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Abstract. Checking the correctness of UML/OCL models is a crucial
task in the design of complex software and hardware systems. As a con-
sequence, several approaches have been presented which address this
problem. Methods based on satis�ability (SAT) solvers have been shown
to be very promising in this domain. Here, the actual veri�cation task
is encoded as an equivalent bit-vector instance to be solved by an ap-
propriate solving engine. However, while a bit-vector encoding for basic
UML/OCL constructs has already been introduced, no encoding for non-
trivial OCL data types and operations is available so far. In this paper,
we close this gap and present a bit-vector encoding for more complex
OCL data types, i.e. sets, bags, and their ordered counterparts. As a re-
sult, SAT-based UML/OCL veri�cation becomes applicable for models
containing these collections types. A case study illustrates the applica-
tion of this encoding.

1 Introduction

The Uni�ed Modeling Language (UML) [1] is a de-facto standard in the domain of
software development. Besides that, in recent years UML is also being employed
for the speci�cation of hardware systems [2] as it is a promising abstraction level
enabling the modeling of a complex system while hiding concrete implementa-
tion details. Within UML, the Object Constraint Language (OCL) enables the
enrichment of object-oriented models by textual constraints which add vital in-
formation. Using OCL, it is possible to restrict valid system states by invariants
or to control the applicability of operation calls by pre- and post-conditions.

However, adding too restrictive OCL constraints leads to an inconsistent
model, i.e. a model from which no valid system state can be constructed. Con-
sistency and other veri�cation tasks refer to the static aspects of a UML model.
Further, wrong pre- and post-conditions can cause that an operation ω is not
reachable, i.e. no system state can be constructed due to calls of other operations
such that the pre-conditions of ω are satis�ed. This property is called reachability
and refers along with other veri�cation tasks to the dynamic aspects of a UML
model.

Accordingly, several approaches to (semi-)automatically solve these veri�ca-
tion tasks have been proposed in the last years. For this purpose, di�erent solv-
ing methodologies and engines are applied ranging from (1) interactive theorem
provers [3,4] which require manual interactions over (2) enumeration techniques



as e.g. provided in the UML Speci�cation Environment (USE) [5] to (3) auto-
matic approaches based on Constraint Programming (CSP) [6,7] or speci�cation
languages such as Alloy [8]. However, these approaches su�er either from the
need for manual interaction, their enumerative behavior resulting in low scala-
bility, or complicated transformations and solving steps.

In order to tackle these drawbacks, an alternative automatic
UML/OCL veri�cation method based on Boolean Satis�ability (SAT) and SAT
Modulo Theories (SMT) has recently been suggested in [9,10]. Here, the actual
veri�cation task is directly encoded as an equivalent bit-vector instance which,
afterwards, is solved by an appropriate solving engine. The impressive improve-
ments of SAT and SMT solvers achieved in the past years are exploited enabling
the treatment of static veri�cation problems for signi�cantly larger UML/OCL
instances. Furthermore, also dynamic issues (e.g. reachability of function calls)
are addressed by this method.

However, while the work in [9,10] provides initial implementations and �rst
experimental results, the description on how to encode the respective UML/OCL
components into a proper bit-vector formulation was limited to basic data types
and operations, respectively. In particular, non-trivial OCL constructs such as
collection types and operations using them have not been introduced so far.
But, this is essential in order to provide an e�cient solution for UML/OCL
veri�cation tasks with full support of the modeling language.

In this paper, we cover this missing link. More precisely, we show how OCL
constraints can be encoded as a bit-vector instance in order to apply them to the
previously introduced SAT/SMT-based veri�cation of UML/OCL models. Be-
sides basic data types, we also consider more complex constructs, i.e. sets, bags,
and their ordered counterparts in detail. A case study illustrates the applicability
of the proposed encoding by means of a practical example.

The remainder of this paper is structured as follows. Preliminaries on OCL,
bit-vector logic, and the satis�ability problem are given in the next section. After-
wards, the background on UML/OCL veri�cation is brie�y reviewed in Sect. 3
leading to the main motivation for the contribution of this paper. Section 4
eventually introduces the respective encodings of the OCL data types into an
equivalent bit-vector formulation. Afterwards, the applicability of this encoding
is illustrated in Sect. 5 before the paper is concluded in Sect. 6.

2 Preliminaries

To keep the paper self contained, preliminaries on OCL, bit-vector logic, and the
satis�ability problem are brie�y reviewed in the following.

2.1 Object Constraint Language

In UML models, the set of valid system states can be restricted by UML con-
straints, i.e. associations between classes. Multiplicities annotated at the associa-
tion ends de�ne how the connected classes are related to each other. Further con-
straints, that e.g. restrict the attributes of the connected classes, cannot be ex-
pressed using UML. For this purpose, theObject Constraint Language (OCL) [11]
has been employed.



Dealer

sell(car: Car)

Car

sold: Boolean
Stock0..1

dealer

*

cars

inv unsold: cars->forAll(c|c.sold = False)

context sell(car: Car)
pre: car.dealer = self
post: car.sold = True
post: cars->excludes(car)

Fig. 1. Simple UML diagram enriched with OCL expressions

OCL enables to extend UML diagrams with textual constraints which further
restrict the set of valid system states. OCL constrains are primarily used to
complete class diagrams, interaction diagrams, and state charts, but can also
be applied to activity diagrams, component diagrams, and use cases. In this
work, we focus on the application of OCL in UML class diagrams. However, the
proposed techniques can be transferred to applications in other diagram types
as well.

