ANALYZING DEPENDABILITY MEASURES AT THE ELECTRONIC SYSTEM LEVEL

Marc Michael

Daniel Grofle

Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
{mmichael,grosse,drechsle } @informatik.uni-bremen.de

ABSTRACT

Raising the level of abstraction to design the next gener-
ation of embedded systems has become mandatory. This
design methodology is commonly referred to Electronic Sys-
tem Level (ESL) design. Simultaneously, dependability of
embedded systems becomes a major concern. To satisfy
these demands already at ESL, we present a dependability
analysis approach working directly at this level. The ap-
proach analyzes the effectiveness of dependability measures
in SystemC-based virtual prototypes. Errors are injected
into SystemC transactions using an XML-based configura-
tion mechanism. This is combined with the specification
of the expected behavior with respect to the injected errors.
The developed analysis approach allows for validation of
dependability measures as well as localization of missing or
buggy measures. Experimental results for a complex image
processing system, which determines the position of a game
controller in video data, demonstrate the advantages of our
approach.

1. INTRODUCTION

The preferred approach to address the rising complexity of
embedded systems is Electronic System Level (ESL) de-
sign [1]. The key feature of ESL design is abstraction re-
sulting in virtual prototypes for the complete hardware and
software platform of embedded systems. This allows vali-
dation, architectural exploration, performance analysis and
software development much earlier in comparison to tradi-
tional design flows. In this context, SystemC [2, 3, 4] has
become the standard language for ESL design. Clearly, the
key enabler for the success of SystemC was Transaction Level
Modeling (TLM) [5, 6]. In the last years a substantial body
of academic and industrial progress in methods for SystemC
TLM has been made. In addition, most EDA companies pro-
vide SystemC-based ESL tools nowadays which support the
design from abstract models down to hardware.

At the same time dependability of embedded systems be-
comes a critical issue. A major reason is the steadily shrinking
of the silicon process technology leading to unreliable circuit
components. As a consequence, system failures may result
from transistor failures, wear out or radiation. Thus, many
methods and techniques have been developed to increase the
robustness of embedded systems. In particular, fault-tolerant
design techniques are used for this task [7, 8, 9, 10]. Basically,
some form of redundancy is added to the system for error de-
tection (and error correction). Moreover, approaches to ana-
lyze the achieved fault tolerance and reliability have been pro-
posed, e.g. [11, 12, 13, 14, 15]. However, these approaches do
no target dependability at ESL or focus on mixed fault simu-
lation (more details are discussed in the related work section).

In this paper, we present an approach to analyze whether
dependability measures of SystemC virtual prototypes are
effective. After functional verification, the designers address
the dependability challenges by integrating respective mea-
sures. These include for instance error correcting codes,
checksums or algorithmic redundancy and are implemented
in hardware or software in the abstract SystemC model. Then,
to estimate their effectiveness errors have to be injected and it
has to be checked that the system continues to operate prop-
erly. Obviously, for this task a flexible way for both, injecting
errors and evaluating the effects of errors with respect to the
specification is necessary. Due to the high level of abstrac-
tion of SystemC TLM our analysis approach injects errors by
mutation of the TLM communication. That is, the parameters
(payload, address, etc) of the TLM communication functions
are mutated. Thereby, we can cover a wide range of faults
since single bits can be changed as well as the behavior of
a complete module can be changed modeling a complex er-
ror. In our approach this fault/error injection is controlled by
XML-based configuration files. Besides the types of errors
also their frequency, complex scenarios over time and the
expected result with respect to the concrete dependability
measure can be specified. As a consequence, if for some er-
ror the system malfunctions it is possible to identify modules
which are not robust. In this case the integrated dependability

measures needs to be fixed or additional measures need to be
integrated. Overall, we summarize the contributions of this
paper as follows:

e Configurable TLM error injection and expected behav-
ior specification

e Validation of implemented dependability measures

o Identification and localization of missing or incorrect
dependability measures

The remainder of the paper is structured as follows: Sec-
tion 2 describes related work. In Section 3 the proposed anal-
ysis approach for dependability measures in SystemC ESL
designs is introduced. The experimental evaluation is given
in Section 4. Finally, the paper is concluded in Section 5.

