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Abstract—Advances in the chip manufacturing process impose
new requirements for post-production test. Small Delay Defects
(SDDs) have become a serious problem during chip testing.
Timing-aware ATPG is typically used to generate tests for this
kind of defects. Here, the faults are detected through the longest
path. In this paper, a novel timing-aware ATPG approach is
proposed which is based on Pseudo-Boolean Optimization (PBO)
in order to leverage the recent advances in solving techniques in
this field. Additionally, the PBO-based approach is able to cope
with the generation of hazard-free robust tests by extending the
problem formulation. As a result, the faults are detected through
the longest robustly testable path, i.e. independently from other
delay faults. Experimental results show that a hazard-free robust
test can be efficiently found for most testable timing-critical faults
without much reduction in path length.

I. INTRODUCTION

Delay testing is typically performed to ensure that a pro-
duced chip meets its timing specification. A serious issue
during the post-production test is the growing distribution of
Small Delay Defects (SDDs). A SDD is a defect with defect
size not large enough to cause a timing failure on its own.
However, SDDs might cause a timing violation when many
of them are accumulated. Due to the shrinking feature sizes
and the increased speed of today’s circuits, the likelihood of
failures caused by SDDs increases and their detection has
become a critical issue [1]. An SDD might escape during
test application when a short path is sensitized since the
accumulated delay of the distributed defect is not large enough
to cause a timing violation. In contrast, the same SDD might
be detected if a long path is sensitized [1], [2]. Unfortunately,
common ATPG algorithms usually prefer short paths since the
sensitization of these paths is typically much easier.

Timing-aware ATPG was proposed in [3], [4]. Here, pre-
calculated timing information is used during ATPG to guar-
antee sensitization of the longest path. By this, the test is
more likely to detect SDDs. However, timing-aware ATPG
is a computationally intensive task, since the search space is
huge. As a result, the run time of timing-aware ATPG increases
significantly compared to regular ATPG as reported in [5].

Besides the length of a path, a delay test can be classified
with respect to different quality levels [6], e.g. non-robust and
robust. A (hazard-free) robust test promises highest quality
since it guarantees the detection of the target fault indepen-
dently from other delay faults. Robust tests are more desirable
but typically harder to obtain. Classical timing-aware ATPG
does not consider robust test generation. Therefore, the fault
might not be detected via the longest path since it may be
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masked by other delay faults present in the circuit. A drawback
of commercial ATPG tools is that they do not provide robust
tests. The fault model ALAPTF [2] was proposed to launch
the transition via one of the longest robust segments ending
at the fault site. However, a computational intensive genetic
algorithm and a recursive structural ATPG algorithm were used
to find long paths. A different metric to judge the quality of
a test set is the statistical delay quality level (SDQL) metric
[7]. It measures the test escapes for a test set with respect to
a given delay defect probability. However, it cannot be used
in an early phase since the collection of data from the testing
and manufacturing processes is necessary.

An alternative to structural ATPG as used in timing-aware
ATPG is ATPG based on Boolean Satisfiability (SAT) [8].
Here, the search process does not work on a structural netlist
but on a Boolean formula typically in Conjunctive Normal
Form (CNF). Recent advances in SAT solving techniques
led to highly efficient SAT solvers. SAT-based ATPG was
shown to be highly fault efficient and the application results
in significantly increased fault coverage for large industrial
circuits [9], [10]. A key aspect for the robustness of SAT-
based algorithms is the inherent conflict-driven learning which
efficiently prunes large parts of the search space. Therefore,
it is desirable to employ these techniques to timing-aware
ATPG as well that these benefits can be leveraged. However,
SAT solvers can not directly be used since they do not have
the ability to process natural number which is mandatory for
incorporating timing information. The approaches presented in
[11], [12] use a Boolean encoding to encode natural numbers
into a SAT instance. Then, a series of SAT solver calls with
different timing assumptions is used in order to find the longest
sensitizable path through the fault site or all paths in a specified
delay range, respectively. However, these approaches are not
able to generate hazard-free robust tests.

A different approach is to apply solvers for Pseudo-Boolean
(PB) SAT or Pseudo-Boolean Optimization (PBO) [13], re-
spectively. Many of the PBO solvers strongly rely on the
efficient SAT techniques but in addition are able to process
natural numbers in a specific manner. In fact, SAT solvers
often form the core engine of state-of-the-art PBO solvers. The
applicability of PBO in the field of ATPG has been shown in
[14]. Here, As-Robust-As-Possible tests are generated for the
path delay fault model. An optimization function is used to
satisfy as much robust sensitization conditions as possible for
a specified path.