OCL is commonly applied to constrain di�erent components (e.g. classes,
attributes) in a model. Thus, they are modeled as an expression which evaluates
to a Boolean value, i.e. True or False. In a UML class diagram, OCL expres-
sions appear as both invariants as well as pre- and post-conditions (associated
with operations). Invariants restrict the relations between classes and values
of attributes, whereas pre- and post-conditions specify in which conditions an
operation can be called and how the system state is speci�ed afterwards.

Example 1. Figure 1 shows a UML class diagram for a simple car dealing model.
Through the association Stock, a dealer can contain several cars, and a car can
be assigned to a dealer or not. A car can be sold by a dealer using the sell
method. The state whether a car is sold or not is stored in the attribute sold of
class Car. One invariant unsold is attached to the class Dealer ensuring that all
cars in stock must not be sold. Furthermore, the operation sell is annotated by
pre- and post-conditions. In order to sell a car, the car must be assigned to the
dealer. After a car is sold, the respective attribute must be updated and the car
has to be removed from the stock.

2.2 Bit-vector Logic

This paper aims to encode OCL expressions into equivalent bit-vector expres-
sions. The de�nition of bit-vectors, their notation, and the applicable operations
are brie�y reviewed in the following.

Given the set of truth values IB := {0, 1}, the set IBn is referred to as bit-
vectors of size or dimension n. Let b ∈ IBn with b = (bn−1 . . . b1b0) be a bit-
vector. Then the ith component of b is b[i] := bi. This index operation b[i]
is a shorthand notation for b[i : 1] and the extraction operation is de�ned as
b[i : l] := (bi+l−1 . . . bi). Thus, b[i : l] is a bit-vector of dimension l starting from
the bit bi.

The counterpart to extraction is the concatenation. Given two bit-vectors
b, c ∈ IBn with b = (bn−1 . . . b0) and c = (cn−1 . . . c0), the concatenation ◦ is
de�ned as b ◦ c := (bn−1 . . . b0cn−1 . . . c0).



The bit-vectors are big-endian to emphasize the correspondence to natural
numbers, since bit-vectors represent the binary expansion of positive numbers,
e.g. 11002 = 1210. More formally, to obtain a natural number from a bit-vector,
the function nat : IBn → [0, 2n − 1] is de�ned as

nat : b 7→
n−1∑
i=0

b[i] · 2i . (1)

The inverse function of nat is bv := nat−1 which returns the binary expansion
of a natural number.

Further, there are logical and arithmetic operations which can be applied to
bit-vectors. Bit-wise logical operations are amongst others =,∧,∨,⊕ referring to
equivalence, conjunction, disjunction, and exclusive disjunction (EXOR), respec-
tively. Analogously, arithmetic operations are amongst others ·,+,− referring to
multiplication, addition, and subtraction, respectively. All arithmetic operations
map into the same domain, that is e.g. a multiplication gets two n-bit bit-vectors
as input and returns a n-bit bit-vector resulting value. Since obviously the result
of a multiplication requires up to 2n-bit, the operations follow an over�ow arith-
metic in the general case. However, in special cases a saturation arithmetic [12]
can be applied, denoted by ·̂, +̂, −̂. In this case, the maximal or minimal possible
number which can be represented is taken in case of an over�ow or under�ow,
respectively. For example, 11002 + 11002 = 10002, but 11002+̂11002 = 11112.

2.3 Satis�ability Problem

The Boolean satis�ability problem (SAT) is de�ned as the task to determine a
(satisfying) assignment to all inputs of a function f so that f evaluates to 1 or
to prove that no such assignment exists. More formally:

Given a function f : IBn → IB, the function f is satis�able, if and only
if there exists an assignment α ∈ IBn such that f(α) = 1. In this case, α is
called a satisfying assignment. Otherwise, f is unsatis�able. Usually, the Boolean
satis�ability check is conducted on a function in conjunctive normal form.

Although the SAT problem is NP-complete [13], much research was dedi-
cated to the investigation of SAT solvers in the recent decades (see e.g. [14,15,16]).
Thus, many hard instances of practical problems can be transformed into SAT
problems and, afterwards, solved quite e�ciently [17].

To further enhance the e�ciency of satis�ability solvers, researchers combined
SAT techniques with solving strategies for higher levels of abstraction, e.g. arith-
metic or bit-vector logic. This resulted in the development of solving methods
for SAT Modulo Theories (SMT) [18,19]. Here, instead of a Boolean conjunctive
normal form, instances may include more complex expressions, e.g. composed
of bit-vector variables and operations as introduced above. In [20], it has been
demonstrated that problems having a more complex structure tend to be solved
more e�ciently when retaining the level of abstraction in the solving process.

The common form of a satis�ability problem is a conjunction, in which several
constraints to be satis�ed are de�ned. SMT solvers exploit this structure by ap-
plying Boolean SAT solvers to handle the respective conjunction and specialized
theory solvers to handle the single constraints provided in a higher abstraction.



Besides that, also bit-blasting techniques (see e.g. [21]) are common to solve
SMT instances.

The theory of quanti�er-free bit-vectors (QF_BV) is an established higher
abstraction which corresponds to the bit-vectors described in the previous sec-
tion. The resulting problems can be formulated in the SMT-LIB �le format that
can be processed by o�-the-shelf SMT solvers.

