also given.

C. SAT and PBO
Solvers for Boolean Satsifiability (SAT) and Pseudo-

Boolean Optimization (PBO) are core technologies utilized in
this work. The underlying problems are defined as follows.

Definition 4. Let Φ : {0, 1}n → {0, 1} be a Boolean function.
Then, the SAT problem is to determine an assignment to all
variables of Φ such that Φ evaluates to 1 or to prove that
no such assignment exists. The function Φ is thereby given
in Conjunctive Normal Form (CNF). Each CNF is a set of
clauses where each clause is a set of literals and each literal
is a propositional variable or its negation.

Definition 5. The pseudo-Boolean optimization problem de-
termines a satisfying solution for a pseudo-Boolean func-
tion Ψ : {0, 1}n → {0, 1} which, at the same time, mini-
mizes an objective function O. The pseudo-Boolean func-
tion Ψ is thereby a conjunction of constraints defined by∑n

i=1 ciẋi ≥ cn, where c1 . . . , cn ∈ Z and ẋi either is a pos-
itive or a negative literal. The objective function O is defined
by O(x1, . . . , xn) =

∑n
i=1 miẋi with m1, . . . ,mn ∈ Z.

Example 3. Let Φ = (x1 +x2 +x3)(x1 +x3)(x2 +x3). Then,
x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment solving
the SAT problem.

Example 4. Let Ψ = (2x1 + 3x2 + x3 ≥ 3)(2x1 + x2 ≥ 2)
and O = x1 + x2 + x3. Then, x1 = 1, x2 = 0, and x3 = 0 is
a solution to the PBO problem, satisfying Ψ and, at the same
time, minimizing O.

Both, SAT and PBO, are well investigated problems. In
the past efficient solving algorithms (so called SAT solvers or
PBO solvers, respectively) have been proposed (see e.g. [25],
[26]). Instead of simply traversing the complete space of
assignments, intelligent decision heuristics, powerful learning
schemes, and efficient implication methods are thereby ap-
plied. In the following, we apply these techniques as black
boxes delivering the solution for the proposed problem for-
mulations.

III. APPLYING CONVENTIONAL
FAULT DIAGNOSIS TO REVERSIBLE CIRCUITS

If a given circuit is faulty, test engineers are interested in the
particular reason for that fault. Therefore, first a fault model
is assumed. Afterwards, it is tried to narrow down the reason
for the faulty behaviour to a certain fault location based on
the fault model. From that fault location, the corresponding
physical fault can be isolated. In order to narrow down the
fault, fault diagnosis is applied beforehand, i.e. all available
test patterns are applied to the circuit under test. Based on
the respective responses in the presence of the fault (the
fault signatures), fault locations not responsible for the faulty
behaviour can be excluded. This process is continued until
a unique fault location is determined. Therefore, sometimes
new patterns distinguishing two faults may be needed or faults
have to be classified to be equivalent. This is done using
methods for Diagnostic Test Pattern Generation (DTPG) and
fault equivalence checking. In the following, the resulting flow
(based on [21]) is reviewed and, for the first time, applied to
reversible circuits.

The general idea is thereby as follows: For each test pattern
of a given test set, the corresponding fault signatures for each
possible fault are determined and stored in a fault dictionary.
In order to determine the respective signatures, fault simulation
is applied for each fault as well as for each test pattern,
respectively. Afterwards, the same test patterns are applied
to the circuit under test. The responses are compared to each
entry in the fault dictionary. All faults that lead to different
signatures are excluded from further consideration.

Example 5. Fig. 2 shows a reversible circuit with eight
possible faults under the SMC fault model. In order to denote
the respective faults, the notation (j, i) is used whereby j
denotes the faulty gate and i is the position of the missing
control line. The top of Fig. 3 shows a corresponding fault
dictionary obtained by using a test set composed of the two test
patterns 1010 and 0100. The dictionary is thereby constructed
as a diagnostic tree. Faults detected by the same signatures
are grouped together.

Initially, all possible faults are under consideration. How-
ever, already applying the test pattern 1010 to the circuit under
test and examining the respective responses leads to five sub-
groups narrowing down the reason for the faulty behavior. For
example, in case the input assignment 1010 leads to the output
response 1111, (4, 2) is the sought fault since all other faults
would lead to a different response. In contrast, if the output
response 1010 is observed, three faults (namely (1, 1), (2, 3),
and (5, 1)) still need to be considered. In order to further
refine these results, different test patterns have to be applied.

