
EFFICIENT REALIZATION OF CONTROL LOGIC IN REVERSIBLE CIRCUITS

Sebastian Offermann Robert Wille Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{offerman, rwille, drechsle}@informatik.uni-bremen.de

ABSTRACT
The development of design methods for reversible circuits
found significant attention in the last years. Circuits are
thereby considered which – in contrast to conventional
circuits – are composed of reversible gates only. This enables
promising applications, e.g. for quantum computation or
low-power design. The recent achievements in this domain
enabled the development of synthesis approaches based on
high level description languages. This emerges new research
problems.

In this paper, we address the problem of efficient realiza-
tion of control logic in reversible circuits. So far, existing
methods realize control logic with a significant amount of
redundant circuit structures. An alternative is presented that
avoids large parts of these redundancies by buffering the
results of recurring computations in one additional circuit
line. Accordingly, the proposed approach enables to realize
control logic with significantly less circuit lines, while the
increase of the circuit cost remains moderate – in some
cases even reductions are possible. This conclusion is also
confirmed by an experimental evaluation.

I. INTRODUCTION
Research in the domain of design automation for re-

versible circuits received significant attention in the last
years. Circuits are thereby designed, which – in contrast
to conventional circuits – realize bijections, i.e. one to
one mappings of primary inputs and primary outputs, re-
spectively. Mainly driven by the promising applications of
reversible circuits, e.g. in quantum computation [1] or low-
power design [2], [3], a wide range of approaches for
synthesis [4]–[8], optimization [9], [10], verification [11]–
[13], testing [14]–[16], and even debugging [17] have been
introduced. These methods incorporate the special properties
and design philosophies needed for reversible circuits. So far,
they allow to automatically design this kind of circuits up
to a certain degree of complexity.

However, even if first physical realizations exploiting
reversible logic (e.g. quantum circuits solving the factor-
ization problem in polynomial time [18] or adder circuits
with low-power properties [19]) have been built yet for
small instances only, larger machines are planned. Therefore,
design methods are needed enabling the specification and the
realization of more complex reversible systems. Accordingly,
researchers started to lift the existing methods to higher
levels of abstractions. First results obtained by replacing
the existing low level synthesis methods with a reversible
High level Description Language (HDL) recently have been
presented [20].

Following this direction, new research problems emerge
that did not have intensely considered in the past. Using
programming languages in order to design reversible circuits,
the efficient realization of both, the data flow and the
control flow, are crucial – respective building blocks are
needed. While for the data-flow, some progress has been
made e.g. in the realization of certain arithmetic structures
like adders [21] or multipliers [22], [23], the development
of efficient realizations for the control flow is just at the
beginning. In particular, how to efficiently realize conditional
statements is an open question. Existing methods introduced
in [20] suffer either from a large number of additional circuit
lines (a very limited resource) or from very large circuit cost
(this is considered in more detail in Section III).

In this paper, a new method to realize conditional state-
ments in reversible logic is presented which addresses these
drawbacks. We exploit thereby the observation that existing
realizations include a significant amount of redundancies.
An alternative is presented that avoids large parts of these
redundancies by buffering the results of recurring com-
putations in one additional circuit line. Accordingly, the
resulting realizations have significant less circuit cost, while
the number of additional circuit lines is increased only by
one.

Buffering results of recurring computations is thereby not
completely new and already has been applied in [24]. There,
a simple greedy search approach has been introduced to
detect appropriate circuit structures. In this paper, we adapt
and extend the idea of buffering explicitly for the purpose
of control logic realization. Furthermore, while the approach
introduced in [24] is applicable to low level circuits only, our
method exploits all the information from the HDL and, thus,
can be applied to complex designs as well.

Experimental results show that the proposed approach
provides a trade-off between the existing methods. Both, the
number of circuit lines as well as the respective quantum cost
and transistor cost of the resulting circuits remain moderate,
while previously introduced realizations suffer from either
one of these criteria.

The remainder of this paper is structured as follows: The
first two sections provides the basis for the rest of this work.
More precisely, Section II introduces reversible circuits,
while Section III briefly reviews and discusses existing
realizations of control logic. Afterwards, the general idea and
the main concepts of the proposed approach are introduced in
Section IV. Section V describes the implementation. Finally,
experimental results and conclusions are given in Section VI
and Section VII, respectively.