Example 2. Given three bit-vectors a, b, c ∈ IB4, consider the function f :
IB12 → IB with

f(a, b, c) = (a = b+ bv(2)) ∧ (b = c · a) . (2)

This bit-vector formula can be rewritten as an SMT instance using the bit-vectors
theory as:

(benchmark f
:logic QF_BV
:extrafuns ((a BitVec[4]) (b BitVec[4]) (c BitVec[4]))

:assumption (= a (bvadd b bv2[4]))
:assumption (= b (bvmul c a))

)

When solving this instance with an SMT solver, e.g. the satisfying assignment

α = (a = 00112, b = 00012, c = 10112) (3)

is returned.

3 Problem Formulation

The design of complex systems is a non-trivial task. To ease the design process,
UML provides several description models that enable to explicitly specify the
system to be realized, while, at the same time, hiding concrete implementation
details. Properties of the design can additionally be speci�ed using OCL. How-
ever, even on this higher abstraction, errors frequently arise leading e.g. to (1) an
over-constraint model from which no valid system state can be derived or (2) to
operations which can never be executed due to too restrictive pre- or post-
conditions. Thus, veri�cation approaches are applied to check the correctness
of a model. Typical veri�cation tasks include checks for consistency (in a static
view) or reachability (in a dynamic view).

In order to solve these veri�cation problems, methods based on SAT/SMT
have been shown to be quite promising [9,10]. Here, the general �ow as depicted
in Fig. 2 is applied. The given UML model together with the OCL constraints,
the veri�cation task, and further information (e.g. the number of objects to
instantiate or the number of operation calls to consider) is taken and encoded as a
satis�ability instance. Depending on the addressed veri�cation task, the resulting
instance becomes satis�able if, e.g. in case of a consistency check, a valid system
state exists. In contrast, if e.g. reachability is considered, the respective instance
becomes satis�able if a sequence diagram exists con�rming that an operation
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Fig. 2. General �ow for solving static veri�cation tasks

can be executed. These solutions are called witnesses since they are witnessing
the satis�ability of the considered veri�cation task.

For this purpose, the number of objects to consider is restricted. While this
is an essential requirement for the veri�cation of UML/OCL models, this re-
striction is also justi�ed by the fact that, eventually, the implemented system
will be composed of a �nite set of objects anyway. Further, the small scope hy-
pothesis [22] supports the consideration of �nite domains by stating that a large
percentage of bugs can already be found by considering small state spaces.

In order to solve the created satis�ability instance, common SAT or SMT
solvers are applied [16,21]. If the instance is satis�able, the corresponding witness
can be derived from the satisfying assignment to the variables. Otherwise, it has
been proven that no such witness exists within the selected problem bounds.

The concrete encoding of the UML model and the OCL constraints into
a proper bit-vector formulation is thereby crucial. So far, only encodings for
basic data types and basic operations have been introduced. Non-trivial OCL
constructs such as collection types and respective operations require more so-
phisticated encodings which are not available so far. Since this kind of OCL data
types frequently occurs in UML/OCL models, we cover this missing link in this
paper. That is, we address the following question:

How can we encode OCL data types and their respective operations in
bit-vector logic so that they can be applied in SAT/SMT-based
UML/OCL veri�cation?

4 Encoding of OCL Data Types

This section brie�y reviews the encoding of basic OCL data types into a bit-
vector formulation. Based on that, the encodings of OCL sets are introduced
and extended for further collection types.

4.1 Basic Data Types

Already for trivial OCL data types such as Boolean variables, a special bit-vector
encoding is needed. This is because, although a Boolean variable can only be set
to True and False, a third value, namely ⊥ (unde�ned), has to be considered
when checking for UML/OCL consistency. Accordingly, to encode such a variable
in bit-vector logic at least two bits are required. More formally:



Encoding 1 (Boolean). An OCL Boolean variable b is encoded by a bit-vector b ∈
IB2. The truth values True and False are represented by the bit-vector val-
ues 002 and 012, respectively, whereas ⊥ is encoded as 102. The remaining pos-
sible value 112 has to be prohibited in the satis�ability instance by adding the
bit-vector constraint (b 6= 112).

The encoding of integer values is based on the same principle. However, there is
another issue to consider: The domain of integer values in OCL is in�nite. But
in order to solve veri�cation tasks using bit-vector logic, �xed sizes have to be
assumed. While, at a �rst glance, this might look like an illegal simpli�cation,
it becomes reasonable considering that, at least for the concrete implementa-
tion of the considered UML/OCL model, �nite bounds are applied nevertheless.
Accordingly, integers are encoded as follows:

Encoding 2 (Integer). An OCL integer variable n is encoded by a bit-vector n ∈
IBl, where l is the precision assumed for integers when encoding the considered
problem. Thus, n is suitable to encode l-bit integer values (except one). That
is, if n is set to a value v ∈ [0, 2l − 2], then n = (nl−1 . . . n0) such that n is the
binary expansion of n, i.e. n = bv(n). The value ⊥ is encoded by the remaining
bit-vector value bv(2l − 1) = 1 . . . 12.

Note that this encoding does allow the representation of all l-bit integer ex-
cept 2l − 1. If the value 2l − 1 is essential in order to check an UML/OCL
model, the value of l has to be increased by 1. Then, 2l − 1 can be represented.
If necessary, all other l + 1-bit values can be prohibited in the satis�ability in-
stance, e.g. by adding the bit-vector constraint (n = 1 . . . 12) ∨ (n < 10 . . . 02).
Furthermore, note that negative values cannot be represented by this encoding.
However, negative values can be enabled by substituting the binary expansion
with the two-complement expansion.

