
Designing a RISC CPU in Reversible Logic
Robert Wille Mathias Soeken Daniel Große Eleonora Schönborn Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{rwille,msoeken,grosse,eleonora,drechsle}@informatik.uni-bremen.de

Abstract—Driven by its promising applications, reversible logic
received significant attention. As a result, an impressive progress
has been made in the development of synthesis approaches,
implementation of sequential elements, and hardware description
languages. In this paper, these recent achievements are employed
in order to design a RISC CPU in reversible logic that can
execute software programs written in an assembler language. The
respective combinational and sequential components are designed
using state-of-the-art design techniques.

I. INTRODUCTION

With increasing miniaturization of integrated circuits, the
reduction of power dissipation has become a crucial issue in
today’s hardware design process. While due to high integration
density and new fabrication processes, energy loss has sig-
nificantly been reduced over the last decades, physical limits
caused by Landauer’s principle will remain [1]. Landauer ob-
served that independently from the applied technology ln 2·kT
Joule of energy is dissipated for each lost bit of information
(k is the Boltzmann constant and T is the temperature). That
is, each time e.g. an AND operation is performed, where two
input values are transformed into a single one, this fraction of
energy is dissipated. While this amount has been negligible
in the past, in particular for future designs it becomes an
increasingly important factor [2].

In order to avoid this physical limitation, researchers pro-
pose reversible circuits as a promising alternative. Already in
the 1970s, Bennett showed that zero energy dissipation is only
possible, if information-lossless computation is performed [3].
This applies to reversible circuits, since they map each input
pattern uniquely to a certain output pattern. First physical
realizations confirming this observation (e.g. in terms of a
reversible CMOS 4-bit adder) have already been presented [4].

Driven by these results as well as by further promising
applications (e.g. in the domain of quantum computation [5]),
researchers started to apply these concepts on larger circuitries.
Central Processing Units (CPUs) – as the core element of
many systems – received thereby particular attention (see
e.g. [6], [7], or recently [8]). However, either hand-crafted
architectures or processing units with a very small set of
supported operations have been presented so far.

A reason for this has been the lack of efficient tools and
methods for the design of complex reversible circuits. But in
the last years, an impressive progress has been made in the
development of approaches for synthesis [9], [10], [11], [12],
the implementation of reversible sequential elements [13],
[14], [15], [16], or, recently, the introduction of hardware
description languages [17].

In this paper, the recent progress in the field of reversible cir-
cuit design is employed in order to design a complex system,
i.e. a RISC CPU composed of reversible gates. Starting from
a textual specification, first the core components of the CPU
are identified. Previously introduced approaches are applied
next to realize the respective combinational and sequential
elements. More precisely, the combinational components are
designed using the reversible hardware description language
SyReC [17], whereas for the realization of the sequential
elements an external controller (as suggested in [16]) is
utilized.

Plugging the respective components together, a CPU design
results which can process software programs written in an
assembler language. This is demonstrated in a case study,
where the execution of a program determining Fibonacci
numbers is simulated.

Therewith, the contribution of the paper is twofold. On the
one hand, a comprehensive case study is provided, showing
the application of state-of-the-art design techniques in order
to design a large system. Considering that some years ago,
automatic synthesis approaches were applicable to functions
given in terms of truth-tables only (see e.g. [9]), this is a major
step towards the design of high-end systems in reversible logic.
On the other hand, with the resulting reversible CPU, a non-
trivial reversible circuit becomes available, which can serve as
benchmark for other areas such as verification or test1.

The paper is structured as follows. The next section intro-
duces the basics of reversible circuits as well as the hardware
description language SyReC, which is used to implement the
proposed CPU. Afterwards, the specification of the CPU is
provided in Section III, while Section IV discusses the imple-
mentation details. Section V demonstrates the execution of a
software program on the proposed CPU. Finally, conclusions
are given in Section VI.