2. RELATED WORK

The application of mutation-techniques for different ver-
ification problems of abstract SystemC designs has been
considered in literature. A general mutation model for Sys-
temC TLM 2.0 communication interfaces has been presented
in [16]. This model has been used to measure the qual-
ity of functional verification with respect to the verification
environment in [17]. Mutation testing with the focus on con-
current designs has been proposed in [18]. A general tool
for error and mutation injection of SystemC models has been
presented in [19]. But all these approaches do not target
dependability.

A virtual platform of the LEON3 processor with fault in-
jection has been developed in [20]. In principle this platform
can be used as basis for our approach.

There are approaches which target the modeling and sim-
ulation of faults across different levels of abstraction includ-
ing TLM [21, 22]. However, they focus on the evaluation
of the fault effects and efficient simulation. The analysis of
the effectiveness of implemented dependability measures (in-
cluding identification and localization of missing or incorrect
measures) is not considered in these papers.

3. ANALYSIS OF DEPENDABILITY MEASURES

In this section the proposed analysis approach for dependabil-
ity measures in SystemC ESL models is introduced. Before
we give the details, the overall flow is explained.

3.1. Overall Flow

Fig. 1 depicts the overall flow of the proposed approach:
Starting with a SystemC TLM virtual prototype of the em-
bedded system, functional validation is performed to check
whether the system conforms to the functional specification.
Then, dependability measures are implemented and their ef-
fectiveness has to be ensured. For this task, the design needs
to be simulated with specific errors. To make the required

SystemC design
Functional
validation
Integration of
dependability

Error configutation

& behavior

specification
Simulation with
error injection

I
| |
| |
| I
| I
| I
| I
| I
| I

I
} |
: Extended |
| TLM library I
| I
| I
| I
| I
| I
| I
, l

Fig. 1. Overall flow for analyzing dependability measures

error injection process convenient for the user we have devel-
oped a configuration mechanism. The user can specify the
errors and complex error scenarios for injection together with
the expected behavior of the system. To carry out the error
injection in the SystemC TLM design, we have extended
the TLM library. Basically, we mutate the transactions of
the SystemC model to inject an error. To check whether
the dependability measures take effect dedicated logging and
comparison methods are provided in our library. Finally,
after the simulation a dependability report is created by our
approach. This report gives information about the quality
of the design dependability: the positive cases where for
example an error has been corrected, but also the negative
cases where the error is not treated as specified are reported.
Since the erroneous transactions and their communication
partners are known information can be derived where the
design robustness needs to be improved.

In the following we describe the error injection, the con-
figuration mechanism, and the analyzing methods in detail.

3.2. Error Injection by Transaction Mutation

Due to the high level of abstraction of SystemC TLM models
it is sufficient to inject errors at the communication bound-
aries, i.e. in the transactions. By this, low-level faults as well
as complex errors can be covered. To inject an error we mu-
tate a transaction. Table 1 lists the possible mutations for the
elements of the transaction payload. As can be seen the com-
mand and the response can be substituted by another message.

Table 1. Mutations for a transaction

Element | Type | Modification
Command | enum substitute
Address unsigned int | mask

Data unsigned int* | mask
Length unsigned int | mask
Response | enum substitute

Table 2. Mask attributes

’ Mask attributes \ Range \ Default value
random on | off off
percentage -1..100 100
start_pos -1..max_size | 0
length -1..max_size | max_size

-1 sets value to random

The address, the data and the length of the data can be mod-
ified with a mask. Additional attributes can be defined for
the mask to support different types of modifications. These
attributes, its ranges and the default value are shown in Ta-
ble 2. By enabling randomization the effect of the mask is
randomly distributed over the data according to the percent-
age, the start position and length. The percentage describes
how many data elements are modified by applying the mask
to each element. The start position defines the absolute start
position where the data should be modified and length defines
the amount of data to be modified, respectively. Alternatively
the value of percentage, the start position and the length can
be set to random (encoded by -1 as can be seen in Table 2).

