VisSAT: Visualization of SAT Solver Internals
for Computer Aided Hardware Verification

Robert Wille

André Siilflow

Rolf Drechsler

Institute of Computer Science
University of Bremen
29359 Bremen, Germany
{rwille,suelflow,drechsle } @informatik.uni-bremen.de

Abstract— Today, many applications for formal circuit
verification exist that rely on solvers for Boolean
satisfiability (SAT). Usually, these applications use the SAT
solver as a black-box. However, exploiting information on
the internals of the solving process can speed-up the treat-
ment of the verification task.

In this paper, we present the tool VisSAT. VisSAT pro-
vides insights into the internals of SAT solvers. Statistics
of the internal solving process are collected and visualized
on the circuit. By this, a verification engineer gets insight
about potential bottlenecks for formal verification. This can
be used to reconfigure the SAT solver or to improve the
encoding.

Keywords: Boolean satisfiability, hardware verification, visual-
ization

1. Introduction

Verification gains an increasing amount of design costs in
modern computer aided design. With increasing complexity
and continuous demands for correctness, the application of
formal methods in verification becomes indispensable [1],
[2]. SAT solvers [3] are essential tools building the basis of
many formal verification approaches like equivalence check-
ing [4], [5], property checking [6], [7], [8], or automated
debugging [9].

Typically, the following flow is thereby applied: The
problem is encoded into an instance of Boolean satisfiability
which is passed to the SAT solver. Then, the SAT solver
returns either a satisfying assignment or proves that no
such assignment exists. From this result, a solution of the
verification problem is deduced. In this sense, the SAT solver
is utilized as a black-box.

However, since the SAT problem is proven to be
NP-complete [10], SAT solvers may need a significant
amount of time to produce results for large instances. In
contrast, advanced problem encodings [11], [12], [13], [14],

adjusted decision heuristics [15], [3], or specialized prop-
agation strategies [16] may accelerate the solving process
significantly. But choosing the proper problem encoding or
solver configuration, respectively, requires a deep technical
understanding of how the SAT solver processes the instance.
Internal data structures of a SAT solver give valuable infor-
mation concerning the traversal as well as the structure of
the search space. Unfortunately, such information is hard to
extract.

In this work, we present VisSAT, a graphical interface
which visualizes internals of SAT solvers applied to hard-
ware verification tasks. VisSAT collects statistical informa-
tion about the search process (e.g. the number of decisions
on certain variables, the variables most frequently involved
in conflicts, etc.). Afterwards, these statistics are evaluated
and correlated to the overlying hardware verification prob-
lem. Therewith, VisSAT pinpoints the verification engineer to
critical parts of the problem instance, e.g. hotspots with large
occurrences of conflicts. This feedback helps to reconfigure
the solver or alter the problem formulation accordingly.
The explicit choice and the application of an optimization
technique stays in the hands of the engineer.

While in previous work visualization of SAT instances
already have been shown to be helpful [17], for the first
time statistical information about the solving process itself is
intuitively highlighted using VisSAT. Since additionally our
approach gives insights on the circuit level (and not in terms
of SAT variables and clauses) even verification engineers not
familiar with SAT solvers are able to perform the respective
heuristic and parameter tunings.

The remaining tool presentation is
as follows: The next section briefly introduces
Boolean satisfiability and provides a brief
overview about the application of SAT in formal hardware
verification. Afterwards, VisSAT is introduced in Section 3.
By means of small examples, possible use cases are
illustrated in Section 4. Finally the tool presentation is
concluded in Section 5.

structured

2. Formal Hardware Verification
Using Boolean Satisfiability

In the recent years, Boolean satisfiability has become an
established technique in many fields of formal hardware
verification. Property checking, equivalence checking, as
well as sophisticated techniques for automated debugging
and for proving the fault tolerance of circuits are only
some of the typical applications [6], [S], [9], [18]. The
performance of the underlying SAT solver is crucial for all
these applications.

In a typical flow, the application encodes the problem
instance in Conjunctive Normal Form (CNF), i.e. a product-
of-sum representation, and passes the CNF instance to a SAT
solver. Then, the SAT solver returns either a satisfying so-
lution (i.e. a consistent assignment of variables) or provides
a proof of unsatisfiability for the CNF instance. Afterwards,
the application maps the results of the SAT solver to the
overlying verification problem.

For example, property checking proves the correctness of
a property (e.g. given in some temporal logic like PSL [19])
on a design (e.g. given in a hardware description language
like Verilog or VHDL). A property checker reads in the
property and the design as input, translates the verification
problem into an instance of Boolean satisfiability, and passes
the instance to a SAT solver [6], [7], [8]. A property is
either proven to be correct on the design (i.e. the instance
is unsatisfiable) or a counterexample is returned (i.e. the
instance is satisfiable).