II. BACKGROUND

This section introduces the basics of reversible circuits.
Furthermore, the SyReC hardware description language is
reviewed, which is used later to specify core components of
the CPU. The descriptions are kept brief. For a more detailed
treatment, we refer to the respective references.

A. Reversible Circuits

Reversible circuits realize functions with a unique input/out-
put mapping, i.e. bijections. A reversible circuit is composed
as a cascade of reversible gates [5]. For a set of variables

1To this end, the CPU has been made public available at RevLib [18].

g1 g2 g3 g4 g5

0 s

cin cout

a −

b −

Fig. 1. Reversible circuit realizing a full adder

X = {x1, . . . , xn}, a reversible gate has the form g(C, T),
where C = {xi1 , . . . , xik} ⊂ X is the set of control lines and
T = {xj1 , . . . , xjl} ⊂ X with C ∩ T = ∅ is the non-empty
set of target lines. The gate operation is applied to the target
lines if and only if all control lines meet the required control
conditions. Control lines and unconnected lines always pass
through the gate unaltered.

In the literature, several types of reversible gates have been
introduced. In this work, circuits realized by Toffoli gates [19]
and Fredkin gates [20] are considered. A Toffoli gate has a sin-
gle target line xj and maps the input (x1, x2, . . . , xj , . . . , xn)
to the output (x1, x2, . . . , xi1xi2 · · ·xik⊕xj , . . . , xn). That is,
a Toffoli gate inverts the target line if and only if all control
lines are assigned to 1. A Fredkin gate has two target lines xj1

and xj2 . The gate interchanges the values of the target lines
if and only if the conjunction of all control lines evaluates to
1.

By definition, reversible circuits can only realize reversible
functions. Thus, in order to realize non-reversible functions,
a process called embedding has to be performed prior to
the synthesis. Therefore, additional garbage (i.e. don’t care)
outputs and constant inputs are added to embed the non-
reversible function into a reversible one [21]. Besides that,
constant inputs and garbage outputs are also used frequently
in order to realize larger functions (see e.g. [12], [17]).

As an example, Fig. 1 shows a reversible circuit realization
of an 1-bit adder. Since the adder is a non-reversible function,
one additional constant input and two garbage outputs are used
to realize this function as a reversible circuit. The gates g1,
g2, g4, and g5 are thereby Toffoli gates, while gate g3 is a
Fredkin gate.

B. The SyReC HDL

SyReC is a hardware description language for reversible
circuits proposed in [17] and is based on the reversible soft-
ware language Janus [22]. It provides fundamental constructs
to define control and data operations, while still preserving
reversibility.

In Fig. 2, the syntax of SyReC is outlined. Each SyReC pro-
gram (denoted by P) consists of signal declarations (denoted
by D) and procedure declarations (representing sub-circuits).
Signals can hold non-negative integer values and are identified
by strings. The bit-width of a signal can optionally be defined
(if not, a default bit-width is applied). Constants are denoted
by c. Each procedure consists of a name (id) and a sequence
of statements (denoted by S) including operations, reversible
conditionals, reversible loops, as well as call and uncall of
procedures (Lines 5 to 9 in Fig. 2). The number of iterations in
loops has to be available prior to the compilation, i.e. dynamic

(1) P ::= D∗ (procedure id S+)+

(2) D ::= x | x (c)
(3) V ::= x | x.N:N | x.N
(4) N ::= c | #V
(5) S ::= V <=> V | V ⊕= E |
(6) if E then S else S fi E |
(7) from N do S loop S until N |
(8) for N do S until N |
(9) call id | uncall id | skip

(10) E ::= N | V | (E � E) | (E < N)
(11) ⊕ ::= + | - | ˆ
(12) � ::= ⊕ | * | / | % | */ | & | | | && | || |
(13) < | > | = | != | <= | >=
(14) < ::= << | >>

Fig. 2. Syntax of the hardware language SyReC

loops are not allowed. Signals within statements are denoted
by V allowing access to the whole signal (x), a certain bit
(x.N), or a range of bits (x.N:N). The bit-width of a signal can
also be accessed (#V).