1 1
1 1
0 1

1 1
1 0
0 1

(a) Reversible gates

1
1
1

0
0
0

(b) Reversible circuit

Fig. 1. Reversible circuitry

II. REVERSIBLE CIRCUITS
Reversible circuits realize reversible functions, i.e. func-

tions f : Bn → Bn where each input pattern uniquely maps
to a certain output pattern. In other words, each reversible
circuit realizes a bijection that perform permutations on the
set of input patterns.

Definition 1. A reversible circuit G over inputs X is a
cascade of reversible gates gi, i.e. G = g1g2 · · · gd where
d is the number of gates. A reversible gate has the form
g(C, T), where C ⊂ X is the set of control lines and
T ⊂ X with C ∩ T = ∅ is the set of target lines. The
gate operation is applied to the target lines iff all control
lines meet the required control conditions. Control lines and
unconnected lines always pass through the gate unaltered.
The set of circuits over inputs X is denoted by G.

In the past, the Toffoli gate [25] and the Fredkin gate [26]
established themselves as a universal gate library for re-
versible circuits. They are also considered in this paper.

Definition 2. A (multiple control) Toffoli gate t(C, {x})
maps its single target line x to

∧
c∈C c⊕x. That is, a Toffoli

gate inverts the target line iff all control lines are assigned
to 1.

A (multiple control) Fredkin gate f(C, {x1, x2}) inter-
changes the values of the target lines x1 and x2 iff the
conjunction of all control lines evaluates to 1.

Example 1. Fig. 1(a) shows a Toffoli gate with two control
lines and a Fredkin gate with one control line, respectively,
with possible input/output assignments. Fig. 1(b) shows
different reversible gates in a cascade forming a reversible
circuit.

In the following, reversible gates and reversible circuits
may be enriched with additional control lines.

Definition 3. Let g(C, T) be a reversible gate. To attach
additional control lines C ′ ⊂ X with C ∩ C ′ = ∅ to g, the
following notation is used:

C ′ 7→ g(C, T) := g′(C ∪ C ′, T)

Accordingly, the same notation is used for a cascade G of
gates.

The costs of a reversible circuit are measured by vari-
ous cost metrics (sometimes depending on the addressed
technology). In general, the number of circuit lines is an
important criterion since it represents a very limited resource.
Additionally, the costs of the respective gates themselves are
important, too. Since simply counting the number of gates
does not adequately reflect the effort to realize them, so
called quantum cost [27] and transistor cost [28] have been
introduced. These costs heavily depend on the number of

Table I. Costs of reversible gates
Control Toffoli gate Fredkin gate

lines Quant. cost Trans. cost Quant. cost Trans. cost
0 1 0 3 0
1 1 8 7 8
2 5 16 15 16
3 13 24 28-31 24
4 26-29 32 40-63 32
5 38-61 40 52-127 40
6 50-125 48 64-255 48

if e then1
a+=b2

else3
c+=d4

(a) Code

a
0
b
e
d
c
0

a′

–
b
e
d
c′

–

+=

+=

dupl. then else merging
(b) Using duplication

a
b
e
d
c

a′

b
–
d
c′

+=

+=

(c) Using add. contr.

Fig. 2. Realization of an if-statement

control line connections in a gate. Table I lists the respective
costs for the most common cases1.

Example 2. The circuit in Fig. 1(b) is composed of 3 circuit
lines as well as 4 gates and has quantum cost of 10 and
transistor cost of 32, respectively.

III. REALIZATION OF CONTROL LOGIC
How to efficiently design and synthesize reversible circuits

is an active research area. First approaches are predominantly
based e.g. on Boolean descriptions [4]–[8] and, thus, provide
limited capacity only. Consequently, researchers started to
investigate higher levels of abstraction raising the attention to
hardware description languages for reversible circuits [20].
Here, the efficient realization of both, the data flow and
the control flow, is crucial. While aspects of the data flow
already are under detailed investigation (see e.g. [21], [23]),
synthesis of reversible circuits for control logic was not
investigated in much detail.