Another basic data type are strings. In a straight-forward view, each string
can be seen as �xed length sequence of characters with a terminating character
such as char arrays in the C programming language. Given an l-bit character en-
coding and strings of maximal length n (including the terminating character), a
bit-vector of size l ·n is required to encode the string. For ASCII strings of size 80
already 8 · 80 = 640 bits are required for each string variable. However, these
bits are only required if the exact content of the string matters in the OCL con-
straints. This is the case, when OCL expressions such as length or startsWith
are applied. If no such expressions are used, it only matters to distinguish di�er-
ent string values. Then, the content of the strings can be abstracted and a more
e�cient encoding can be applied.

Encoding 3 (String). Given a system state consisting of n string variables. Then,

each string variable s is encoded by a bit-vector s ∈ IBdld(n+1)e with ld := log2.
With this encoding, each variable can be set to a unique value (including ⊥)
to distinguish them. Therewith, indeed the exact content of the string cannot
be determined, but operations like comparison of two string variables can be
encoded.

The remaining basic data type is a real number. It has been observed that SAT
instances including this kind of variables often are hard to solve [23] and, thus,
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name: String
expensive: Boolean
price: Integer

inv i1: name.isDefined()

inv i2: price > 30000 implies expensive

(a) UML diagram consisting of basic OCL data types
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(b) Encoding of the OCL invariants

Fig. 3. OCL encoding of basic data types and operations

should be avoided. Fortunately, the considered problems to be veri�ed usually
do not utilize real numbers since they are di�cult to realize both in hardware
and in software. However, if real values are needed nevertheless, abstractions
such as �xed point or �oating point numbers can be used. This can be encoded
using bit-vectors of appropriate size.

Using these encodings of basic data types many �standard� operations of
OCL constraints like logical or arithmetical expressions can already be encoded
into bit-vector logic. Therefore, existing bit-vector constraints (as the one brie�y
sketched in Sect. 2.3) can be applied, but need to be extended to support the
additional value ⊥.

Example 3. Figure 3(a) shows a UML model with OCL invariants over basic data
types, i.e. a string, a Boolean value, and a 32-bit integer. Considering a system
state with three objects of class Car, an excerpt of the corresponding bit-vector
encoding is depicted in Fig. 3(b). In Fig. 3(b), c denotes the car object being
considered. Thus, these bit-vector expressions are repeated three times for each
object.

4.2 Sets

While the basic principle of encoding OCL data types into bit-vector logic has
been illustrated in the previous section, the encoding of more complex OCL
data types is introduced in the following by means of the Set container. Three
scenarios of the car dealing example depicted in Fig. 1 are considered to illustrate
the idea, namely

1. to address all objects of class Car connected to an object of class Dealer via
the Stock association, i.e. by cars,

2. to state that all cars in the stock must not be sold (see the forAll operation
in the invariant unsold), and

3. to state that a car is not included in the stock after it has been sold (see the
excludes operation in the post-condition of the sell operation).

As already discussed above, the bit-vectors that encode OCL constraints must be
of a �xed size in order to be suitable for SAT/SMT-based veri�cation. However,



the cardinalities of the sets within a UMLmodel and within the respective system
states, respectively, may be of dynamic size. Thus, the total number of objects
in the system state is incorporated in the bit-vector encoding. More precisely:

Encoding 4 (Set). Let A be a UML class and < be a total order on the objects
of class A, i.e. a0 < · · · < a|A|−1 where a0, . . . , a|A|−1 are objects derived from
class A and |A| denotes the total number of these objects. Then, each OCL

variable v:Set(A) is encoded by a bit-vector v ∈ IB|A| with v =
(
v|A|−1 . . . v0

)
,

such that vi = 1 if and only if v.includes(ai).

Example 4. Let D = {d0, . . . , dm−1} be the set of all objects of class Dealer
and let C = {c0, . . . , cn−1} be the set of all objects of class Car, respectively.
Using this encoding, all three scenarios mentioned above can be encoded into a
bit-vector instance as follows:

1. The set cars of objects derived from class Car that are associated to class
Dealer is represented by one bit-vector λd

cars ∈ IBn for each object d ∈ D. In
accordance with Enc. 4, d is linked to an object ci, if the corresponding bit
in λd

cars is set to 1.
2. The invariant unsold in Fig. 1 constrains that the sold attribute for each car

associated to a dealer should be False. Although the size of the set cars is
dynamic, the size of the corresponding bit-vector λd

cars is �xed. The invariant
is modeled as a bit-vector expression as follows:

n∧
i=0

λd
cars[i]⇒ (αci

sold = 002) (4)

Thus, each bit in the bit-vector representing all possible elements in the set
is considered. Only for those elements in the set, the invariant condition is
forced. This is done by implication.

3. To state that the car being sold is not in the stock anymore (as constrained
in the post-condition in Fig. 1), the corresponding bit in the bit-vector must
be set to 0. Let ci be the parameter of the operation, then ¬λd

cars[i] encodes
the post-condition.

4.3 Further Collection Types

Based on the encoding of the Set data type, encodings for the remaining OCL
collection types, namely OrderedSet, Bag, and Sequence, are introduced in this
section. The di�erences of these data types are as follows: In a Set, each element
can occur at most once, whereas in a Bag each element may occur more than
once. For both, sets and bags, counterparts exists in which the elements follow
an order, i.e. OrderedSet and Sequence, respectively. Table 1 brie�y summarizes
the semantics of all these data types. Note that an ordered set and a sequence
are ordered, but not sorted. That is, successive elements are not greater or less
than the element before (see column Example in Table 1). Before outlining the
encoding for ordered collections, the transformation of bags into bit-vectors is
described �rst.