In this paper, we present a novel PBO-based timing-aware
ATPG approach which is also able to generate high-quality
hazard-free robust tests for the transition fault model. PB-
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Fig. 1. Example circuit for timing-aware ATPG

SAT constraints are used to model the circuit’s logic behavior,
fault detection and the path identification while an optimiza-
tion function is responsible for the longest path calculation.
Additionally, the ability of encoding static values which is
necessary for the robust sensitization condition is integrated
into the problem formulation and coupled with the path
identification. As a result, the approach is able – for the
first time – to generate a test sensitizing the longest robustly
testable path and, by this, increases the quality of the test
set. Experimental results for robust and classical PBO-based
timing-aware ATPG show that robust tests can be obtained
with only small run time overhead or even speed-up.

The paper is structured as follows. Section II presents the
timing-aware ATPG problem, different sensitization condi-
tions, and introduces basic information about PBO. Section III
shows how the PB constraints and the minimization function
are derived for the timing-aware ATPG problem. Static value
encoding and the integration into the PBO-based timing-aware
ATPG formulation is presented in Section IV. Section V
presents experimental results and Section VI gives the sum-
mary of this paper as well as an outlook.

II. PRELIMINARIES

A. Timing-Aware ATPG
Common ATPG algorithms tend to sensitize short paths

during test generation due to reasons of complexity. However,
this is disadvantageous for detecting SDDs. Delay defects
based on SDDs are more likely to occur on longer paths,
since more SDDs can be potentially accumulated and the
slack margin is smaller. This is demonstrated by the following
example.

Example 1: Consider the simple example circuit shown in
Figure 1. Each gate is associated with a specific delay. Assume
that the fault site is line g. There are six possible paths through
g on which the transition could be propagated:
• p1 = a–d–e–g–h–j (10ns)
• p2 = b–e–g–h–j (9ns)
• p3 = a–d–e–g–i–k (8ns)
• p4 = b–e–g–i–k (7ns)
• p5 = c–f–g–h–j (7ns)
• p6 = c–f–g–i–k (5ns)

Regular ATPG tools try to find a path on which the transition
is propagated as fast as possible. So, it is most likely that a
regular ATPG algorithm sensitizes the shortest path p6, since
this is the easiest path to sensitize. If the value is sampled
for example at 11ns, the slack margin is very high, i.e. the
accumulated defect size has to be at least 7ns for p6 to detect
a delay defect. However, if the ATPG algorithm chooses path
p1, the defect size has to be only 2ns for a detection.

Timing-aware ATPG [4] was developed to enhance the
quality of the delay test. Here, a test is generated to detect
the transition fault through the longest path by using timing

TABLE I
SENSITIZATION CRITERIA FOR ROBUST AND NON-ROBUST TESTS

Robust Non-robust
Gate type rising falling

AND/NAND X1 S1 X1
OR/NOR S0 X0 X0

information during the search. The algorithm proposed in [4]
is based on structural ATPG and consists of two tasks: fault
propagation and fault activation. Each task uses the path delay
timing information as a heuristic to propagate (activate) the
fault through the path with maximal static propagation delay
(maximal static arrival time). However, due to complexity
reasons, both tasks are carried out independently and the
longest path might be missed. Furthermore, simplifications
are assumed to further reduce the complexity. This motivates
the need for new techniques that can cope with the high
complexity.

B. Sensitization Criteria

A test for a delay fault has to consider two time frames
t1, t2. In order to generate a test for a path delay fault on path
p, the desired transition has to be launched at the input and p
has to be sensitized to propagate the transition. For this, the
side inputs of p, i.e. all connections which are not on the path
but feed a gate on a path, have to be constrained to specific
values according to the desired sensitization criterion. The
sensitization criterion used is responsible for the test quality.

Table I shows the conditions for non-robust as well as robust
sensitization [6]. For a non-robust test, it is sufficient that all
side inputs of p have to assume the non-controlling value of
the gate in t2 only (denoted by X0/X1). In order to avoid that
other delay faults mask the fault on p, static values have to be
guaranteed for a robust test if the transition goes from a non-
controlling value to a controlling value (denoted by S0/S1).
Note that often two Boolean variables are used to denote the
values of a signal in two discrete points of time, i.e. at t1 and
t2. Setting both values to either 0 or 1 is not sufficient for the
robust sensitization criterion, since the time between t1 and
t2 is not considered and hazards or glitches could mask the
delay fault.