It remains to explain where the mutations are applied to
inject the errors. For this task, we have extend the SystemC
TLM-2.0 library [6] such that if the standardized transport
functions (b_transport or nb_transport_fw, _bw) are called via
a target socket, a function in our library is executed in be-
tween.

Fig. 2 shows the principle in a simplified way: The ini-
tiator sends a transaction to the target. This transaction can
be mutated using the error configuration mechanism before
it reaches the target. Moreover, information about the con-
crete mutation and the origin of the transaction is logged for
the analysis later. In general, for each target socket individual
error configurations can be specified.

Based on these error injection methods we introduce the
configuration mechanism in the next section.

3.3. Error Configuration and Behavior Specification

We have developed a user-friendly XML-based configuration
mechanism to describe the types of errors to be injected, com-
plex error scenarios and the expected behavior.

XML-config file
Target
Initiator mutated transaction (with depend-
ability measures)

logging

'

Fig. 2. TLM mutation

Table 3. XML elements for error injection

[| Sequence | Attributes]
Scenario sequential or randomized | random, weight
Modification | sequential or randomized | random, weight

Transaction once identifiable, correctable

In general, a configuration file is a hierarchical structure
based on the following elements:

e Scenario
e Modification
e Transaction

A scenario is the highest element in this structure and rep-
resents a sequence of defined modifications. Every configura-
tion file must have at least one or more scenarios. The scenar-
ios in the configuration file are processed sequentially. Every
scenario includes a non-empty list of modifications which are
also processed sequentially. A modification represents one
mutated transaction using the features as introduced in the
Section 3.2 and is illustrated below by examples.

The configuration file structure is demonstrated by the fol-
lowing simple example:

<scenario name="scenariol”>
<modification detectable="1" correctable="1">
/* one specified mutation */

</modification>
</scenario>

As can be seen two attributes can be set for a modification.
The goal is that the user specifies the expected behavior when
the respective modification is applied, i.e. whether a depend-
ability measure detects the injected error or even corrects it.
Please note that if none of these attributes are given the idea
is that the effect of the corresponding error is acceptable.
General configuration options for a scenario (and con-
tained modifications) are given in Table 3. The execution or-
der of scenarios and modifications can be set from sequential
to random. If it is desired, the scenarios and the modifications

can also be weighted differently to generate different muta-
tion occurrence probabilities.

The elements of a transaction payload as shown in Table 1
can be separated in two classes: Enums (for command and
response) and unsigned integer (for address and length and an
integer array for data).

Commands and responses can be substituted by a fixed
message or a randomized weighted message. A concrete ex-
ample (belonging to a modification in the configuration hi-
erarchy) demonstrating the substitution of a TLM command
is:

<commands>

<request name="READ” />
</commands>

The next example shows a randomized weighted substitu-
tion:
<commands random="1">
<request name="READ” weight="2" />
<request name="IGNORE” weight="1" />

<request name="ORIGINAL” weight="9" />
</commands>

For error injection into address, length and data we use
masks as already mentioned in Section 3.2. The mask can be
randomly distributed over the data structure according to per-
centage, start position and length. A mask can also be defined
as a list of two or more masks which are applied step-by-step.
The following example demonstrates the error injection into
the address of a transaction:

<address>
<destination>
<and mask="0xaa” />
<or mask="0x55" />
</destination>
</address>

Modifying certain elements of the payload data can be
done as follows. Here, 90% of the bytes in the range from
200 to 300 are modified:

<data>
<transfer random="1" percentage="90" start_pos="200"
length="100">
<or mask="0xff" />
</transfer>
</data>

Please note that if in a modification an element of a trans-
action (command, address, data, length or response) is not
specified, this element remains unchanged.

To load a configuration file and perform the defined error
injection for a target socket using mutation, only two lines of
code are necessary:

Mutation mutation(”’path/to/configFile”);
module.target_socket.set_mutation(&mutation);

The mutation can also be used to modify other target sock-
ets. Alternatively it is possible to load for every single target
socket a separate configuration file.