The realization of loops and procedure calls is thereby
straightforward, since the respective instructions simply have
to be cascaded together. In contrast, conditional statements
require more elaborated methods. To the best of our knowl-
edge, only the two approaches depicted in Fig. 2 are known
so far [20]:

1) The first one (shown in Fig. 2(b)) relies on duplication.
Here, the values of all signals that possibly might
be affected in an if- or else-block are copied (using
an additional circuit line with a constant input as
shown by Signal a and Signal c in Fig. 2). Then,
sub-circuits realizing the respective if-/else-block are
added (denoted by the boxes). Finally, depending on
the result of the conditional statement (Signal e in
Fig. 2), the values of the duplicated lines and the

1Note that depending on the concrete configuration of a gate, improve-
ments in the costs are possible. This is the reason why e.g. the quantum
cost for a Toffoli gate with 4 control lines range from 26 to 29.

if a then1
if b then2

c += d3
else4

d += c5

else6
skip7

(a) Control logic

a a

b b
c0 c0

c1 c1

d0 d0

d1 d1

0 g

0 g

0 g

0 g

0 g

0 g

0 g

0 g

(b) Realization using duplication

a a

b b
c0 c0

c1 c1

d0 d0

d1 d1

(c) Realization using additional controls

0 0
a a

b b
c0 c0

c1 c1

d0 d0

d1 d1

(d) Proposed realization

Fig. 3. Different realizations of control logic illustrating the general idea

original lines are swapped leading to the desired result
which can be used in the following.

2) The second realization (shown in Fig. 2(c)) makes
intensive use of control connections. More precisely,
control lines are added to all gates in the realization
of the respective then- and else-block. Therewith, the
gates in these blocks are only triggered iff the result
of the conditional statement (i.e. signal e) is assigned
to 1 or 0, respectively. A NOT gate (i.e. a Toffoli
gate t(∅, {e}) without control lines) is thereby applied
to flip the value of e so that the gates of the else block
can be “controlled” as well.

Both realizations have serious drawbacks. Obviously, the
first approach makes extensive use of additional circuit lines.
Since this is a very limited resource, researchers try to keep
this number as small as possible. In contrast, the second
one requires no additional circuit lines, but due to the
added control connections the cost of a single gate increases
significantly.

Example 3. Consider the nested if-statement shown in
Fig. 3(a). In the respective blocks, an increase operation
is applied to variables over two bits. Using the duplication
method, the circuit depicted in Fig. 3(b) with 8 additional
lines and quantum cost (transistor cost) of 92 (256) re-
sult (the realizations of the respective if-/else blocks are
shadowed). Using the second approach, the circuit depicted
in Fig. 3(c) with no additional lines, but quantum cost
(transistor cost) of 222 (336) is generated. That is, using
the existing approaches, the designer has to trade-off either
to accept more than twice the number of circuit lines or
twice the number of quantum cost (in case of transistor cost
an increase by still 30%).

IV. GENERAL IDEA

In this section, we present the basic observations motivat-
ing an alternative realization of control logic in reversible
circuits. The goal is to present a solution which provides
a trade-off between the two complementary optimization
goals. In fact, a realization is proposed which increases the
number of circuit lines only by one, but on the other side re-
duces the gate costs significantly. The fact that control logic
leads to redundant circuit structures is thereby exploited.

To illustrate this, consider again the nested if-statement
from Fig. 3(a). The first block shall be executed only if
the conditional statement a evaluates to true. Moreover,
the second block shall be executed only if additionally the
conditional statement b evaluates to true. As described in the
previous section, this can be realized by either duplicating
the respective signal values (as done in Fig. 3(b)) or by
adding further control connections (as done in Fig. 3(c)) –
both leading to redundancies.

Consider in more detail the latter method (see Fig. 3(c)).
Here, a reversible cascade results including many similar
gates (namely gates with control lines at a and b, tagged
by a box around them). In the following, such cascades are
called Ĉ-controlled cascades.

Definition 4. Let G = g1g2 . . . gd be a cascade of reversible
gates. If all these gates have a common subset Ĉ of control
lines (i.e. if Ĉ ⊂ Ci holds for all gates gi(Ci, Ti) with
1 ≤ i ≤ d), G is denoted by Ĉ-controlled cascade.

Note that each gate gi(Ci, Ti) of a Ĉ-controlled cascade
can be written as Ĉ 7→ gi(C ′i, Ti) with C ′i = Ci \ Ĉ.

Example 4. The first if-block is realized by an {a}-
controlled cascade in Fig. 3(c), while the second if-block
is realized by an {a, b}-controlled cascade.