Most SAT solvers accept a CNF as input. A CNF is a
set of clauses where each clause is a set of literals and
each literal is a propositional variable or its negation. While
translating the hardware verification problem into a CNF,
each n-bit signal is represented by a set of n SAT variables.
The relation between the circuit signals and the SAT vari-
ables additionally is stored in internal data structures. For
example, a 32-bit output signal of an adder corresponds to
32 propositional SAT variables. A satisfying model, i.e. a
set of consistent assignments to the SAT variables in the
SAT instance, can easily be mapped back to assignments on
signals and by this to the original problem instance.

The underlying search process of the SAT solver remains
thereby as a black-box process for the application and, by
this, for the verification engineer. However, depending on
the complexity of the verification problem, the run time of
the SAT solver may range from a few seconds to up to
several hours or even days. Having knowledge about the
internal search procedure (e.g. about decisions or conflicts
on variables) enables the verification engineer to adjust the
parameters of the SAT solver or to improve the encoding of
the problem instance in order to gain a speed-up. Moreover,
the information is also worthwhile to analyze the progress
of the verification.

Application

Encoding }—[s?)ﬁgr }

T T

——

— D Circuit
— D — Encoding SAT
— D — map statistics
N~
VisSAT >

Circuit (
Visualizer stauistics Evaluator
N

Fig. 1: Architecture of VisSAT

3. The VisSAT Tool

VisSAT collects statistical information about the solving
process of a SAT solver and correlates this data to the
overlying hardware verification problem. Accordingly, the
tool is composed of two main components as illustrated in
the lower part of Fig. 1'.

The evaluator collects and processes statistical data of
the solving process. The number of decisions on certain
variables, the number of conflicts a SAT variable is involved,
and further statistics provided by the SAT solver are thereby
obtained?. Afterwards, these statistics are mapped to the
respective hardware components of the circuit. Therefore,
an encoding map is used to store which circuit signal is
represented by which SAT variables. For example, if an
one bit signal s is represented by a SAT variable zjg
and, additionally, 1y was involved in four conflicts, then
four conflicts are assigned to s. For signals representing
multiple bits, the sum over all corresponding SAT variables
is assigned to s. All these assignments are finally stored in
a container.

The visualizer maps this data to a register transfer level
or gate level schematic of the overlying circuit and, finally,
visualizes both, the circuit and the obtained statistics. The
visualization engine RTLvision Pro [20] is utilized which
calculates a fitting layout that can be rendered. RTLvision
Pro further allows cross-probing of the results to the source
code of a design. The statistics are visualized by different
color codes and, in order to obtain concrete values, tool-
tips. For example, if the conflict statistic is displayed, signals
whose corresponding SAT variables were often involved in
conflicts are highlighted in red, signals whose corresponding
SAT variables were only occasionally involved in conflicts
are highlighted in yellow, and signals whose correspond-
ing SAT variables were never involved in a conflict are
highlighted in green. Other statistics (e.g. the number of
decisions) are displayed in a similar way.

IThe upper part of Fig. 1 illustrates the SAT-based verification flow as
described in Section 2.

2In this work, we extended MiniSat [3] to provide these statistics.

Using this visualization, the verification engineer is pin-
pointed to critical parts of the problem instance, e.g. hotspots
with a large occurrence of conflicts. This feedback enables
conclusions on why a verification tasks is hard to solve using
SAT engines. The next section illustrates this by means of
examples.

4. Use Cases

4.1 Using Information on Conflicts

Fig. 2 shows the distribution of conflicts occurred while
solving a property checking instance. More precisely, the
correct behavior of a multiplication in an ALU circuit
was verified. The visualization shows the considered circuit
highlighting the number of conflicts.

The coloring intuitively differentiates parts with a large
number of conflicts (highlighted in red) from parts with a
smaller number of conflicts (highlighted in yellow) or from
parts without conflicts (highlighted in green), respectively.
As indicated by the red signal, the multiplier module fre-
quently causes conflicts. With this information, the designer
can apply changes to the SAT solver parameters (e.g. pre-
ferring signals of the multiplier in order to address all these
conflicts first during the solve process) or modify the design
(e.g. replacing the multiplier by shifters), respectively.

4.2 Using Information on Decisions

Fig. 3 shows information on the number of decisions
made for each signal while checking the correct behavior
of the ADD instruction of another ALU. As expected, most
decisions have been made for the output of an adder that
was also involved in many conflicts, too. Thus, decisions on
the output of the adder should have higher priority than on
signals in the fan-in of the adder.

Moreover, decisions have been made for signals that do
not influence the output of the property check, e.g. on the
output of the subtraction module. In order to avoid this and,
thus, to improve the solving process either, decisions on such
signals can be deactivated or the verification model itself can
be simplified.