A problem that may arise during fault diagnosis is that the
given set of test patterns is not sufficient in order to distinguish
all faults. Then, further test patterns have to be generated.
Therefore, dedicated methods for DTPG are applied which
determine not an arbitrary test pattern, but a pattern which
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distinguishes a fault from another. Most of these methods
are based on common ATPG approaches where additionally
diagnostic capabilities are considered.

Example 6. Consider again the circuit and the fault dictionary
from Fig. 2 and Fig. 3, respectively. Applying the two given
test patterns 1010 and 0100 is not sufficient to distinguish
the faults (1, 1) and (5, 1). Thus, another test pattern (namely
0110) is obtained by means of DTPG methods. Using this test
pattern, both faults can be distinguished.

Sometimes not all faults are distinguishable from each other.
In fact, two faults are said to be equivalent, iff there does not
exist a pattern which leads to different output responses for
the respective faults. All equivalent faults are grouped together
to an equivalent fault class. Being able to prove that there
is no test pattern which distinguishes between two faults is
crucial. From such a result it can be concluded that, in case
a faulty behavior has been narrowed down to such a fault, all
faults in the equivalence class need to be considered. Structural
analysis [21] often is applied for this purpose. However, these
approaches are incomplete. Thus, functional analysis [22],
[23], [24] additionally have to be applied which might lead
to exponential run-time in the worst case.

Example 7. Consider again the circuit and the fault dictionary
from Fig. 2 and Fig. 3, respectively. It can be proven that
the faults (1, 2) and (5, 4) are equivalent, i.e. there does not
exist a test pattern which distinguishes these two faults. That
is, if the input assignment 1010 leads to the output response
1110, no further refinement is possible and both faults need
to be considered in order to detect the reason for the faulty
behaviour.

IV. IMPROVED FAULT DIAGNOSIS
FOR REVERSIBLE CIRCUITS

While all the approaches introduced in the previous section
are fully applicable to reversible circuits (as illustrated in the
example), they do not exploit the advantageous properties
of reversible circuits. As a consequence, there is room for
improvement if fault diagnosis is considered for reversible
circuits. This section introduces new methods for DTPG and
the fault equivalence checking which make use of these
possibilities. Afterwards, these methods are combined leading
to an improved fault diagnosis flow for reversible circuits.
A. Improved Diagnostic Test Pattern Generation

One of the most advantageous properties of reversible
circuits with respect to test purposes is their very good
controllability and observability. In fact, generating a test
pattern detecting a certain fault is very easy. Therefore, just an
assignment activating the considered fault has to be applied to
the respective gate (as e.g. done in Example 2 in Section II).
Then, the respective test pattern (response) can be derived by
simulating this assignment backwards to the primary inputs of
the circuit (forwards to the primary outputs of the circuit)1.

This improved controllability/observability can also be ex-
ploited if a test pattern should be created which distinguishes
faults in a given group. Therefore, again assignments activating
certain faults are considered. More precisely, all possible
assignments activating at least one of the faults in a certain
group are considered (without explicitly enumerating them).
Based on them, a test pattern is determined which detects at
least one, but as few as possible other faults of the considered
group. This can be formulated as a PBO instance.

Therefore, two main aspects have to be encoded, namely
• the functionality of the given circuit and
• the desired diagnostic conditions.
The circuit can be encoded as introduced in [11] for the

purpose of (non-diagnostic) SAT-based ATPG. Here, for a cir-
cuit G with n lines and d gates, variables ~xj = xj

n, xj
n−1 . . . xj

1
with 1 ≤ j ≤ d+1 are introduced representing the assignment
to the primary inputs (for j = 1), the primary outputs (for
j = d + 1), as well as the inputs and outputs of the gates (for
2 ≤ j ≤ d), respectively. Furthermore, constraints ensuring
the functionality of the respective gates of G are added. For
example, the constraint

xj+1
i = xj

i ⊕
∧

xc∈Cj

xc

is added in order to ensure the correct input/output mapping
of the target line of a gate gj(Cj , xi). Similar constraints
are added to encode the remaining cases and, if applicable,
additional constraints. For more details on the encoding of the
circuit, we refer to [11].

Having an encoding for the circuit’s functionality, further
variables and constraints are introduced in order to encode the
diagnostic conditions. Therefore, all faults in the considered
group are represented by new variables F = {f1, . . . , fk},
whereby k denotes the number of faults in that group. Further-
more, constraints are added ensuring that each variable fl ∈ F
is set to 1 if an input assignment is applied activating the
corresponding fault; otherwise, fl is set to 0. For example,
a missing control fault at the mth line in a gate gj(Cj , xi)
with m 6= i is represented by a variable fl and the following
constraint:

fl = (xj
m = 0) ∧ (

∧
xc∈Cj\{xj

m}

xc = 1)

1If additional constraints (e.g. constant inputs) need to be considered,
alternatives to simulation are available [11].
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Fig. 4. Encoding of the DTPG problem for the the circuit from Fig. 2
Corresponding encodings are possible for other fault models.