Table 1. OCL collection types

Type Description Example
Set Each element can occur at

most once
Set (b1, b5, b3) = Set (b1, b3, b5)

OrderedSet As set, but ordered OrderedSet (b1, b5, b3) 6= OrderedSet (b1, b3, b5)
Bag Elements may be presence

more than once
Bag (b1, b3, b3) = Bag (b3, b1, b3)

Sequence As bag, but ordered Sequence (b1, b3, b3) 6= Sequence (b3, b1, b3)

Encoding of Bags. What makes a bag di�erent from a set is the property that
elements can occur more than once. The idea of encoding a bag is similar to the
one of encoding a set. The di�erence is that the bits in the encoding of a set
represent whether an element is contained or not. For bags, each bit is replaced
by a cardinality number. More formally:

Encoding 5 (Bag). Let A be a UML class and < be a total order on the objects
of class A, i.e. a0 < · · · < a|A|−1 where

{
a0, . . . , a|A|−1

}
are objects derived from

class A. Furthermore, it is assumed that each object occurs at most 2m times in

a bag. Then, each OCL variable v:Bag(A) is encoded by a bit-vector v ∈ IBm·|A|

with v =
(
v|A|−1 . . .v0

)
, such that nat(vi) = v.count(ai).

The number of occurrences of objects in a bag (i.e. the respective cardinality) is
thereby crucial. For sets, the total number of objects can be used as an upper
bound. This is not possible for bags, since here an arbitrary number of equal
objects may be contained. Thus, a reasonable upper bound of possible objects
has to be de�ned. Similar to the encoding of integer values, this is a simpli�cation
which, however, becomes reasonable considering that at least for the concrete
implementation �nite bounds are applied nevertheless.

Encoding of Ordered Sets. To encode an ordered set in bit-vector logic, the
position of the elements needs to be incorporated. This can be done as follows:

Encoding 6 (Ordered Set). Let A be a UML class with a total order < and a
set of derived objects {a0, . . . , a|A|−1}. Then, an ordered set v:OrderedSet(A)

is encoded by a bit-vector v ∈ IB|A|·l with l = dld(|A| + 1)e. For each ele-
ment (|A| times), l bits are devoted to encode |A| + 1 di�erent values, i.e. the
values 0, . . . , |A| − 1 specify positions of the elements and 2l − 1 = 11 . . . 12
expresses that an element is not in the ordered set.

Furthermore, the following three constraints have to be added to the satis�-
ability instance in order to keep the semantics of the ordered set consistent:

1. There can be at most one element at each position, i.e.

|A|−1∧
i=0

|A|−1∧
j=0

|A|−1∧
k=0
k 6=i

(v[il : l] = bv(j))⇒ (v[kl : l] 6= bv(j)) . (5)
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Fig. 4. Overview of encodings for OCL collection data types

2. If an element is encoded to be at the jth position (with j > 0), then there
must be some element at position j − 1, i.e.

|A|−1∧
i=0

|A|−1∧
j=1

(v[i : il] = bv(j))⇒
|A|−1∨
k=0
k 6=i

v[kl : l] = bv(j − 1) . (6)

3. Since l bits can possibly encode more than |A|+1 values, illegal assignments
must be prohibited, i.e.

|A|−1∧
i=0

(
v[il : l] < bv(|A|) ∨ v[il : l] = bv(2l − 1)

)
. (7)

Encoding of Sequences. Sequences are the most expensive data type to en-
code. Using the same argumentation used within the encoding of bags, the num-
ber of elements appearing in a sequence is not limited by the system state.
Thus, again a reasonable upper bound has to be determined before encoding the
satis�ability instance.

Encoding 7 (Sequence). Let A be a UML class with a total order < and a set of
derived objects {a0, . . . , a|A|−1}. Then, a sequence v:Sequence(A) is encoded

by a bit-vector v ∈ IB(2m·|A|·l) with l = dld(2m · |A| + 1)e. Otherwise, the same
semantics as for ordered sets apply, however, for sequences 2m · |A| possible
positions have to be encoded and not just |A|, since each element can occur up
to 2m times (cf. Enc. 5).

Example 5. Figure 4 illustrates all encodings applied to a base collection A =
{a0, a1, a2, a3, a4}. For the bag and sequence, the cardinality of elements is set
to 4, i.e. m = 2. The value of l is determined according to the maximal number
of elements in the respective collection. Thus, for an ordered set this is l =



Table 2. Encoding of set operations into bit-vector operations

Operation Encoding
v1 = v2 v1 = v2

v1 <> v2 v1 6= v2

v3 = v1->asBag() v3 ∈ IBm·n s.t. v3[j] =

{
v1[i] if j = im,
0 otherwise.

v3 = v1->asOrderedSet() v3 ∈ IBn·l s.t. v3[il : l] =

{
bv
(∑i−1

j=0 v1[j]
)
if v1[i] = 1,

bv(2l − 1) otherwise.
with l = dld(n + 1)e

v3 = v1->asSequence() see v1->asBag()->asSequence()
v1->count(ai) v1[i]
v1->excludes(ai) ¬v1[i]
v1->excludesAll(v2) ¬v1 ∧ v2 = v2

v1->excluding(ai) v1 ∧ ¬ bv(2i)
v1->includes(ai) v1[i]
v1->includesAll(v2) v1 ∧ v2 = v2

v1->including(ai) v1 ∨ bv(2i)
v1->intersection(v2) v1 ∧ v2

v1->isEmpty() v1 = bv(0)
v1->notEmpty() v1 6= bv(0)

v1->size()
∑n−1

i=0 v1[i]
v1->symmetricDifference(v2) v1 ⊕ v2

v1->union(v2) v1 ∨ v2

dld(|A|+ 1)e = dld 6e = 3, and for a sequence it is l = dld(2m · |A|+ 1)e =
dld 20e = 5, respectively.