A distinction is made between reversible assignment oper-
ations (denoted by ⊕) and not necessarily reversible binary
operations (denoted by �). The former ones assign values
to a signal on the left-hand side. Therefore, the respective
signal must not appear in the expression on the right-hand
side. Furthermore, only a restricted set of assignment oper-
ations exists, namely increase (+=), decrease (-=), and bit-
wise XOR (ˆ=), since they preserve the reversibility (i.e. it is
possible to compute these operations in both directions).

In contrast, binary operations, i.e. arithmetic (+, *, /, %, */),
bit-wise (&, |, ˆ), logical (&&, ||), relational (<, >, =, !=,
<=, >=), and shifting (<< | >>) operations, may not
be reversible. Thus, they can only be used in right-hand
expressions which preserve (i.e. do not modify) the values
of the respective inputs. In doing so, all computations remain
reversible since the input values can be applied to reverse any
operation. For example, to specify the multiplication a*b in
SyReC, a new free signal c must be introduced which is used
to store the product. That results in the expression cˆ=a*b. In
comparison to common (irreversible) programming languages,
statements such as a=a*b are not allowed. Using SyReC,
complex reversible circuits can be specified. An example of a
circuit specified in SyReC is given in Section IV-B.

III. SPECIFICATION OF THE CPU
In this section, the basic data of the proposed RISC CPU

is provided. The specification is inspired by the design of a
conventional CPU (see [23]). The CPU was created in order to
execute software programs provided in terms of the assembler
language shown in Table I. This includes
• 8 arithmetic instructions,
• 8 logic instructions,
• 5 jump instructions, and
• 4 load/store instructions.

The respective assembler programs are transformed into se-
quences of binary instruction words, which are processed by
the CPU. A single instruction word is specified as shown

TABLE I
ASSEMBLER INSTRUCTIONS

Command Semantic
Arithmetic and Logic Instructions
ADC R[i], R[j], R[k] Addition with carry into R[i]
SBC R[i], R[j], R[k] Substraction with carry into R[i]
ADD R[i], R[j], R[k] Addition without carry into R[i]
SUB R[i], R[j], R[k] Substraction without carry into R[i]
ROR R[i], R[j] Bitrotation right of R[j]
ROL R[i], R[j] Bitrotation left of R[j]
SHR R[i], R[j] Bitshift right of R[j]
SHL R[i], R[j] Bitshift left of R[j]
NOT R[i], R[j] Bitwise negation
XOR R[i], R[j], R[k] Bitwise exor
OR R[i], R[j], R[k] Bitwise or
AND R[i], R[j], R[k] Bitwise and
MKB R[i], R[j], b Masking of bit b
INB R[i], R[j], b Inverting of bit b
SEB R[i], R[j], b Set bit b
CLB R[i], R[j], b Clear bit b
Jump Instructions
JMP d Jump to address d
JC d Jump to address d, if carry is set
JZ d Jump to address d, if zero-flag is set
JNC d Jump to address d, if carry is not set
JNZ d Jump to address d, if zero-flag is not set
Load/Store Instructions
LDD R[i], R[j] Load memory content of address R[j] into R[i]
STO R[j], R[k] Store R[k] into memory at address R[j]
LDL R[i], d Load constant d into low-byte of R[i]
LDH R[i], d Load constant d into high-byte of R[i]

Assembler Instruction: ADD R[i],R[j],R[k]

Instruction format:
15 . . . 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 bin(i) - - bin(j) bin(k)

Fig. 3. Instruction word representing an ADD instructions

in Fig. 3 by means of the ADD operation. Since in total
25 different instructions are supported, the opcode consists of
the five most significant bits of the instruction word (00111
in case of the ADD instruction). The remaining bits give the
encoding of the natural numbers i, j, and k, which address
the respective registers used by the instruction.