Ĉ-controlled cascades represent the heart of the control
logic, since they trigger whether a cascade (representing a
block) is executed or not. But, these control connections
include a significant amount of redundancies since identical
control connections are permanently evaluated. This obser-
vation is exploited by our approach.

In order to remove the redundancies, we suggest to
temporarily buffer the evaluated value of the common control
lines within a Ĉ-controlled cascade. Therefore, a single
circuit line is added to the circuit to be synthesized. This line
works as corresponding buffer which enables to significantly
reduce the large amount of redundant control connections.
More precisely:

Definition 5. Let G = g1g2 . . . gd be a Ĉ-controlled cas-
cade. In order to remove the redundancies, this cascade is
replaced by an optimized Ĉ-controlled cascade defined as
follows:
• A new circuit line buf with a constant input 0 is added

to the original cascade.
• A new Toffoli gate tbuf (Ĉ, {buf}) is added at

both ends of the original cascade, i.e. the cascade
tbufg1g2 . . . gdtbuf is constructed. Due to the constant
input and the first gate, the circuit line buf now buffers
the evaluated value of the common control lines.

• Each gate (Ĉ 7→ gi(C ′i, Ti)) with 1 ≤ i ≤ d is replaced
by the gate ({buf} 7→ gi(C ′i, Ti)), i.e. a gate where
the control connections given in Ĉ are removed and,
instead, the control connection buf is used.

Note that the optimized cascades should be applied to
Ĉ-controlled cascades with |Ĉ| > 1. Otherwise, the number
of control connections does not change. Furthermore, adding
the gate tbuf at both ends of the cascade first of all increases
the cost of the circuit. But in particular for larger Ĉ-
controlled cascades, this increase can easily be compensated
by the removal of the redundancies. Finally, note that the
right most gate tbuf is not necessarily needed. However, it
sets the line buf back to the constant value 0 so that this
line can be used later for another Ĉ-controlled cascade.

Example 5. Consider again the realization of the nested if-
statement from Fig. 3(c). Applying the proposed method to
both {a, b}-controlled cascades lead to the circuit shown in
Fig. 3(d). Already in this simple example, this reduces the
quantum cost from 222 to 114 and the transistor cost from
336 to 304. At the same time, the number of lines is increased
by 1 only. In comparison to the realization using duplication
(Fig. 3(b)), the number of additional lines is reduced from 8
to 1, while the cost increase is quite moderate (92 to 114 in
case of quantum cost and 256 to 304 in case of transistor
cost).

In summary, Ĉ-controlled cascades are an integral part
of control logic and include a significant amount of redun-
dancies which can be removed as illustrated above. Based
on this general idea, the next section describes how these
observations are exploited in order to efficiently realize
control logic in reversible circuits.

if a then1
if b then2

if c then3
S14

else5
S26

else7
if c then8

S39
else10

S411

(a) Conditional statement

r

a v1

bv2

cv5

S1v11

c̃
v6

c v7

S2 v12

b̃
v3

b v4

cv8

S3

v13

c̃
v9

c

v10

S4

v14

(b) Control-condition tree

Fig. 4. If statement and its control-condition tree

V. IMPLEMENTATION
In this section, an algorithm is proposed that makes use

of optimized Ĉ-controlled cascades in order to synthesize
the desired control logic with low cost and only a moderate
increase in the number of circuit lines. The approach is
thereby build on top of an extended HDL synthesizer which
is briefly described in the first subsection. Having that,
two new stages are applied: First, a structural analysis is
performed determining whether an optimized cascade should
be used or not. Then, the actual synthesis is executed.

V-A. HDL Synthesizer
In order to synthesize circuits specified in a hardware

description language, we use a similar flow as recently
presented in [20]: A hierarchical synthesis method is applied
that traverses a given HDL program first. Afterwards, exist-
ing realizations of operations are applied as building blocks
and combined together so that the desired circuit results. In
order to efficiently realize control logic within this process,
an additional data-structure defined as follows is joined up:

Definition 6. Given an HDL program to be synthesized
as reversible circuit. To represent the respective control-
conditions, a control-condition tree T = (V, s, c, g) is
created, where
• V = {r}∪Vl∪Vc is the set of nodes including r repre-

senting the root, the leaves Vl representing statement
blocks, and the non-terminal nodes Vc representing
controlled cascades,

• s : V → V ∗ is a function providing an ordered list of
successors of a given node,

• c : Vc → X is a function providing the control
connection for a given non-terminal node, and

• g : Vl → G is a function providing a circuit realization
of the statement block represented by the given leaf.