In case of the bag, a0 is contained once and a1 is contained twice. Thus, the
respective �elds in the bit-vector are 012 for a0 and 102 for a1, respectively.

4.4 Operations on Collection Types

Having the encodings of the collection data types available, they can be used
to encode the respective operations on them. Example 4 already illustrated the
encoding of the excludes operation. In a similar way, this can be done for the
remaining operations as well.

In fact, many of the OCL operations can be mapped to a corresponding
bit-vector counterpart. To illustrate this, consider the encoding of a set. The
elements in both, the set as well as the corresponding bit-vector encoding, are
supposed to follow a total order. That is, each element in the set corresponds
to a �xed bit in the bit-vector. Because of this, the set-operations union and
intersection can be mapped to the bit-wise disjunction and bit-wise conjunc-
tion, respectively.

Analogously, this can be done for the remaining set-operations. This is sum-
marized in detail in Table 2 which lists all set-operations together with the re-
spective encoding for a class A with objects {a0, . . . , an−1} and sets v1:Set(A)
as well as v2:Set(A)1. Note that the operations asBag, asOrderedSet and
asSequence require thereby auxiliary variables since the operation results in a
di�erent bit-vector domain.

Example 6. Consider the operation v1->including(ai) which results in a set
containing all elements of v1 and the element ai. This can be rewritten as

1 For simplicity we omitted exceptional cases in the encodings such as the treatment
of unde�ned collections. However, they can easily be supported by adding case dif-
ferentiation to the bit-vector expressions.



Table 3. Mappings of bag operations into bit-vector operations

Operation Mapping
v1 = v2 v1 = v2

v1 <> v2 v1 6= v2

v3 = v1->asOrderedSet() see v1->asSet()->asOrderedSet()

v3 = v1->asSequence() v3 ∈ IB2mnl s.t. ∀n−1
i=0 ∀

2m−1
j=0 :

v3[i2
ml + jl : l] =

{
bv(j) +

∑i−1
k=0 v1[km : m] if j < nat(v1[im : m]),

bv(2l − 1) otherwise.

v3 = v1->asSet() v3 ∈ IBn s.t. v3[i] =

{
1 if v1[im : m] 6= bv(0),
0 otherwise.

v1->count(ai) nat(v1[im : m])
v1->excludes(ai) v1[im : m] = bv(0)

v1->excludesAll(v2)
∧n−1

i=0 (v2[im : m] 6= bv(0))⇒ (v1[im : m] = bv(0))

v1->excluding(ai)
(
v1 ∧ ¬ bv

(∑im+m−1
k=im 2i

))
∨ bv

(
nat(v1[im : m]−̂1) · 2im

)
v1->includes(ai) v1[im : m] 6= bv(0)

v1->includesAll(v2)
∧n−1

i=0 (v2[im : m] 6= bv(0))⇒ (v1[im : m] 6= bv(0))

v1->including(ai)
(
v1 ∧ ¬ bv

(∑im+m−1
k=im 2i

))
∨ bv

(
(nat(v1[im : m])+̂1) · 2im

)
v1->intersection(v2) ©n−1

i=0 min {nat(v1[im : m]), nat(v2[im : m])} (© is concatenation)
v1->isEmpty() v1 = bv(0)
v1->notEmpty() v1 6= bv(0)

v1->size()
∑n−1

i=0 nat(v1[im : m])

v1->union(v2) ©n−1
i=0 v1[im : m]+̂v2[im : m]

v1->union(Set{ai}). A set containing only the element ai can be expressed
as a bit-vector with only one bit set at position i, which corresponds to the nat-
ural number 2i. Using the bit-wise disjunction to express the union of two sets,
the operation results in v1 ∨ bv(2i).

Accordingly, bit-vector expressions to model operations on bags are outlined
in Table 3.

Example 7. Consider e.g. the including transformation applied to a bag. In-
stead of activating the ith bit, �rst all bits are erased at position i, i.e.

v1 ∧ ¬ bv

(
im+m−1∑

k=il

2i

)
, (8)

before to the result of that expression

bv
(
(nat(v1[im : m])+̂1) · 2im

)
(9)

is added by disjunction. That is, to the current amount of ai, i.e. nat(v1[im : m]),
�rst 1 is added before shifting by im bits to the left so that they replace the
current cardinality of ai. Further, consider the expressions for intersection and
union. Both bags are element-wise concatenated, whereby for the intersection
the respective minimal amount of elements and for the union the sum of both
amounts is used, respectively.