C. Pseudo-Boolean Optimization

In this section, basic information about Pseudo Boolean Op-
timization (PBO) and the related Pseudo-Boolean (PB)-SAT
problem is given [15] (cf. [14]). A pseudo-Boolean formula
Ψ is a conjunction of pseudo-Boolean constraints. A pseudo-
Boolean constraint ψ over Boolean variables x0, . . . , xn−1 is
an inequality of the form:

n−1∑
i=0

cixi ≥ cn,

where c0, . . . , cn ∈ Z and xi ∈ {0, 1}. A pseudo-Boolean
constraint ψ is satisfied if and only if the sum of the coef-
ficients ci with 0 ≤ i < n for which the associated variable
xi is activated, that is xi = 1, is greater or equal than cn. A
pseudo-Boolean formula ΨPB is satisfied if and only if each
constraint ψ ∈ Ψ is satisfied.

The PB-SAT problem is to find an assignment that satisfies
ΨPB or to prove that no such assignment exists. The PBO
problem is to find the satisfying assignment of ΨPB which



TABLE II
PB AND CNF REPRESENTATION FOR AN AND GATE a · b = c

PB CNF
((1− a) + (1− b) + c ≥ 1)· (a + b + c)·

(a + (1− c) ≥ 1)· (a + c)·
(b + (1− c) ≥ 1) (b + c)

is optimal, e.g. minimal, with respect to a given objective
function F :

F(x0, . . . , xn−1) =
n−1∑
i=0

mixi,

where m0, . . . ,mn−1 ∈ Z. The task of a PBO solver is
therefore to find the assignment which satisfies ΨPB and, at
the same time, minimizes F or to prove that no satisfying
assignment exists.

A circuit-oriented problem can be formulated as a PB-SAT
problem as follows (similar to the SAT transformation [8]):
each signal sj in a circuit is assigned a Boolean variable
xj . Then, the circuit’s logic has to be transformed into PB
constraints gate by gate by creating a set of constraints ψg for
each gate g. The similarity to SAT transformation is shown in
Table II, where the CNF as well as the PB-SAT representation
of an AND gate is given. Each CNF clause corresponds to a
PB constraint. Note that a negative literal xi is represented by
the term (1− xi).

The PB representation ΨC for circuit C with gates g1, . . . , gk

is given by the following formula:

ΨC =
k∏

j=0

ψgj

In practice, ΨC is then extended with problem-specific con-
straints ΨF which are for example needed for fault propagation
and activation. Then, the derived PB-SAT instance ΨPB which
can be given to a PB-SAT solver to compute a test is as
follows:

ΨPB = ΨC ·ΨF

Typically, PBO solvers like clasp [16] internally translate the
problem into a SAT instance and work in a iterative manner: a
PBO solver calculates an initial solution at first (corresponding
to a PB-SAT solution) which is then improved in the following
until no better solution can be found. Generally, the search
space of such a problem is huge and typically many iterations
are needed to find the minimal solution. However, PBO solvers
use efficient conflict-based learning techniques and effective
heuristics during the search. As a result, the search space can
typically be traversed very quickly, since a large part can be
pruned by learned information. Therefore, PBO solvers have
the potential to cope with the high complexity of the timing-
aware ATPG problem.

III. PBO-BASED TIMING-AWARE ATPG

This section describes how the timing-aware ATPG problem
is represented as a PBO problem, i.e. as a PB-SAT instance
ΨPB and a minimization function F . We first describe in
Section III-A how the PB-SAT instance is composed and how
the minimization function is derived. Afterwards, Section III-B
presents details about the implications and constraints which
have to added to the PB-SAT instance in order to guarantee a
consistent path representation.

A. PB-SAT and Minimization Function

The use of PB-SAT and PBO, respectively, has the ad-
vantage that the efficient solving and search space pruning
techniques of state-of-the-art solvers can be applied to solve
the specific problem. However, the correct and complete for-
mulation as a PBO problem instance is crucial for the efficient
application. As stated above, the use of a PBO solver requires
the creation of a PB-SAT instance ΨPB and a minimization
function F . The proposed PB-SAT formulation is based on
the SAT formulation for ATPG proposed in TEGUS [17]. As
shown above, any SAT instance can be transformed into a PB-
SAT instance in a straightforward manner but not vice versa.
The test generation formulation consists of the following parts:
• ΨC describes the logic of the necessary circuit parts.