Example 6. Fig. 4(a) shows an HDL program. The corre-
sponding control-condition tree is given in Fig. 4(b). Here,
e.g. the application of s(v2) leads to [v5, v6, v7], c(v2)
evaluates to b, and g(v12) represents the circuit realization
of the statement S2.

Using this data-structure, all information needed to synthe-
size the HDL program is available. In particular, the control
connections are easily accessible: For any node v ∈ V , the

set of lines ĉ(v) controlling the represented cascade can be
derived by recursively applying the function c.

In a similar, recursive manner, circuits are realized for a
given v ∈ V . More precisely, a circuit realizing the cascade
represented by v is generated by

ĝ(v) :=


g(v), if v ∈ Vl

T
u∈s(v)

{
{c(u)} 7→ ĝ(u), if u ∈ Vc

ĝ(u), else
, else

whereby Tu∈s(v)
is an n-tupel representing the concatena-

tion of the results of each successor u ∈ s(v).

Example 7. Applying the recursive functions to the nodes
v2 and v7 of the control-condition tree in Fig. 4(b) provide
the following values:

ĉ(v2) = {a, b}
ĝ(v2) = ({c} 7→ g(S1), t(∅, {c}), {c} 7→ g(S2))
ĉ(v7) = {a, b, c}
ĝ(v7) = g(S2)

Note that using the abstraction of the control-condition
tree, not only conditional statements, but also similar con-
structs (e.g. resulting from dynamic array realization, use of
controlled functions as in synthesis of multiplication [23],
and increment etc.) can be treated. Using the control-
condition tree, the occurrences of Ĉ-controlled cascades can
easily be identified and analysized. As described in the next
section, this is necessary in order to make the best use of
optimized Ĉ-controlled cascades.

V-B. Structural Analysis
Usually, every description of a non-trivial reversible circuit

includes many different conditional statements nested into
each other. This leads to a significant number of different
and, in particular, overlapping Ĉ-controlled cascades. Since
not all of them can be replaced by an optimized Ĉ-controlled
cascade simultaneously, a structural analysis is performed
first. This is motivated by the following example.

Example 8. Consider the control-condition tree as shown
in Fig. 4(b). Synthesizing this control logic according to
the additional control line scheme lead to a circuit with
an {a}-controlled cascade, two {a, b}-controlled cascades,
and four {a, b, c}-controlled cascades. However, optimized
Ĉ-controlled cascades cannot be applied to all of them
simultaneously. In fact, with a single additional line buf ,
only the value of the common control connections of one
cascade can be buffered at one time. Hence, optimized Ĉ-
controlled cascades can be applied either
• to the whole {a}-controlled cascade,
• to both {a, b}-controlled cascades,
• to the four {a, b, c}-controlled cascades,
• to the first {a, b}-controlled cascade and the last two
{a, b, c}-controlled cascades, or

• to the first two {a, b, c}-controlled cascades and the
second {a, b}-controlled cascade.

Obviously, which of these alternatives should be selected
is crucial to the resulting cost of the circuit. While replacing
the whole {a}-controlled cascade with an optimized one

Input : v controlled cascade Tree
Input : buf (additional circuit line with const. inp. 0)
Output: bool whether to apply an optimized version of

the cascade represented by v

decide(v, buf):1
return (optCost(v, buf) ≤ bestCost(v, buf))2

bestCost(v, buf):3
stdCost = cost(ĉ(v) 7→ ĝ(v))4
optCost = cost({buf} 7→ ĝ(v))5

+ 2 · cost(t(ĉ(v), {buf}))6
if v ∈ Vl then7

return min(stdCost, optCost)8

sucCost = 09
foreach u ∈ s(v) do10

sucCost += bestCost(u, buf)11

return min(stdCost, optCost, sucCost)12

Fig. 5. Algorithm for cascade optimization decision

does not lead to any reductions at all (see the discussion
in the previous section), the effect of choosing one of the
remaining possibilities varies significantly depending on the
concrete nature of the respective if- and else-blocks.