3.4. Analyzing Dependability Measures

So far we have only considered error injection. In the follow-
ing we describe our automatic analysis method to evaluate
whether the implemented dependability measures have been
effective with respect to the injected errors.

Therefore, we create a dependability report after simula-
tion with detailed information about the effect of errors and
the potentially involved dependability measures. Based on
this report the designers can correct or improve the measures
and identify parts of the system which are not robust.

For the analysis each injected error as defined by the con-
figuration, i.e. each mutated transaction, is logged automati-
cally. The logged unchanged information includes:

e the current simulation time,

o the name of the module the target socket belongs to,
e the command,

e the address,

o the data length,

e a hash of the data,

o if the injection is detectable and

o if the injection is correctable.

Since we need the information whether a implemented de-
pendability measure was able to detect (and potentially cor-
rect) the error, the following method needs to be called when
a dependability measure handles an error:

log_detected_error(module_name, transaction);

Similar data is logged as before. However, when this method
is called the erroneous transaction is actually handled by a
specific dependability measure. Hence, at this point we can
conclude that the error has been detected. In addition, in a
post processing step after simulation we analyze if the error
has been corrected based on the logged information. Over-
all, for the dependability report we can compute the number
of detected erroneous transactions in relation to all injected
errors as well as the number of detectable erroneous transac-
tions (according to the user expectation specified in the con-
figuration) in relation to all errors. Thus, errors which have
not been detected by a measure or are not treated as specified
are revealed. Since information is available at which target
port the error has been injected we are able to identify mod-
ules which are not robust or use an incorrect measure.

In the following section we present the experimental eval-
uation.

4. EVALUATION

This section gives the experimental evaluation of the proposed
approach. At first, the test environment used for the evalu-
ation is described. Then, the results are presented and dis-
cussed.

Camera Image
Capturing

E Viewer

ISS

Position Tracker

Contol
Software

Fig. 3. System overview

4.1. Test Environment

We have implemented an image processing system which de-
termines the position of the PlayStation™ Move Motion Con-
troller [23] on a video stream. Basically, the controller illumi-
nates a ball on its top. We recognize this ball and hence can
determine a 3D position, i.e. X, y, z coordinates where the z
coordinate can be derived from the radius of the ball.

Fig. 3 shows the architecture of our SystemC TLM imple-
mentation. We use an Instruction Set Simulator (ISS), namely
Orlksim [24], which runs the control software of the system.
The system works as follows: At first the software in the ISS
loads an image from the image capturing module which grabs
the frames from a connected camera. Then, this image is send
via the bus to the position tracker module which performs sev-
eral image processing algorithms to calculate the position of
the controller. In particular, this module converts at first a
color image to a gray scale image, then the Sobel operator for
edge detection is used and finally Hough transformation [25]
is performed to identify circles which represents the 3D po-
sition of the controller in the picture. Basically, these steps
are shown in Fig. 4. The control software waits until the po-
sition tracker module is ready and loads the new information
from the module. After receiving the information the image
together with the position of the controller are send to the im-
age viewer. The image viewer displays the received image
and marks additionally the position of the controller in the
image with a circle as shown in the bottom of Fig. 4. By
drawing the position directly on the image it is easy to see if
the result of the position tracker module is correct.

In our image processing system the implemented depend-
ability measures are not protecting the entire content of a
transaction. In compliance with the dependability specifica-
tion of the system we only ensure the correctness of the TLM
command, the address, data_length and the response_status
using parity bits.

For the evaluation we use a video file instead of live video
from the camera to guarantee deterministic behavior. This
is necessary to compare the behavior of the system with and
without errors.

All following experiments have been carried out on an
AMD Phenom II X4 Quad-Core with 8 GB of main memory.

Depending on the injected error type, the run-time overhead
for error injection was in the range of a factor of 1 to 3. Es-
sentially, the mutation time is dominated by the size of the
modified TLM transaction data element.

4.2. Test Scenarios

To analyze the implemented dependability measures we have
built different configuration files for error injection. They can
be divided into several scenarios.