Note that two consecutive time frames t1, t2 have to be
considered for transition test generation. A signal x is
therefore associated with two variables x1, x2 represent-
ing the value of the line in the corresponding time frame.

• ΨF describes the faulty part of the circuit. That is the
fault site as well as the logic of the faulty output cone.
An additional variable yf is assigned to each signal y in
the faulty output cone which represents the value of y in
the faulty part.

• ΨD describes additional constraints necessary for fault
propagation and fault observation. In particular, these
constraints make sure that a D-chain exists, i.e. there ex-
ists a path from the fault site to an observation point along
which the fault is propagated. An additional variable yD

(also called D variable) is associated with each signal y
in the faulty output cone. This variable is 1 if the fault
is propagated to an observation point along this line.

This formulation is extended for the problem of finding the
longest path through the fault site. Here, a clear path represen-
tation is needed for identifying the longest path automatically
by the solver used. The last part of the formulation, i.e. ΨD

already includes a propagation path representation by the D
variables of the output cone. When the variable yD of signal y
is assigned to 1, the fault is propagated along line y. Therefore,
the propagation path is represented by the set of lines whose
D variable is 1. More formally, let Y be the set of lines in the
output cone of the fault site, then the propagation path P p is
represented as follows:

P p = {y ∈ Y : yD = 1}

However, this representation has to be extended, since it
covers the propagation path only. The activation path has to
be considered for identifying the longest path, too. Generally,
setting the desired transition value at the fault site is sufficient
for the solver used to create an activation path. However, ad-
ditional information is required for path identification. There-
fore, a J variable zJ is assigned to each line z in the support
of the fault site. This is illustrated in Figure 2. Note that the
signal line of the fault site is assigned a D variable as well as
a J variable. Both variables of the fault site are fixed to 1 in
the problem formulation to trigger the search.

The J variable zJ of line z is 1 if the line carries a
transition along the activation path. Therefore, similar to the
representation of the propagation path P p, the activation path
P a is represented by those lines whose J variable is assigned
to 1. More formally, let Z be the set of lines in the support
of the fault site, then the activation path P a is represented as
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Fig. 2. D and J Variables in PB-SAT transformation

follows:
P a = {z ∈ Z : zJ = 1}

Note that the constraints which guarantee the correct assign-
ment of the D and J variable are given in Section III-B.
Eventually, the complete path P f for fault activation as well
as for fault propagation is derived by the union of P a and P p:

P f = P a ∪ P p

This path representation allows the solver to identify the
path by checking the assignment of the D and J variables.
This is then used to create the minimization function which
is responsible for identifying the longest path. Therefore, the
minimization function F consists of the D as well as of the J
variables of the given instance. In addition, to incorporate the
delay aspect, each variable x in the minimization function is
associated with a static delay value dx (obtained for instance
by static timing analysis) which represents the delay of the
line as well as the delay of the predecessor gate:1

F(Y D, ZJ) =
n∑

i=1

−dyi · yD
i +

m∑
j=1

−dzj · zJ
j

The result of F is the accumulation of the delay values of the
activated variables, i.e. those variables which are assigned to 1
in the current assignment. Given to a PBO solver, the ultimate
solution is the assignment which minimizes F . This directly
corresponds to the longest path through which the transition
fault is detected.

B. Constraints for Consistent Path Representation
This section shows which constraints or implications have

to be added to the PB-SAT instance to guarantee a correct
and consistent path representation. This includes the following
properties:
• It has to be guaranteed that the transition is activated and

propagated along at least one path. These constraints are
needed for fault detection and are described by Ψpath.

• It has to be ensured that the D and J variables of
exactly one path are assigned to 1, although there exist
multiple paths along which the transition is propagated or
activated, respectively. This is especially important since
the minimization function F is defined over all D and J
variables. The solver tries to assign as many as possible
of these variables with the value 1. These constraints are
described by Ψone.

• Different arrival times of transitions at gate inputs have
to be considered in order to make sure that the correct

1Note that the delay value is given in F as a negative value, since state-
of-the-art PBO solvers typically perform minimization but not maximization.
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path which causes the transition at the output is identified.
This is described by Ψtran.