Thus, to determine the best improvement, a structural
analysis is performed first. That is, for each node of the
control-condition tree to be realized, it is checked whether
an optimized version of the represented cascade should be
applied or not. This is determined by the function decide
shown in Fig. 5. This function applies bestCost (also shown
in Fig. 5) to compute the costs of the following possible
realizations:
• the cost stdCost of the cascade represented by v

without the proposed optimization (Line 4),
• the cost optCost of the cascade represented by v with

the proposed optimization (Line 5), and
• the best cost sucCost obtained by applying the pro-

posed optimization to any of the succeeding cascades
represented by u ∈ s(v) independently (recursively
computed in Line 9 to Line 11).

Afterwards, the resulting costs are compared (Line 2). If
and only if the application of the proposed optimization at
the cascade represented by v leads to the smallest cost,
the respective optimized Ĉ-controlled cascade is applied.
Therewith, the proposed optimization is applied to the best
possible cascade.

Example 9. Consider again the control-condition tree de-
picted in Fig. 4(b). The application of the decide-function is
illustrated by means of Node v2, i.e. it is checked whether
an optimized {a, b}-controlled cascade should be applied or
not. Both statements S1 and S2 are thereby assumed to be
2-bit additions, i.e. statements which are realized by 2 Toffoli
gates including 2 control lines and 4 Toffoli gates including 1
control line. Having this, the respective costs are as follows:
• If the cascade represented by v2 is realized without op-

timization, three additional control lines (namely a, b, c)
are applied to the realization of the additions and two

Input : v controlled cascade Tree
Input : buf (additional circuit line with const. inp. 0)
Output: G circuit realizing v (initially empty)
optCascade(v, G, buf):1
if (decide(v)) then2

G = G t(ĉ(v), {buf})3
G = G ({buf} 7→ ĝ(v))4
G = G t(ĉ(v), {buf})5

else6
if v ∈ Vl then7

G = G ĝ(v)8
else9

foreach u ∈ s(v) do10
G = G optCascade(u, G, buf)11

return G12

Fig. 6. Algorithm for exact cascade optimization

additional control lines (namely a, b) are applied to the
negation. This amounts to a cost of stdCost =365.

• If the optimized {a, b} controlled-cascade is applied,
only two additional control lines (namely buf, c) are
applied to the realization of the additions and only
one additional control line (namely buf) is applied
to the negation. But then, two additional Toffoli gates
t({a, b}, {buf}) are required amounting to a total cost
of 219.

• However, a cheaper realization results, if optimal con-
trolled cascades are applied at Node v4 and Node v6.
Then, one additional control line (namely buf) is ap-
plied to the additions and two additional control lines
(namely a, b) are applied to the negation. Additionally,
four Toffoli gates t({a, b, c}, {buf}) are required. Nev-
ertheless, this leads to total cost of 149.

Accordingly, the decide-function returns false and no opti-
mized cascade is applied at Node v2.

V-C. Synthesis

Combining the data-structures and strategies introduced
above, an algorithm as shown in Fig. 6 results. This al-
gorithm synthesizes a reversible circuit G from a given
control-connection tree with improved handling of the con-
trol structures. It gets the node corresponding to the HDL
program that should be realized (usually the root node r)
and an additional line that can be used for the optimization
of the controlled cascades. As result, the algorithm returns
the synthesized circuit.

The algorithm traverses the control connection tree begin-
ning with a given node. For each node, it checks whether
the currently represented cascade should be optimized or
not. Therefore, the decide-function introduced above is ap-
plied (Line 2). If this function returns true, the respective,
optimized Ĉ-controlled cascade is generated (Line 3 to
Line 5). Otherwise, the algorithm is recursively called for
all successors u ∈ s(v) (Line 11).

VI. EXPERIMENTS
The proposed approach has been implemented in C++

and evaluated using HDL programs specified in the SyReC
language [20]. The programs define various components of
a simple processor including an arithmetic logic unit real-
izing addition, subtraction, multiplication, and xor (denoted
by alu), a logic unit realizing Boolean operations (denoted
by lu), different control units (denoted by contr unit1,
contr unit2, and contr unit3), and different versions of a
program counter (denoted by pc1 and pc2). The logic units
are thereby evaluated using different bit-widths. Beyond that,
also an arbiter with 8 clients (denoted by arb8) has been
considered. All experiments have been carried out on an
AMD DualCore Athlon 3GHz machine with 32 GB of main
memory.