Scenario 1 and 2 represent the incorrect usage of the cam-
era or a damaged one. Such errors lead to image artifacts (as
exemplified in Fig. 5). The artifacts in the first scenario are
small: 5% of the image is corrupted. In the second scenario
33% of the image is corrupted. In both scenarios the artifacts
are distributed over the image randomly. To represent these
errors we mutated the data of the transactions between the
image capturing module and the ISS.

Scenario 3 represents software errors of the control soft-
ware which is executed on the ISS. In this scenario the soft-
ware errors lead to incorrect transactions to the image captur-
ing module. One bug sends TLM_WRITE commands instead
of the TLM_READ command and the second modifies the
data_length value.

Scenario 4 simulates a corrupted connectivity between the
position tracker module and the ISS. A corrupted connection
leads to faulty transactions. These errors were represented
as mutated TLM commands, addresses and data_length. Ev-
ery fourth transaction is not mutated to simulate a temporally
broken connection.

4.3. Results and Discussion

The results for all scenarios are summarized in Table 4. The
first column Scenario gives the number of the test scenario.
Scenario 0 represents the implemented system without any
error injection and is used as a reference for the remaining
scenarios. Column Correct results shows how often the con-
troller has been found at the same position as in Scenario 0.
The column Tolerated results gives similar to column Cor-
rect results how often the controller was found at the correct
position but with a tolerance of 10 pixels for the x, y and

B, |

Fig. 4. Image processing flow: Sobel image (top), Hough
image (middle), result (bottom).

z coordinates of the controller. In both columns the fraction
with respect to the value in Scenario O is provided in brackets.
The numbers of injected errors are shown in column Errors.
How many errors have been detected is provided in column
Detected errors, as well as the percentage of the injected er-
rors. The number of how many detectable errors have been
identified as such by a dependability measure is shown in col-

Fig. 5. Result after error injection.

umn Detectable errors, and again the percentage of detectable
errors as specified in the XML configuration. The last col-
umn Corrected errors provides the number of errors which
have been fixed by the implemented dependability measure,
i.e. gave the same result after error correction in comparison
to the original unchanged transaction payload. Here, also the
percentage of correctable errors as specified in the XML con-
figuration is shown.

In Scenario 1 and 2 no errors have been detected. The de-
pendability measures in the system are not able to detect mu-
tated data of a transaction. The implemented dependability
measures are only able to detect erroneous TLM commands,
addresses and data_length since we accept if images are bro-
ken in compliance with the specification. The results have
been correct in 83% of the cases when mutating 5% of the
image (Scenario 1) and in only 49% of the cases when mu-
tating 33% (Scenario 2). The figures of the tolerated results
(third column) are clearly better: 97% for Scenario 1 and 66%
for Scenario 2, respectively. The concept in the dependabil-
ity specification for the considered test scenario is confirmed
by these results because if camera faults lead to too many er-
rors the overall image quality becomes too low and hence the
camera has to be replaced by a new one.

The position results for Scenario 3 are always correct. No
errors have been injected into the image data which leads to
a correct calculation of the controller’s position. However,
only about half of the errors have been detected. By looking
closer into the logged data of the dependability report the rea-
son could be found very fast: Usually, the camera module re-
ceives only TLM_READ commands and ignores other TLM
commands. As a consequence, all mutated TLM command
transactions have been ignored by the camera module, but
later retransmitted since for these transactions the TLM com-
munication was not successful. Obviously, we have found a
missing dependability measure, i.e. the TLM command is not
checked. If every element of a transaction except the TLM

Table 4. Experimental results

’ Scenario \ Correct results \ Tolerated results H Errors \ Detected errors \ Detectable errors \ Corrected errors ‘