Using the variables and constraints introduced so far, the
PBO solver will return arbitrary assignments to all variables ~xj

with 1 ≤ j ≤ d+1 representing valid signal assignments of the
circuit. However, by further restricting the assignment to the
variables fl ∈ F , the determination of such signal assignments
can explicitly be controlled. In the following, this is done in
order to generate a diagnostic test pattern.

First, only assignments should be allowed which detect at
least one of the considered faults, i.e.

(
∨

fl∈F

fl) = 1

is added. Second, the assignment to be determined should
detect as few as possible of the other faults, i.e. the following
objective function should be minimized:

O =
k∑

l=1

fl

Example 8. In order to encode the DTPG problem for the cir-
cuit from Fig. 2 with the two faults (1, 1) and (5, 1), variables
x1

1, . . . , x
1
4, . . . , . . . , x

6
1, . . . , x

6
4 representing the assignment to

the respective circuit signals as well as variables f1 and f2
representing the activation of faults are introduced. The re-
spective constraints for this instance are partially shown in
Fig. 4.

The resulting instance is passed to a PBO solver which,
afterwards, determines a satisfying assignment if a test pattern
can be generated detecting at least one but as few as possible
other faults. In this case, the respective test pattern can be
obtained from the assignment to all variables x1

n, . . . , x1
1. If no

satisfying solution can be determined (i.e. if the PBO solver
returns unsatisfiable), all the faults in F have been proven to
be untestable (usually sorted out prior to fault diagnosis).

Example 9. Consider again the instance from Fig. 4. One sat-
isfying solution to this instance leads to the test pattern 0110
(obtained from the assignment x1

1 = 0, x1
2 = 1, x1

3 = 1, and
x1

4 = 0). This test pattern detects the fault (1, 1), but not the
fault (5, 1) in the circuit of Fig. 2.

While this encoding offers an improved alternative for
DTPG of reversible circuits, it does not entirely solve the fault
equivalence checking problem. Therefore, a further check is
necessary which is introduced in the next section.
B. Improved Fault Equivalence Checking

In most of the cases, the DTPG approach introduced in
the last section generates a test pattern which detects at least
one but as few as possible other faults of a considered group.
However, sometimes only a test pattern can be determined
which detects all faults. Then, it remains unclear whether this
test pattern distinguishes at least one fault or not. In fact, a
single test pattern still can distinguish two faults if it leads to
different responses at the primary output2.

2This is also the reason why in the proposed DTPG approach a test pattern
is determined which detects as few as possible other faults and not a test
pattern which does not detect at least one of the other faults.

Whether the test pattern obtained by DTPG distinguishes at
least one fault or not can easily be checked by fault simulation.
If this simulation leads to the same responses for all faults,
another test pattern distinguishing the faults might exist. The
proposed fault equivalence checking method either determines
such a test pattern (showing that the faults are not equivalent
and providing a new diagnostic test pattern) or proves that no
such test pattern exists (showing that the faults are equivalent).
Therefore, we apply an adjusted structural analysis which
also exploits the good observability of reversible circuits. The
general idea is based on the following observations.

Without loss of generality, assume that just two missing
control faults f1 (occurring in gate gi) and f2 (occurring in
gate gj with i < j) have to be distinguished. Furthermore, no
test pattern exists which solely detects either f1 or f2 (such
a test pattern would have been determined during DTPG). In
case of fault f1, the faulty behavior is introduced in the target
line of gate gi and propagated towards the primary outputs.
The faulty behavior can only be detected by a flip of at least
one primary output value (compared to the expected fault-free
value). In order to distinguish fault f1 from f2, it must be
possible to distinctively retrace at least one of the “output-
flips” to f1. This is only possible, if fault f1 is propagated to
at least one circuit line which neither influences the target line
nor any of the control lines of gj . Otherwise, the “output-flips”
could also be caused by f2.

Example 10. Consider again the circuit from Fig. 2 as well as
the two faults f1 = (1, 2) in gate g1 and f2 = (5, 4) in gate g5.
The DTPG approach already confirmed that no test pattern
exists which solely detects one of these faults. Furthermore, a
structural analysis shows that, in case of fault f1, the faulty
behavior is always propagated through the forth circuit line
(here, the faulty behavior is introduced) and the second circuit
line (propagated by gate g3), i.e. “output-flips” can only be
detected at these two lines.