The mappings for operations on ordered sets are given in Table 4 considering
ordered sets with at most n elements and l as described in Enc. 6. The function
maxpos is used in some operations and returns the largest index in the ordered
set. The function is de�ned as

maxpos(v) :=
n−1
max
k=0

{
nat(v[kl : l]) | v[kl : l] 6= bv(2l − 1)

}
. (10)



Table 4. Mappings of ordered set operations into bit-vector operations

Operation Mapping
v1 = v2 v1 = v2

v1 <> v2 v1 6= v2

v1->append(ai) v1[jl : l] =

{
bv (maxpos(v1) + 1) if j = i ∧ v1[jl : l] = bv(2l − 1),
v1[jl : l] otherwise.

v3 = v1->asBag() see v1->asSet()->asBag()
v3 = v1->asSequence() see v1->asSet()->asBag()->asSequence()

v3 = v1->asSet() v3 ∈ IBn s.t. v3[i] =

{
1 if v1[il : l] 6= bv(2l − 1),
0 otherwise.

v1->at(k)
∑n−1

i=0

(
(v1[il : l] = bv(k − 1)) · bv(2l − 1)

)
∧ bv(i)

v1->count(ai) v1[il : l] 6= bv(2l − 1)
v1->excludes(ai) v1[il : l] = bv(2l − 1)

v1->excludesAll(v2)
∧n−1

i=0

(
v2[il : l] 6= bv(2l − 1)

)
⇒
(
v1[il : l] = bv(2l − 1)

)
v1->excluding(ai) v1 ∨ bv(2l − 1) · 2il

v1->first()
∧n−1

j=0

(
(v1[jl : l] = bv(0)) · bv(2l − 1)

)
∧ bv(j)

v1->includes(ai) v1[il : l] 6= bv(2l − 1)

v1->includesAll(v2)
∧n−1

i=0

(
v2[il : l] 6= bv(2l − 1)

)
⇒
(
v1[il : l] 6= bv(2l − 1)

)
v1->including(ai) see v1->append(ai)
v1->indexOf(ai) nat(v1[il : l]) + 1

v1->insertAt(k, ai) v1[jl : l] =

 bv(k − 1) if j = i ∧ v1[jl : l] = bv(2l − 1),
v1[jl : l] if v1[jl : l] < bv(k) ∨ v1[jl : l] = bv(2l−1),
v1[jl : l] + bv(1) otherwise.

v1->isEmpty() v1 = bv(2ln − 1)

v1->last()
∧n−1

j=0

(
(v1[jl : l] = bv(maxpos(v1)) · bv(2l − 1)

)
∧ bv(j)

v1->notEmpty() v1 6= bv(2ln − 1)

v1->prepend() v1[jl : l] =

 bv(0) if j = i ∧ v1[jl : l] = bv(2l − 1),
bv(2l − 1) if v1[jl : l] = bv(2l − 1),
v1[jl : l] + bv(1) otherwise.

v1->size() bv(maxpos(v1)) + 1

Note that in OCL, the �rst element in an ordered set has the index 1, while in
the encoding the �rst index is 0 due to advantages in the implementation. The
bit-vector expressions for the OCL operations on ordered sets is described by
the means of two examples.

Example 8. Consider the operation v1->at(k) in Table 4. According to the en-
coding de�ned in Enc. 6, the bit-vector is subdivided into several �elds, where
each �eld corresponds to one item of all available items. The �eld contains
an index describing either the position of that item in the ordered set or the
value bv(2l − 1) if the item is not contained in the ordered set. Thus, the �eld
containing the required position k has to be found: For each position in the en-
coding, the content is compared to the index with v1[il : l] = bv(k − 1). This
either evaluates to 0 or, in one case, to 1 assuming that v1 contains at most
k items. Multiplying the result with bv(2l − 1), i.e. a bit-vector containing l
ones, results in either a bit-vector containing only zeros or ones. This bit-vector
is used as a bit-mask for the considered position, i.e. bv(i), and all these bit-
vectors are added. Since only one bit-vector does not contain of all zeros, which
is the bit-vector containing the item, the result is a bit-vector encoding the item
at position k.

On the other hand, the operation v1->indexOf(ai) is encoded straight for-
ward. Since the �eld corresponding to ai can be determined directly by v1[il : l],
the result is its natural representation incremented by 1.



Dealer

prefColor: Color
prefType: Type

Car

color: Color
type: Type

�enum�
Color

red
yellow
green

�enum�
Type

coupet
convertible
suv

colorDealer 0..1

CarsOfColor

1..* colorCars

typeDealer 0..1

CarsOfType

1..* typeCars

inv defined: color.isDefined() and type.isDefined()
inv oneCategory: colorDealer.isUndefined() or typeDealer.isUndefined()
inv mustBeAssigned: colorDealer.isDefined() or typeDealer.isDefined()

inv defined: prefColor.isDefined() and prefType.isDefined()
inv carsHaveSameColor: colorCars->forAll(c|c.color = prefColor)
inv carsHaveSameType: typeCars->forAll(c|c.type = prefType)
inv disjointSets: typeCars->intersection(colorCars)->size() = 0
inv competition: Dealer.allInstances()->forAll(s|s <> self implies

((s.prefColor <> prefColor) and (s.prefType <> prefType)))
inv balance: Dealer.allInstances()->forAll(s|s.colorCars->union(s.typeCars)->size() =

colorCars->union(typeCars)->size())

Fig. 5. Car dealing example

We omitted the detailed table of bit-vector expressions for operations on
sequences due to page limitations. However, they can be derived by combining
the bit-vector expressions for the respective operations on bags and ordered sets.