Table II summarizes the obtained results. Besides the
proposed approach, also circuits realizing control logic using
duplication and circuits realizing control logic using addi-
tional controls (see Section III) are considered for compar-
ison. The respective columns give the name of the circuit
(denoted by Benchmark), the applied bit-width (denoted
by bit-width), the number of primary inputs (denoted by PI),
the number of additional lines with constant inputs (denoted
by CI), the quantum cost (denoted by QC), the transistor
cost (denoted by TC), and the needed synthesis time (in
CPU seconds and denoted by Time).

The results confirm that the proposed approach provides
a trade-off between the existing methods. In comparison to
the duplication-based method, the number of additional lines
is decreased by nearly 50% on average. Thus, with respect
to the number of lines, nearly as good results as with the
method using additional controls are achieved. Moreover,
while the method based on additional controls leads to
circuits with very large quantum cost and transistor cost,
this increase is moderate using the proposed approach. In
cases of the control units (that inherently include a significant
portion of control logic) even some substantial reductions
can be achieved. Overall, using the proposed approach,
both, the number of circuit lines as well as the respective
gate costs, remain moderate, while the previously introduced
approaches suffer from either one of these criteria.

VII. CONCLUSIONS
In this paper, a new method to realize conditional state-

ments in reversible logic is presented. Therefore, the obser-
vation that existing realizations include a significant amount
of redundancies is exploited. In doing so, the drawbacks
of the existing realizations are explicitly addressed. In fact,
the proposed approach enables to realize control logic with
less additional circuit lines, while – at the same time – the
increase of the quantum cost and transistor cost remains
moderate or is even reduced.

VIII. ACKNOWLEDGMENT
This work was supported by the German Research Foun-

dation (DFG) (DR 287/20-1).

IX. REFERENCES
[1] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information, Cambridge Univ. Press, 2000.
[2] R. Landauer, “Irreversibility and heat generation in the

computing process,” IBM J. Res. Dev., vol. 5, pp. 183,
1961.

Table II. Experimental results
Realizing control logic using

duplication additional controls the proposed approach
Benchmark Bit-width PI CI QC TC Time CI QC TC Time CI QC TC Time
alu 8 26 65 1918 5792 0.049s 41 11073 13128 0.052s 42 4705 8784 0.048s
alu 16 50 121 7082 19808 0.053s 73 40697 45160 0.061s 74 16829 29168 0.055s
alu 32 98 233 27202 72416 0.058s 137 155625 166056 0.088s 138 63541 105264 0.075s
lu 8 26 64 253 1328 0.047s 40 1965 2976 0.045s 41 744 2040 0.043s
lu 16 50 120 461 2544 0.047s 72 3773 5600 0.046s 73 1320 3640 0.045s
lu 32 98 232 877 4976 0.025s 136 7389 10848 0.050s 137 2472 6840 0.047s
contr unit1 32 215 320 4439 15472 0.130s 124 14481 22760 0.084s 125 2858 9984 0.085s
contr unit2 32 200 74 6839 13248 0.008s 38 13568 17312 0.012s 39 2432 7072 0.016s
contr unit3 32 527 4414 572882 797920 1.006s 318 1744399 1607064 0.959s 319 209170 388848 1.096s
pc1 – 8 17 53 312 0.018s 5 153 328 0.005s 6 97 304 0.009s
pc2 – 8 10 26 168 0.007s 0 34 104 0.007s 1 32 120 0.012s
arb8 – 16 44 80 640 0.302s 8 746 800 0.271s 9 391 576 0.262s

[3] C. H. Bennett, “Logical reversibility of computation,”
IBM J. Res. Dev, vol. 17, no. 6, pp. 525–532, 1973.

[4] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes, “Synthesis of reversible logic circuits,” IEEE
Trans. on CAD, vol. 22, no. 6, pp. 710–722, 2003.

[5] D. Maslov, G. W. Dueck, and D. M. Miller, “Toffoli
network synthesis with templates,” IEEE Trans. on
CAD, vol. 24, no. 6, pp. 807–817, 2005.

[6] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm
for synthesis of reversible logic circuits,” IEEE Trans.
on CAD, vol. 25, no. 11, pp. 2317–2330, 2006.