In summary, the PB-SAT instance ΨPB which incorporates
these properties is derived as follows:

ΨPB = ΨC ·ΨF ·Ψpath ·Ψone ·Ψtran

The precise implications or constraints, respectively, in PB
form included in Ψpath, Ψone and Ψtran cannot be given here
due to page limitation.

IV. LONGEST ROBUSTLY TESTABLE PATHS

Although the longest path has been sensitized, a different
delay fault present in the circuit might mask the targeted
delay fault on the longest path. Different sensitization criteria
were developed to prevent this. This is demonstrated in the
following example.

Example 2: Consider the AND gate a · b = c in Figure 3.
Here, different sensitization possibilities and the associated
problems are presented. Typically, transition fault testing (a)
constrains the output only. That is, only a transition has to
be assumed at the output c. In particular, this leads to the
possibility that a delay fault on the path is masked if the
transition on the side input b arrives earlier than the transition
on the on-path input a. Non-robust sensitization (b) ignores
the behavior on the side input during the initial time frame.
Therefore, a delay fault on a could be masked by a delay fault
on side input b.

Semi-robust sensitization (c) is often used to prevent the
invalidation of the test by other delay faults. Here, the initial
and the final value of the side inputs are constrained to the non-
controlling value. However, the behavior between the initial
and final time points is unknown. Therefore, a glitch is able
to invalidate the test as shown in Figure 3(c). Here, the glitch
(originated from the side input b) is propagated on a and
the correct value is (wrongly) sampled at the output. Robust
sensitization (d) requires the guarantee of a static value on all
side inputs. By this, the test cannot be invalidated nor masked
out by other delay faults or glitches (“hazard-free”).

In [18], a third Boolean variable xS is assigned to each
signal line x (S variable). If xS = 1, the signal is guaranteed to
be static. Constraints ΨS are added to ensure that no glitch or
hazard occurs by means of static value justification. Basically,
these constraints guarantee that a static value on the output of
a gate is caused by its gate input assignment. That is either
by static non-controlling values on all gate inputs for a non-
controlling static value on the output or by a static controlling
value at least on one gate input for a controlling value on
the gate output. By this, the static values are justified by the



assignment of the primary or pseudo primary inputs. However,
robust test generation is typically applied for the path delay
fault model where the path under test is completely specified as
in [14]. For timing-aware ATPG, the path is not specified. The
search for the longest path is explicitly part of the problem.
The following formulation is proposed to integrate the robust
sensitization conditions into the proposed PBO-based timing-
aware ATPG approach in order produce a test with the longest
robustly testable path through the fault site.

At first, each gate g in the considered circuit part is
assigned an additional variable gS as described above. The
constraints ΨS are added for each gate to the circuit formula
in order to enable static value representation. Note that ΨS

is encapsulated from the original circuit formula and serves
only for the correct calculation of the S variables. The aim is
now to couple the path representation proposed in the previous
section with the ability to guarantee and justify static values in
order to enable the robust sensitization criterion. That means,
whenever a gate is on a sensitized path, the robust sensitization
condition has to be satisfied in addition to the conditions for
fault detection presented in the previous section.

Since a consistent path representation exists, i.e. whenever
a D or J variable is assigned with 1, the path segment
is sensitized, then this variable has to be linked with the
robust sensitization condition. In other words, if a gate g
or the corresponding output connection, respectively, is on a
sensitized path and the transition is from the non-controlling
value to the controlling value of the successor gate h, then
all other side inputs of h have to assume a static non-
controlling value. More formally, given a connection g and
a successor gate h. Let Q be the set of gate inputs of h and
P = Q \ {g} = {p1, . . . , pn−1}, the following implications
have to be added to the problem instance2:

(g2 = cv) · (gD = 1)→ (pS
1 ) · . . . · (pS

n−1)

The transformation of this implication for a gate h with
n inputs results in n · (n − 1) PB-SAT constraints and
is denoted by ΨR. The problem formulation for obtaining
the longest robustly testable path is therefore given by the
following formula. The parentheses are used to highlight the
encapsulation of the problem into a fault detection part and a
robust sensitization part.