5 Case Study

In this section, we illustrate the application of the proposed encoding by means of
a case study. Therefore, the UML/OCL model depicted in Fig. 5 and representing
a car dealing scenario is considered. A car dealer (Dealer) o�ers cars (Car)
according to a preferred color and preferred type. The associations CarsOfColor
and CarsOfType are used to model which cars belong to the dealer (distinguished
with respect to the color and the type, respectively). A car dealer has at least
one car by color and by type, and each car can only be assigned to one dealer.

In the following, selected OCL invariants for this model along with the re-
sulting bit-vector encoding are outlined. The respective veri�cation task is to
generate a valid system state composed of three dealers, i.e. three objects D =
{d0, d1, d2} derived from class Dealer, and 15 cars, i.e. objects C = {c0, . . . , c14}
derived from class Car. To encode the attributes, we introduce the bit-vector
variables αd

prefColor ∈ IB2 for each d ∈ D. Other bit-vectors are created accord-
ingly for the other attributes of the class diagram. In the same manner as in
Example 4, bit-vectors are created for the associations, i.e. λd

colorCars ∈ IB15 for
each d ∈ D.

The defined invariants for both classes can be encoded according to Fig. 3.
Next, the invariants carsHaveSameColor and carsHaveSameType ensure that
cars who are in the stock of a dealer must meet the preferred color or type
respective to the association. The respective bit-vector encoding for the invari-



ant carsHaveSameColor reads as follows:

∀d ∈ D :

|C|−1∧
i=0

(
λd
colorCars[i]⇒

(
αci

color = α
d
prefColor

))
(11)

The bit-vector encoding for the invariant carsHaveSameType is formulated anal-
ogously.

The invariant disjointSets assures that cars are either connected by their
color or by their type, i.e. the intersection of colorCars and typeCars must be
empty for each dealer. Using the encodings suggested in Table 2, the following
bit-vector expression results:

∀d ∈ D :

|C|−1∑
i=0

(
λd
typeCars ∧ λd

colorCars

)
[i] = 0 (12)

In this expression, the number of bits of the intersection (bit-wise conjunction)
are counted and forced to be 0.

To ensure a variety of car dealers, the competition invariant is added to
ensure that there are no dealers with the same preferred color or type. This is
encoded as:

∀d ∈ D :
∧

d′∈D

(d = d′)⇒
((
αd

prefColor 6= αd′

prefColor

)
∧
(
αd

prefType 6= αd′

prefType

))
(13)

The invariant balance ensures that all dealers have the same number of cars,
regardless of whether by color or by type. Thus, the size of the unions of both
sets are compared:

∀d ∈ D :
∧

d′∈D

|C|−1∑
i=0

(
λd
colorCars ∨ λd

typeCars

)
[i] =

|C|−1∑
i=0

(
λd′

colorCars ∨ λd′

typeCars

)
[i]


(14)

The invariant disjointSets assures that one car cannot be used both by color
and by type for one dealer. However, using the invariants introduced so far, a
car can still be assigned by color to one dealer and by type to another one. To
prevent this, the invariant oneCategory is added to the Car class, stating that
one of the association ends has to be unde�ned:

∀c ∈ C : λc
colorDealer = 112 ∨ λc

typeDealer = 112 (15)

Note that in this case the λ variables are not interpreted as bit-vectors but as
natural numbers directly pointing to the dealer object. This is done, since a car
can only be assigned to at most one dealer. In this sense, the λ vectors can be
interpreted analogously to the α attribute vectors.

Finally, we want to assign each car to a dealer by car or by color. Analogously
to the previous invariant, in this case it has to be assured that at least one
association end is de�ned resulting in the mustBeAssigned invariant, encoded
as:

∀c ∈ C : λc
colorDealer 6= 112 ∨ λc

typeDealer 6= 112 (16)



Car8

color: red
type: coupet

Dealer0

prefColor: red
prefType: coupet

Car11:

color: red
type: suv

Car4

color: red
type: coupet

Car5

color: red
type: coupet

Car13

color: red
type: coupet

CarsOfColor CarsOfColor

CarsOfType CarsOfType CarsOfType

Fig. 6. Derived system state

Solving the resulting satis�ability instance with an SMT solver such as Boo-
lector [21], a satisfying assignment is returned, amongst others assigning αc8

color =

002, α
c11
type = 102, and λ

d0

colorCars = 00010 01000 000002. From the assignments,
a system state can be constructed, e.g. Car8 is assigned the color red, Car11
is assigned the type suv, and Dealer0 is connected via CarsOfColor to Car8
and Car11. Together with other assignments, an object diagram representing
the system state can be obtained. This is partially depicted in Fig. 6. Here, one
dealer together with its connected cars and all attribute assignments is shown.

Solving this particular problem with 15 cars the solver Boolector [21] requires
less than 0.1 seconds to determine the solution on an Intel 2.26 GHz Core 2 Duo
processor with 3 GB main memory. Scaling the example to determine a solution
with 150 cars, the solver takes 6.9 seconds. Further experiments with run-times
can be found in [9,10].

6 Conclusion

In this work, encodings for both OCL basic and collection data types have been
presented. The encoding of these data types and their operations into bit-vector
expressions enables their application in satis�ability based veri�cation techniques
proposed in the past. OCL and satis�ability instances follow di�erent design
paradigms. One example is the number of variables and their size, which is
dynamic in OCL, whereas it must be de�ned initially with a static bit-width
in a satis�ability instance. This leads to non trivial encodings for both, the
data types and their operations. The applicability of the encodings has been
demonstrated in a case study by means of a practical example.
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