The CPU has been designed as a Harvard architecture,
where the bit-width of both, the program memory and the
data memory, is 16 bit. The size of the program memory is
4 kByte, while the size of the data memory is 128 kByte.
Finally, the CPU has 8 registers, where R[0] always holds the
constant 0 and R[1] always holds the constant 1, respectively.
All remaining registers are initially assigned to logic 0. As
mentioned above, the length of an instruction is 16 bit. Each
instruction is executed within one cylce.

IV. IMPLEMENTATION OF THE CPU

The implementation of the above specified CPU is described
in this section. Besides an overview, this includes a discussion
of the realization of the respective combinational and sequen-
tial components. Finally, the characteristics of the resulting
circuit are summarized.

A. Overview
Fig. 4 provides a schematic overview showing the im-

plementation of the proposed CPU. In the following, the
respective components are briefly described from the left-hand
side to the right-hand side.

In each cycle, first the current instruction is fetched from
the program memory. That is, depending on the current value
of the program counter pc, the respective instruction word is
stored in the signal instr. Using this signal, the control unit
decodes the instruction distinguishing between three cases:

1) If an arithmetic or logical operation is performed, the
respective operands are extracted from the instruction
word and assigned to the signals op1 and op2, respec-
tively. These two signals together with oprt, which
defines the respective operation, are passed to the ALU.
Besides that, the signal write is assigned a logic
value 1 indicating that the result of the operation should
be stored in a target register addressed by dest. Finally,
the signal inc is set to 1, indicating that the program
counter has to be increased by 1.

2) If instead a control operation (e.g. a JMP) is performed,
the signals op1, op2, oprt, write, and dest are
not required for further operation in the current cycle,
whereas the signal inc is assigned a logic value 0.
Further, jmp is set to the new address of the program
memory depending on the instruction word.

3) A memory access using load and store instructions can
be conducted directly by the control unit. In case of
an LDD instruction, the data is fetched from the memory
and stored in the respective register by adjusting the
corresponding signal register. In contrast, in case
of an STO instruction, the value of the source register
is read and stored in the respective memory address.
All other signals are assigned, such that the results of
the components are not used (in case of the ALU) or
remain unchanged (in case of register file). Also here,
signal inc is assigned to logic 1.

Afterwards, as defined in the instruction, the respective opera-
tion is performed in the ALU. Depending on the value of oprt
as well as the operands op1 and op2, a result is determined
and assigned to data. This value is then stored in a register
addressed by dest.

Finally, the program counter is updated. If no control
operation has been performed (i.e. if inc = 1), the value
of signal pc is simply increased by one. Otherwise, pc is
assigned the value given by jmp. An exception occurs, if the
primary input reset is set to 1. Then, the whole execution
of the program is reset, i.e. the program counter is set to 0.
The updated value of the program counter is used in the next
cycle.

Given this CPU architecture, in the following we distinguish
between two types of components. Namely:
• Combinational components, i.e. the circuit elements

needed to perform the actual computation. This includes
the control unit, the ALU, the program counter, and the
register file, respectively. That is, all shaded components
in Fig. 4 fall in this category.

Program
Controller

Program
Memory

Control
Unit

Data
Memory

ALU

Register
File

Program
Counter

reset

instr
oprt
op1
op2

data

inc
jmp

write
dest

register

pc pc’

register’

0
0

0
0
0

0

0

0

0

−
−
−
−

−
−
−

−
−

−
FF

FF

Fig. 4. Schematic diagram of the CPU implementation

• Sequential and memory components, i.e. a clock and
flip-flops which are needed e.g. to pass the value of
the program counter from one cycle to the next cycle.
Also the registers and the memory for both, the program
(i.e. the sequence of instructions to be performed) and
the data, fall into this category.

In the following, we discuss the state-of-the-art techniques
applied in order to realize these components.