ΨPB = (ΨC ·ΨF ·Ψpath ·Ψone ·Ψtran) · (ΨS ·ΨR)

Because the formulation of the robust sensitization condi-
tions is encapsulated, the optimization function has not to be
modified, since the path representation has not been changed
in the problem instance. In order to keep the fault coverage
high, it is easily possible to deactivate the constraints ΨR by
incremental assumptions [19] if the fault is generally testable
but robustly untestable. By this, a classical timing-aware test
can be generated using the information learned in the previous
search process.

V. EXPERIMENTAL RESULTS

This section presents the experimental results for the pro-
posed PBO-based timing-aware ATPG approach. The ap-
proach was implemented in C++ and clasp [16] was used as

2The implication is given for the propagation path only. However, the
implication for the activation path is obtained by simply substituting the D
variable by the J variable.

underlying PBO solver. The experiments were conducted on
an AMD Phenom (3400MHz, 8192MB, GNU/Linux) using
the IWLS 2005 benchmarks without any test-related modifi-
cations, e.g. test point insertion. Timing information for these
circuits were obtained by HSpice and Monte Carlo simulation
using 45 nm technology. Test generation was performed using
the launch-on-capture scheme (broadside tests).

Table III shows the experimental results. Two different
setups were used. The upper part shows results for performing
test generation for all targets, i.e. transition faults on inputs and
branches. Fault dropping is disabled, i.e. 263,440 targets for
circuit ethernet corresponds to 263,440 ATPG calls. The inte-
gration of timing-aware fault dropping and test set compaction
is future work.

The lower part shows the results for timing-critical faults
only as proposed in [20]. Here, only transition faults are
targeted that lie on structural longest paths within 25% of
the clock cycle. The timing of the structural longest path
is assumed to be the duration of a clock cycle (column clk
in ps). The average (av.) and the maximum (max) length of
the sensitized path for classical transition fault test generation
are given in column Classic TF for comparison. Results of
(PBO-based) timing-aware ATPG are given in column Classic
Timing-aware while column Robust Timing-aware shows the
results for the approach using robust sensitization to increase
the quality.

Column test. gives the percentage of testable faults, while
column ab. presents the number of aborts, i.e. those faults for
which no test could be generated within the limit of 10,000
conflicts. Column opt. gives the percentage of testable faults
for which no guarantee is given that the optimal solution was
found. Note that this does not imply that the generated test is
not the optimal solution, i.e. not the longest path. This means
that the proof that there is no better solution has not been
finished. The total run time in cpu seconds is given in column
cpu. The percentage of robustly testable faults is given in rob.

The results show that PBO-based timing-aware ATPG is
very robust. Only very few faults were aborted. The percentage
of tests for which the proof of optimality has not been finished
is also low.3 Concerning the average and maximal path length,
timing-aware tests are – as expected – significantly longer than
classical transition tests.

Concerning robust timing-aware test generation, it has to
be pointed out that the number of testable faults is decreased
only slightly for most circuits. Another important perception
is that the path length of robust timing-aware tests is only
marginally decreased in terms of average as well as maximum
length compared to classical timing-aware tests. In few cases,
robust tests are even longer than classical timing-aware tests,
e.g. for mem ctrl. Here, classical timing-aware ATPG could
not find the optimal solution. Also, the cpu time is reduced
for a few circuits, i.e. tv80 and usb funct although there is
large overhead in terms of formula size. This can be explained
because the solving process has to traverse the complete
solution space. Typically, the solution space for robust tests
is much smaller than the solution space for classical tests.

If only the timing-critical faults are targeted as often done in
practice, similar observations can be made. Although, the num-

3For those circuits where the opt. value is higher, e.g. systemcaes and
aes core, increasing resources led to higher run time and to significantly de-
creased opt. value. However, the path length could only marginally improved.
This indicates that often the optimal solution has already been found but not
proven to be optimal.



TABLE III
EXPERIMENTAL RESULTS ON ATPG RUNS

All faults targeted
Classic TF Classic Timing-aware (proposed, PBO-based) Robust timing-aware (proposed)

circ. targets clk av. max. test. ab. opt. av. max cpu rob. ab. opt. av. max cpu
tv80 26,228 7,677 2,201 5,150 56.4% 7 9.1% 2,899 6,960 6,354 51.6% 0 4.2% 2,773 6,960 4,490