However, the second circuit line is the target line of g5
where also the faulty behavior of f2 would be introduced.
Furthermore, the forth circuit line is a control line of g5.
Since f1 and f2 are always detected by the same test patterns
and, additionally, those test patterns always require a certain
assignment to the control lines of g5 in order to activate f2,
also the forth line leads to an indistinguishable response. Thus,
it is impossible to distinguish whether the faulty behavior is
caused by f1 or f2. Both faults are equivalent.

Based on these observations, two faults f1 and f2 can easily
be classified to be fault equivalent. Therefore, just a simple
structural analysis has to be performed. If this analysis shows
that there is at least one line propagating the fault f1 and
neither influencing the target line nor any of the control lines
of gate gj , then it has to be checked if a test pattern can be
determined which enables to propagate the faulty behavior to
this line. This is illustrated by the following example.

Example 11. Consider the circuit shown in Fig. 5 and the
two faults f1 = (1, 3) in gate g1 and f2 = (5, 5) in gate g5.
The DTPG approach already confirmed that no test pattern
exists which solely detects one of these faults. The structural
analysis shows that there is one circuit line, namely the fourth
line, which propagates the fault f1, but does not influence the
target line nor any of the control lines of gate g5. However, in
order to propagate that fault through the fourth circuit line,
gate g2 needs to be activated. Therefore, a test pattern needs
to be determined which detects f1 and additionally sets all
control lines of g2 to one.
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In order to generate such a test pattern, a SAT solver is
utilized. Therefore, an instance as described in the previous
section is generated (of course, without the objective func-
tion O). Additionally, the constraint∧

xc∈Cact

xc = 1

with g(Cact, t) being the gate to be activated is added ensuring
that g indeed propagates the faulty behavior. If the SAT solver
returns a satisfying assignment, then a test pattern can be
obtained which distinguishes f1 and f2. If the instance is
unsatisfiable, it has to be checked if further gates and circuit
lines, respectively, exist through which the faulty behavior
of f1 can be propagated. If for all these cases no test pattern
could be obtained, f1 and f2 are proven to be fault equivalent.

The structural analysis is thereby very efficient. In fact, only
linear time with respect to the number of gates the circuit
is composed of is needed. In contrast, the additional ATPG
runs may require some time. However, these checks are hardly
necessary. In almost all cases, either DTPG or the structural
analysis lead to a result beforehand. That is, combining the
improved DTPG and fault equivalence checking methods, an
improved fault diagnosis flow results as summarized in the
following and experimentally evaluated in Section V.

C. Resulting Fault Diagnosis Flow
Fig. 6 shows the proposed fault diagnosis flow for reversible

circuits incorporating the methods introduced in the previous
sections. First, the test engineer provides a fault model as well
as an initial test set (a). If this test set already distinguishes
all faults based on the assumed model, a fault dictionary is
returned and the fault diagnosis terminates (b). Otherwise, the
proposed DTPG method from Section IV-A is applied to a
group of faults which are still not distinguished (c). If a (di-
agnostic) test pattern distinguishing at least one fault returns,
it is added to the test set (d). Otherwise, fault equivalence
checking as proposed in Section IV-B is invoked. That is, the
structural analysis (e) checks whether the respective faults can
be classified to be equivalent or not. If they are equivalent,
they are added to the fault equivalence class (f). Otherwise,
it is checked whether a test pattern can be determined which
satisfies the restrictions as discussed in Section IV-B (g). If this
was successful, the resulting (diagnostic) test pattern is added
to the test set (d). Otherwise, the faults have been proven to be
equivalent and, thus, they are added to the fault equivalence
class (f). This process continues until all faults either have
been distinguished or classified to be fault equivalent.

V. EXPERIMENTAL RESULTS

The proposed approaches have been implemented in C++ on
top of RevKit [27]. As underlying solving engines, clasp [26]
(for DTPG) and MiniSAT [25] (for the additional ATPG
runs during fault equivalence checking) are applied. The
performance of the approach proposed in Section IV has
been evaluated on a set of benchmarks circuits taken from
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Fig. 6. The proposed fault diagnosis flow

RevLib [28]. For comparison, these circuits have additionally
been diagnosed using conventional methods based on the
concepts introduced in [24] and reviewed in Section III. Due
to page limitation, only single missing control faults are
considered in the following. However, as briefly discussed
in Section II-B, the approaches proposed in this work can
easily be extended to further fault models just by adjustments
of certain assignment conditions. All experiments have been
carried out on an AMD Opteron ×4 processor with 8GB main
memory running Linux. The timeout was set to 5 000 CPU
seconds.