[7] R. Wille, H. M. Le, G. W. Dueck, and D. Große,
“Quantified synthesis of reversible logic,” in Design,
Automation and Test in Europe, 2008, pp. 1015–1020.

[8] R. Wille and R. Drechsler, “BDD-based synthesis
of reversible logic for large functions,” in Design
Automation Conf., 2009, pp. 270–275.

[9] D. Y. Feinstein, M. A. Thornton, and D. M. Miller,
“Partially redundant logic detection using symbolic
equivalence checking in reversible and irreversible
logic circuits,” in Design, Automation and Test in
Europe, 2008, pp. 1378–1381.

[10] R. Wille, M. Soeken, and R. Drechsler, “Reducing
the number of lines in reversible circuits,” in Design
Automation Conf., 2010, pp. 647–652.

[11] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Check-
ing equivalence of quantum circuits and states,” in Int’l
Conf. on CAD, 2007, pp. 69–74.

[12] S.-A. Wang, C.-Y. Lu, I-M. Tsai, and S.-Y. Kuo,
“An XQDD-based verification method for quantum
circuits,” IEICE Transactions, vol. 91-A, no. 2, pp.
584–594, 2008.

[13] R. Wille, D. Große, D. M. Miller, and R. Drechsler,
“Equivalence checking of reversible circuits,” in Int’l
Symp. on Multi-Valued Logic, 2009, pp. 324–330.

[14] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing
for reversible circuits,” IEEE Trans. on CAD, vol. 23,
no. 8, pp. 1220–1230, 2004.

[15] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A
family of logical fault models for reversible circuits,”
in Asian Test Symp., 2005, pp. 422–427.

[16] R. Wille, H. Zhang, and R. Drechsler, “ATPG for re-
versible circuits using simulation, Boolean satisfiability,
and pseudo Boolean optimization,” in IEEE Annual
Symposium on VLSI, 2011.

[17] R. Wille, D. Große, S. Frehse, G. W. Dueck, and

R. Drechsler, “Debugging of Toffoli networks,” in
Design, Automation and Test in Europe, 2009, pp.
1284–1289.

[18] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S.
Yannoni, M. H. Sherwood, and I. L. Chuang, “Exper-
imental realization of Shor’s quantum factoring algo-
rithm using nuclear magnetic resonance,” Nature, vol.
414, pp. 883–887, 2001.

[19] B. Desoete and A. De Vos, “A reversible carry-look-
ahead adder using control gates,” INTEGRATION, the
VLSI Jour., vol. 33, no. 1-2, pp. 89–104, 2002.

[20] R. Wille, S. Offermann, and R. Drechsler, “SyReC:
A programming language for synthesis of reversible
circuits,” in Forum on Specification and Design Lan-
guages, 2010, pp. 184–189.

[21] Y. Takahashi and N. Kunihiro, “A linear-size quantum
circuit for addition with no ancillary qubits,” Quantum
Information and Computation, vol. 5, pp. 440–448,
2005.

[22] M.S. Islam, M.M. Rahman, Z. Begum, and M.Z. Hafiz,
“Low cost quantum realization of reversible multiplier
circuit,” Information Technology Journal, vol. 8, no. 2,
pp. 208–213, 2009.

[23] S. Offermann, R. Wille, G. W. Dueck, and R. Drechsler,
“Synthesizing Multiplier in Reversible Logic,” in Int’l
Symp. on Design and Diagnostics of Electronic Circuits
and Systems, 2010, pp. 335–340.

[24] D. M. Miller, R. Wille, and R. Drechsler, “Reducing
reversible circuit cost by adding lines,” in Int’l Symp.
on Multi-Valued Logic, 2010, pp. 217–222.

[25] T. Toffoli, “Reversible computing,” in Automata,
Languages and Programming, W. de Bakker and J. van
Leeuwen, Eds., p. 632. Springer, 1980, Technical
Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[26] E. F. Fredkin and T. Toffoli, “Conservative logic,”
International Journal of Theoretical Physics, vol. 21,
no. 3/4, pp. 219–253, 1982.

[27] A. Barenco, C. H. Bennett, R. Cleve, D.P. DiVinchenzo,
N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and
H. Weinfurter, “Elementary gates for quantum com-
putation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[28] M. K. Thomson and R. Glück, “Optimized reversible
binary-coded decimal adders,” J. of Systems Architec-
ture, vol. 54, pp. 697–706, 2008.