0 813 (100%) | 813 (100%) - - - -
1 678 (83%) | 789 (97%) 1626 0 (0%) 0) 0)
2 398 (49%) | 537 (66%) 1626 0 (0%) 0) 0)
3 813 (100%) | 813 (100%) 1626 813 (50%) 813 (50%) 0 (0%)
3b 813 (100%) | 813 (100%) 813 813 (100%) 813 (100%) | 407 (100%)
4 609 (75%) | 710 (87%) 1221 813 (66%) 813 (66%) | 407 (100%)
4b 813 (100%) | 813 (100%) 1221 | 1221 (100%) | 1221 (100%) | 407 (100%)

| A

2 unsigned int parity_bits = calc_parity_bits(trans);

3 if(trans.get_.command_parity () == (parity_bits >> 4) % 2

4 && trans.get_address_parity () == (parity_bits >> 3) % 2

5 && trans.get_data_length_parity () == (parity_bits >> 3) % 2

6 && trans.get_response_status_parity () == (parity_bits >> 1) % 2

7 && trans.get_parity_bit () == parity_bits % 2

8) return true;

9

Fig. 6. Incorrect dependability measure

command is okay the transaction could be corrected by re-
placing the wrong TLM command with TLM_READ. The
results after adding this dependability measure are shown in
Scenario 3b. The number of errors is only half of the number
in Scenario 3 because no erroneous transaction will be ig-
nored by the camera module (such a transaction is corrected).
Overall, 100% of the errors have been detected and the TLM
command mutations (50% of all mutations) have been cor-
rected.

The results in Scenario 4 are correct in 75% of the cases.
The reason is similar to Scenario 3: The image data has not
been changed but 25% of the transactions contains an erro-
neous TLM command which results in no information (com-
mand TLM_WRITE) or old information (TLM_READ) about
the actual position of the controller. In this scenario only 66%
of the detectable errors have been found due to a copy-paste
error when implementing the dependability measure. An ex-
cerpt of the code of the dependability measure is shown in
Fig. 6. The parity bit of the data_length was also compared
to the parity bit of the address bit (line 5, shift again by 3 in-
stead of 2). The parity bits of both were always set to 1 in
the scenario. Thus, every erroneous data_length will not be
detected by the dependability measure. After fixing the code
the achieved results are shown as Scenario 4b in Table 4. Ev-
ery error has been detected and the position of the controller
has always been correct.

In summary, with our approach we can validate depend-
ability measures, identify missing ones and localize incorrect
measures.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to analyze the
effectiveness of dependability measures of SystemC virtual
prototypes. The approach uses an XML-based configuration
mechanism to specify the errors injected into the system as
well as the expected system response. The error injection is
performed by mutating the elements of SystemC transactions.
This allows covering a wide range of errors, i.e. low-level
faults but also complex errors. After simulation a depend-
ability report is generated summarizing whether all injected
errors have been treated in compliance with the dependabil-
ity specification; that is, whether the detectable (correctable)
errors have been detected (corrected). In addition, informa-
tion where the design robustness needs to be improved can be
derived since the communication partners are known at ESL
as well as where the error was not handled in contradiction
to the specification. For a complex image processing sys-
tem we have demonstrated the advantages of our approach.
Besides successfull validation of the integrated measures, we
have found a missing measure as well as a buggy one.

For future work, we plan to extend our analysis method
such that timing information, which is for example available
in approximately timed TLM models, can also be used as de-
pendability criterion. Since the overall analysis quality de-
pends on the simulated scenarios we plan to use coverage
techniques to ensure the testbench quality, e.g. [26]. More-
over, the qualification of the injected errors is another impor-
tant issue such that the specified error scenarios can be im-
proved to cover a larger error space.

6. ACKNOWLEDGEMENTS

This work was supported in part by the German Federal Min-
istry of Education and Research (BMBF) within the project
SANITAS under contract no. 01M3088.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

7. REFERENCES

B. Bailey, G. Martin, and A. Piziali, ESL Design and
Verification: A Prescription for Electronic System Level
Methodology, Morgan Kaufmann/Elsevier, 2007.

OSCI, “SystemC,” Available at

http://www.systemc.org.

2011,
IEEE Std. 1666, IEEE Standard SystemC Language Ref-
erence Manual, 2005.