The results are presented in Table I. The first four columns
describe the characteristics of the evaluated circuits, namely
(1) the name of the circuit, (2) the number d of gates, (3) the
number n of circuit lines, and (4) the number c of constant
inputs. The column |F| denotes the number of faults to be
considered. Afterwards, the number of test patterns in the
provided test set is given (Test Set). In our evaluation, we used
complete test sets obtained by the ATPG method proposed
in [11]. The following columns present the results obtained
by applying the conventional diagnosis flow (from Section III)
and the proposed diagnosis flow (from Section IV), respec-
tively. More precisely, the number of obtained diagnostic test
patterns (denoted by DTP), the number of equivalent faults
(denoted by EF), and the run-time in CPU seconds (denoted
by Time) is given. Finally, the improvement of the proposed
diagnosis flow with respect to the run-time is provided in the
last column.

First of all, it can be concluded that already the application
of conventional approaches leads to a fault diagnosis flow
which is applicable to larger circuits. Furthermore, applying
the proposed diagnosis flow does not lead to a significant
decrease of the quality of the results. In fact, the number
of generated diagnostic test patterns is almost equal to the
patterns generated by the conventional methods; sometimes
(e.g. for 0410184 169 and hwb9 123) the number is even
slightly better.



TABLE I
EXPERIMENTAL RESULTS

Test CONVENTIONAL DIAGNOSIS [24] PROPOSED DIAGNOSIS Time
Circuit d n c |F| SET [11] DTP EF TIME(S) DTP EF TIME(S) IMPR (%)
4gt4-v0 78 13 5 1 18 6 8 0 0.03 8 0 0.01 66.67
4 49 16 16 4 0 24 5 6 0 0.03 6 0 0.02 33.33
mini-alu 84 20 10 6 27 4 8 0 0.07 8 0 0.06 14.29
rd84 142 28 15 7 49 8 14 0 0.17 14 0 0.15 11.76
sym6 63 29 14 8 43 7 8 0 0.50 8 0 0.05 90.00
0410184 169 46 14 0 49 3 7 0 0.19 4 0 0.07 63.16
hwb5 13 88 28 23 131 7 10 0 0.35 10 0 0.31 11.43
ham15 107 132 15 0 352 16 53 28 43.51 70 28 8.4 80.69
hwb6 14 159 46 40 241 7 10 0 0.93 10 0 0.84 9.68
sym9 148 210 10 1 756 14 100 0 60.46 102 0 52.38 13.36
hwb8 113 637 8 0 2214 44 68 99 204.45 65 99 203.05 0.68
ex5p 647 206 198 904 18 24 0 49.95 24 0 17.63 64.70
hwb9 119 1544 9 0 5812 83 107 433 2667.42 110 433 2271.47 14.84
spla 1709 489 473 2711 19 >54 – >5000.00 105 4 796.73 >87.69
hwb9 123 1959 9 0 3596 80 100 12 752.88 98 12 657.92 12.61
table3 1988 554 540 2997 23 >34 – >5000.00 40 4 281.92 >94.36
alu4 2186 541 527 3390 18 >40 – >5000.00 47 2 463.84 >93.84
ex1010 2982 670 660 4543 25 29 0 2092.82 29 0 386.06 68.32

Circuit: name of the circuit d: number of gates n: number of circuit lines c: number of constant inputs |F|: number of faults to be tested
Test Set: number of test patterns in the provided test set DTP: number of diagnostic test patterns obtained by the respective approaches

EF: number of equivalent faults Run time: run-time in CPU seconds Time Impr: improvement of the proposed diagnosis flow w.r.t. the run-time

In contrast, there are significant differences regarding the
run-time. For all benchmarks, the proposed diagnosis flow
clearly outperforms the application of the conventional meth-
ods. In the best case, improvements of more than one order
of magnitude can be achieved. Additionally, the proposed
approach scales better for larger circuits. Thus, fault diagnosis
of reversible circuits clearly profits from approaches that
explicitly exploit the inherent reversibility of this kind of
circuits.

VI. CONCLUSION

In this paper, approaches for fault diagnosis have been
introduced. We showed that already the application of a
conventional approach leads to a fault diagnosis flow which
is applicable to larger circuits. Furthermore, an improved
new fault diagnosis approach has been introduced which
explicitly exploits the advantageous properties of reversible
circuits. Experimental results showed that this enables run-
time improvements of more than one order of magnitude in
the best case.
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