B. Combinational Components

In order to realize combinational reversible circuits, a wide
range of synthesis approaches have been introduced in the
recent years (see e.g. [9], [10], [11], [12]). Most of them
rely on Boolean descriptions such as truth tables or Binary
Decision Diagrams (BDDs). But since the CPU includes
complex operations (e.g. large control paths and arithmetic op-
erations), we used the SyReC programming language as well
as its respective synthesis engine to realize the combinational
components of the CPU [17].

Thus, the control unit, the ALU, and the program counter
can be implemented on a higher level of abstraction. This
avoids scalability problems, which would occur if truth-table-
based or BDD-based approaches were applied. In contrast,
hierarchical synthesis approaches (such as the SyReC engine)
tend to generate circuits with a large number of constant
inputs. This can partially be improved by post-synthesis op-
timization approaches (e.g. [24]), but still remains an open
problem, which is left for future work. Besides that, new
design paradigms have to be considered.

As an example, the SyReC code of the program counter
is given in Fig. 5(a). One new design paradigm becomes
already evident in this example. According to the specification,
the program counter should be assigned 0, if the primary
input reset is assigned 1. Due to a lack of conventional
assignment operations which would destroy the reversibility,
this is realized by a new additional signal (denoted by zero
and set to 0) as well as a SWAP operation (see Line 6 of
Fig. 5(a)). Similar design decisions have to be made e.g. to
realize the desired control path or to implement the respective

functionality of the ALU. In contrast, the increase of the
program counter is a reversible operation and, thus, can easily
be implemented by the respective += instruction (Line 9).

The resulting circuit generated by the SyReC synthesizer
is shown in Fig. 5(b). Note that the bit-widths of the signals
are scaled down to 2 in order to improve the readability. The
first two lines give the current value of the program counter
(pc_1, pc_0), while the same lines on the right-hand side
hold the next state values (pc_1′, pc_0′) used as inputs for
the flip-flops as depicted in Fig. 4.

The remaining combinational components are realized simi-
larly. However, due to page limitation and size restrictions, the
complete SyReC code as well as the resulting circuits of all
combinational components cannot be provided in this paper.
The sources are completely available on RevLib [18].

C. Sequential Components

While for the synthesis of combinational reversible circuits,
a significant number of approaches has been introduced,
research on design solutions for sequential components is just
at the beginning. Two different paradigms are currently under
detailed consideration.

The first paradigm (suggested e.g. in [16]) arguments that
a reversible circuit retains in its state as long as its signal
values remain unchanged. Thus, a combinational circuit can
be treated as a core component of a sequential device. More
precisely, using e.g. a classical (non-reversible) controller,
output values from one cycle are applied to the respective
input signals of the next cycle. Therefore, the clocking as
well as the feedback is handled by the controller, while the
actual computation is performed on a combinational reversible
circuit.

The second paradigm considers the realization of the se-
quential elements directly in reversible logic. For this purpose,
several suggestions on how to realize the respective memory
elements as flip-flops, latches, or registers have been made
(see e.g. [13], [14], [15]). Using these basic sequential el-
ements, more complex sequential components can easily be
constructed.

1 pc (2) reset (1)
2 inc (1) jmp (2) zero (2)
3
4 procedure pc
5 if (reset = 1) then
6 pc <=> zero
7 else
8 if (inc = 1) then
9 pc + = 1

10 else
11 pc <=> jmp
12 fi (inc = 1)
13 fi (reset = 1)

(a) SyReC code

pc0 pc′0

pc1 pc′1

reset −

inc −

jmp0 −

jmp1 −
zero0 −
zero1 −

0 −

0 −

(b) Resulting circuit

Fig. 5. Implementation of the program counter (scaled down to a bit-width of 2)

In the actual implementation of the proposed CPU, we
decided to realize all sequential components by means of
an external controller. Nevertheless, both concepts reviewed
above can be applied in principle.