5. Conclusions

In this paper, we presented VisSAT, a tool for the visualiza-
tion of SAT solver internals within computer aided hardware
verification. VisSAT collects statistics of the internal solving
process and visualizes them on the considered circuit struc-
ture. By this, verification engineers are pinpointed to critical
parts of the problem instance. This can be used to reconfigure
the SAT solver or to improve the encoding. The application
of VisSAT was illustrated by two use cases.

6. Acknowledgments

We thank Concept Engineering, in particular Gerhard
Angst and Lothar Linhard, for providing us with the
RTLvision Pro tool. This work was supported in part by
the European Union (project DIAMOND, FP7-2009-IST-4-
248613).

References

[1] R. Drechsler, Formal Verification of Circuits.
Publishers, 2000.

[2] R. Drechsler, Ed., Advanced Formal Verification.
Publishers, 2004.

[3] N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT 2003,
ser. LNCS, vol. 2919, 2004, pp. 502-518.

[4] D. Brand, “Verification of large synthesized designs,” in Int’l Conf.
on CAD, 1993, pp. 534-537.

[5] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model check-
ing without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp- 193-207.

[7] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey, “Cost-efficient
block verification for a UMTS up-link chip-rate coprocessor,” in
Design, Automation and Test in Europe, vol. 1, 2004, pp. 162-167.

[8] M. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and

W. Kunz, “Unbounded protocol compliance verification using interval

property checking with invariants,” IEEE Trans. on CAD, vol. 27,

no. 11, pp. 2068-2082, 2008.

A. Smith, A. Veneris, M. Fahim Ali, and A.Viglas, “Fault diagnosis

and logic debugging using boolean satisfiability,” IEEE Trans. on

CAD, vol. 24, no. 10, pp. 1606-1621, 2005.

[10] S. Cook, “The complexity of theorem proving procedures,” in 3. ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

[11] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean
cardinality constraints,” in Principles and Practice of Constraint
Programming, ser. LNCS, no. 2833, 2003, pp. 108-122.

[12] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Principles and Practice of Constraint Programming,
ser. LNCS, no. 3709, 2005, pp. 827-831.

[13] O. Bailleux, Y. Boufkhad, and O. Roussel, “A translation of pseudo-
boolean constraints to SAT,” in Journal on Satisfiability, Boolean
Modeling and Computation, vol. 2, 2006, pp. 191-200.

[14] J. Marques-Silva and I. Lynce, “Towards robust cnf encodings of
cardinality constraints,” in Principles and Practice of Constraint
Programming, ser. LNCS, no. 4741, 2007, pp. 483-497.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf.,
2001, pp. 530-535.

[16] R. Wille, G. Fey, D. GroBle, S. Eggersglii, and R. Drechsler,
“SWORD: A SAT like Prover Using Word Level Information,” in
Int’l Conference on Very Large Scale Integration, 2007, pp. 88-93.

[17] C. Sinz and E.-M. Dieringer, “DPvis - a tool to visualize structured
SAT instances,” in Proc. of the 8th Intl. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2004). St. Andrews,
Scotland: Springer-Verlag, June 2005, pp. 257-268.

[18] G. Fey, A. Siilflow, and R. Drechsler, “Computing bounds for fault
tolerance using formal techniques,” in Design Automation Conf., 2009,

Kluwer Academic

Kluwer Academic

[9

—

pp. 190-195.
[19] Accellera, Property Specification Language — Reference
Manual. Accellera Organization Inc., 2004, available at

http://www.accellera.org/home.
[20] Concept Engineering GmbH, RTLvision PRO, http://www.concept.de,
2011.

[AND 81
z
1]

SHL 87

AMNDN

MUL_98

SUEBT
ZeroExtend B7

ZeroExtend?
ZeroExtend BB

o 3

ZeroExtend?
ZeroExtend_BS

ZeroExtend?
SLICE_101

ML 105

SLICE1

ZeroExtend 72

INDEX_94

ZeroExtend?
ZeroExtend 74

ZeroExtend
ZeroExtend 75

ANDN

1391

————l - ————— B —————— @~ ———————] -

nXOR_B9
T z

1217

i
HOR1

ZeroExtend?
ZeroExtend_73

ZeroExtend?

Fig. 2: Visualization of conflict statistics

co lADDT 16186,

57860

[

INDEX1
TRUNC_76

TRUNC

MUTT

ci

SUB1T.16.16.

15

SHR16.16.1.

15
FeroBExtend17 1.

ol ADDAT AT AT,

i

SHL17.17.1.

id

Z

OR16.16.16.

Z

il

OR17ATAT.

47

SUB1TATAT.

Fig. 3: Visualization of decision statistics