systemcaes 31,758 12,078 2,740 10,740 69.6% 191 13.2% 3,697 11,890 8,751 61.9% 140 7.8% 3,398 11,890 11,904
mem ctrl 43,924 5,780 1,110 4,300 43.3% 0 0.8% 1,526 5,000 3,916 42,6% 0 0,1% 1,506 5,150 4,455
ac97 ctrl 47,796 5,664 904 5,460 57.8% 0 <0.1% 982 5,664 65 57.3% 0 0% 981 5,664 64
usb funct 48,878 5,284 1,107 5,070 81.8% 0 1.0% 1,389 5,284 726 80.7% 10 0.3% 1,372 5,284 602

pci bridge32 73,978 7,432 1,150 6,660 65,6% 5 1.4% 1,423 7,432 2,520 64,2% 0 1.0% 1,401 7,432 2,756
DMA 75,364 6,650 1,585 4,600 72.3% 490 3.5% 2,137 6,430 17,241 71.6% 65 1.7% 2,094 6,490 27,116

wb conmax 120,322 4,528 1,407 4,220 76.4% 5 3.0% 1,650 4,528 8,736 71.8% 0 2.7% 1,673 4,528 11,382
ethernet 263,440 12,192 1,819 11,000 65.5% 12 0.4% 1,945 11,500 193,479 64.8% 5 0.4% 1,932 11,500 322,750
des perf 292,020 6,386 1,141 6,240 100% 0 0,3% 1,983 6,240 21,102 99.7% 0 0.2% 1,969 6,240 34,358

Timing-critical faults only
tv80 3,414 7,677 2,625 5150 42.4% 2 16.9% 3,312 6,960 1,646 38.6% 0 5.8% 3,379 6,960 1,081

systemcaes 862 12,078 6,862 10,740 65.5% 9 18.8% 9,862 11,890 254 65.3% 0 16.8% 9,310 11,890 271
mem ctrl 2,564 5,780 1,486 4,300 34.1% 0 6.2% 2,377 5,000 1,302 33,5% 0 0,7% 2,358 5,150 994
ac97 ctrl 670 5,664 5,664 5,664 50.0% 0 0% 5,664 5,664 <1 50.0% 0 0% 5,664 5,664 <1
usb funct 1,296 5,284 4,377 5,070 88.0% 0 <0.1% 4,514 5,284 8 88.0% 0 0% 4,514 5,284 8

pci bridge32 936 7,432 4,768 6,660 53.5% 0 2.8% 5,546 7,370 75 53.5% 0 1.8% 5,654 7,370 106
DMA 3,090 6,650 2,888 4,600 57.5% 0 15.0% 4,371 6,430 2,687 55.1% 0 7.8% 4,362 6,430 4,432

wb conmax 14,584 4,528 3,035 4,160 76.2% 0 3.1% 3,479 4,420 1,740 68.1% 0 6.4% 3,746 4,420 2,482
ethernet 1,544 12,192 9,936 11,000 39.9% 0 0% 10,448 11,500 24 39.2% 0 <0.1% 10,464 11,500 21
des perf 550 6,386 4,744 6,240 100% 0 4.7% 4,967 6,240 2,799 100% 0 3.6% 4,976 6,240 4,899

ber of targets is significantly decreased, the total run time is
quite high since timing-critical faults are often hard-to-detect.
However, the number of aborted faults is negligible. Therefore,
the time consuming part is the optimization procedure for these
faults. The opt. value is also increased compared to the upper
part. It is also shown that most of the testable timing-critical
faults are robustly testable and the average and the maximum
path length of classical timing-aware test generation and robust
timing-aware test generation is very similar. Therefore, the
robustness of the test set is significantly strengthened while
the ability to detect SDDs is hardly compromised.

VI. CONCLUSIONS

Timing-aware ATPG is important to detect small delay
defects. This paper presents a timing-aware ATPG approach
based on Pseudo-Boolean Optimization (PBO) in order to
leverage the powerful solving techniques in this field. A PBO
formulation for the timing-aware ATPG problem is given.
Furthermore, it is shown how static values necessary for
generating robust tests can be integrated in this formulation.
As a result, the approach is able to generate tests which
detect the fault through the longest robustly testable path. The
experimental results show that for most testable timing-critical
faults a robust test can be efficiently generated with few or
even no impact on the path length. By combining timing-aware
ATPG and robust test generation, the quality of the test set can
be significantly increased.

Future work is the development of novel fault dropping
schemes based on timing and sensitization criterion as well
as novel ATPG-specific PBO solving techniques in order
accelerate to the search process and diminish the time to find
the optimal solution.
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