D. Characteristics of the Resulting Circuit

Using the schematic diagram described in Fig. 4 and by
plugging the synthesized combinational parts together, a re-
versible circuit results, composed of 1,139 circuit lines (includ-
ing 867 lines with constant inputs), 5,047 Toffoli gates, and
1,692 Fredkin gates. Considering established cost metrics, this
circuit has transistor costs of 504,904 (see [25] for more details
on transistor costs) and quantum costs of 501,119 (see [26] for
more details on quantum costs)2. Together with the external
controller for the sequential components, this reversible circuit
represents a CPU ready for running programs.

V. EXECUTING PROGRAMS ON THE CPU

With the CPU implemented as described in the previous
sections, arbitrary software programs composed of the assem-
bler instructions given in Table I can be executed. Therefore,
first an assembler program is translated into a sequence of
respective instruction words by applying techniques proposed
in [23]. Afterwards, the resulting instruction words are loaded
into the program memory, while the data memory is initialized
with desired values. Both, the program memory and the data
memory, are realized by an external controller implemented in
terms of a Python script. Overall, this allows to run translated
object code, i.e. a sequence of instruction words.

The execution of a program on the proposed CPU
is illustrated using the assembler program depicted in
Fig. 6. Here, the sequence of Fibonacci numbers defined
by f(n) = f(n− 1) + f(n− 2) with f(0) = f(1) = 1
is computed. More precisely, the program generates the Fi-
bonacci number f(n + 1), whereby n > 1 is given in the
register R[7]. The result is stored in R[4].

The waveform obtained by simulating this program
(with n = 4) on the CPU is given in Fig. 7. The identifiers clk,

2Note that these costs probably can be significantly reduced by applying
technology depend post-synthesis approaches.

0 LDL R [7] , 4
1 LDL R [2] , 1
2 LDL R [3] , 1

loop :
3 ADD R [4] , R [3] , R [2]
4 OR R [2] , R [3] , R [0]
5 OR R [3] , R [4] , R [0]
6 SUB R [7] , R [7] , R [1]
7 JNZ l oop

Fig. 6. Assembler program for Fibonacci number computation

pc’, and instr[15:11] denote the values of the clock signal,
the program counter, and the operation code extracted from
the instr signal, respectively. The rows R[2], R[3], R[4], and
R[7] list the values of the respective registers. For the sake of
clarity, all other signal values are omitted. Note that the value
of the program counter always corresponds to the respective
line number of the code given in Fig. 6. In each time frame
always the updated values of the signals obtained after the
execution are listed.

At the beginning of the execution, the registers are loaded
with the given values, i.e. R[7] is assigned 4, while R[2]
and R[3] are assigned the first two Fibonacci numbers, re-
spectively (t = 0 until t = 2). Next, the third Fibonacci
number is determined by adding the values of R[3] and R[2].
The result is assigned to R[4] (t = 3). The following OR
operations update the auxiliary values of the registers R[2]
and R[3] (t = 4 and t = 5). Recall that according to the
specification provided in Section III, the register R[0] always
holds the constant 0, i.e. register R[2] is assigned the value
of R[3], while the register R[3] is assigned the value of R[4].
Now the values for the next iteration are available. But before
starting the next iteration, the loop bound stored in R[7] needs
to be decreased by one. For this task, the register R[1] – which
always holds the constant 1 – is used. Afterwards, the jump
instruction is processed modifying the program counter so
that the previous steps are repeated with the current values
(t = 7). This execution continues as long as the value in
register R[7] is not 0. Finally, the result of the computation
can be obtained from the value assigned to R[4]. For the given
example program we get f(4 + 1) = f(5) = 8.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20 t=21 t=22

pc’ 1 2 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 8

instr[15:11] LDL ADD OR SUB JNZ ADD OR SUB JNZ ADD OR SUB JNZ ADD OR SUB JNZ

R[2] 0 1 2 3 5

R[3] 0 1 2 3 5 8

R[4] 0 2 3 5 8

R[7] 4 3 2 1 0

Fig. 7. Waveform illustrating the execution of the program given in Fig. 6

VI. CONCLUSION

In this paper, we proposed a design of a RISC CPU realized
using reversible logic. Therefore, recent achievements in the
domain of reversible circuit design have been employed. In
particular, this includes the hardware description language
SyReC, which has been used to design the combinational
components of the CPU. In contrast, the sequential compo-
nents have been realized using an external controller. With
the proposed CPU, it is possible to execute software programs
using an assembler language. Besides that, the circuit can be
used as benchmark for other areas such as the verification or
the test of reversible circuits. Therefore, the CPU has been
made public available at RevLib [18].