D. GroB3e and R. Drechsler,
Design, Springer, 2010.

Quality-Driven SystemC

L. Cai and D. Gajski, “Transaction level modeling: an
overview,” in IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Syn-
thesis, 2003, pp. 19-24.

J. Aynsley, OSCI TLM-2.0 LANGUAGE REFERENCE
MANUAL, Open SystemC Initiative (OSCI), 2009.

D. P. Siewiorek and R. S. Swarz, Reliable computer
systems - design and evaluation (3. ed.), A K Peters,
1998.

J. Gaisler, “A portable and fault-tolerant microprocessor
based on the SPARC V8 architecture,” in Proceedings of
the 2002 International Conference on Dependable Sys-
tems and Networks, 2002, pp. 409—415.

C. McNairy and R. Bhatia, “Montecito: A dual-core,
dual-thread itanium processor,” IEEE Micro, vol. 25,
pp- 10-20, March 2005.

A. Israr and S. A. Huss, “Specification and design con-
siderations for reliable embedded systems,” in Design,
Automation and Test in Europe, 2008, pp. 1111-1116.

R. J. Martinez, P. J. Gil, G. Martin, C. Pérez, and J.J.
Serrano, “Experimental validation of high-speed fault-
tolerant systems using physical fault injection,” in Pro-
ceedings of the conference on Dependable Computing
for Critical Applications, 1999, pp. 249-265.

C. Constantinescu, “Experimental evaluation of error-
detection mechanisms,” Reliability, IEEE Transactions
on, vol. 52, no. 1, pp. 53 — 57, march 2003.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]
[25]

[26]

A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar,
V. Bertacco, and T. M. Austin, “Crashtest: A fast high-
fidelity FPGA-based resiliency analysis framework,” in
Int’l Conf. on Comp. Design, 2008, pp. 363-370.

G. Fey, A. Siilflow, and R. Drechsler, “Computing
bounds for fault tolerance using formal techniques,” in
Design Automation Conf., 2009, pp. 190-195.

M. GlaB, M. Lukasiewycz, C. Haubelt, and J. Teich,
“Towards scalable system-level reliability analysis,” in
Design Automation Conf., 2010, pp. 234-239.

N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation
model for the SystemC TLM 2.0 communication inter-
faces,” in Design, Automation and Test in Europe, 2008,
pp- 396-401.

N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and
F. Letombe, “Functional qualification of tlm verifica-
tion,” in Design, Automation and Test in Europe, 2009,
pp- 190-195.

A. Sen and M. S. Abadir, “Coverage metrics for veri-
fication of concurrent SystemC designs using mutation
testing,” in IEEE International High Level Design Vali-
dation and Test Workshop, 2010, pp. 75 -81.

P. Lisherness and K.-T. Cheng, “SCEMIT: a SystemC
error and mutation injection tool,” in Design Automation
Conf., 2010, pp. 228-233.

A. da Silva and S. Sanchez, “LEON3 ViP: A virtual
platform with fault injection capabilities,” in Euromicro
Conference on Digital System Design, 2010, pp. 813 —
816.

G. Beltra, C. Bolchini, and A. Miele, “Multi-level fault
modeling for transaction-level specifications,” in ACM
Great Lakes Symposium on VLSI, 2009, pp. 87-92.

M. A. Kochte, C. G. Zoellin, R. Baranowski, M. E.
Imhof, H.-J. Wunderlich, N. Hatami, S. Di Carlo, and
P. Prinetto, “Efficient simulation of structural faults for

the reliability evaluation at system-level,” in Asian Test
Symp., 2010, pp. 3-8.

“Playstation™ move motion controller,”

http://uk.playstation.com/psmove.
Jeremy Bennett, Orlksim User Guide, 2010.

D.H. Ballard, “Generalizing the hough transform to de-
tect arbitrary shapes,” Pattern Recognition, vol. 13, no.
2,pp. 111 -122, 1981.

D. GroBle, H. Peraza, W. Klingauf, and R. Drechsler,
“Measuring the quality of a SystemC testbench by us-
ing code coverage techniques,” in Forum on specifica-
tion and Design Languages, 2007, pp. 146—151.