Future work is focused on the optimization of the resulting
circuit. As discussed in Section IV-B, in particular reducing
the number of lines is important. For this purpose, one could
consider the approach presented in [24]. Furthermore, having
the CPU design available, a physical realization of a complex
application is possible. So far, only simple circuits have been
physically realized. Finally, the design of a CPU processing
reversible software languages (as e.g. Janus [22]) may provide
an interesting case study.

ACKNOWLEDGMENTS

The authors would like to thank Bastian Blachetta for his
help during the implementation of the CPU. This work was
supported by the German Research Foundation (DFG) (DR
287/20-1).

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[2] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling – a gedanken model,” Proc. of the IEEE,
vol. 91, no. 11, pp. 1934–1939, 2003.

[3] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[4] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[5] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[6] J. S. Hall, “A reversible instruction set architecture and algorithms,” in
Workshop on Physics and Computation, 1994, pp. 128–134.

[7] C. J. Vieri, “Pendulum: A reversible computer architecture,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1995.

[8] M. K. Thomsen, R. Glück, and H. B. Axelsen, “Reversible arithmetic
logic unit for quantum arithmetic,” Journal of Physics A: Mathematical
and Theoretical, vol. 43, no. 38, 2010.

[9] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[10] P. Kerntopf, “A new heuristic algorithm for reversible logic synthesis,”
in Design Automation Conf., 2004, pp. 834–837.

[11] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
on CAD, vol. 28, no. 5, pp. 703–715, 2009.

[12] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[13] H. Thapliyal and M. B. Srinivas, “A beginning in the reversible logic
synthesis of sequential circuits,” in MAPLD Int’l Conf., 2005.

[14] M. Chuang and C. Wang, “Synthesis of reversible sequential elements,”
in ASP Design Automation Conf., 2007, pp. 420 –425.

[15] N. M. Nayeem, M. A. Hossain, L. Jamal, , and H. Babu, “Efficient
design of shift registers using reversible logic,” in Int’l Conf. on Signal
Processing Systems, 2009, pp. 474–478.

[16] M. Lukac and M. Perkowski, “Quantum finite state machines as sequen-
tial quantum circuits,” in Int’l Symp. on Multi-Valued Logic, 2009, pp.
92–97.

[17] R. Wille, S. Offermann, and R. Drechsler, “SyReC: A programming
language for synthesis of reversible circuits,” in Forum on Specification
and Design Languages, 2010, pp. 184–189.

[18] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

[19] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[20] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

[21] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the minimal
number of lines for large reversible circuits,” in Design, Automation
and Test in Europe, 2011.

[22] T. Yokoyama and R. Glück, “A reversible programming language and its
invertible self-interpreter,” in Symp. on Partial evaluation and semantics-
based program manipulation, 2007, pp. 144–153.

[23] D. Große, U. Kühne, and R. Drechsler, “HW/SW Co-Verification of
Embedded Systems using Bounded Model Checking,” in ACM Great
Lakes Symposium on VLSI, 2006, pp. 43–48.

[24] R. Wille, M. Soeken, and R. Drechsler, “Reducing the number of lines
in reversible circuits,” in Design Automation Conf., 2010.

[25] M. K. Thomson and R. Glück, “Optimized reversible binary-coded
decimal adders,” J. of Systems Architecture, vol. 54, pp. 697–706, 2008.

[26] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

