
Automated Post-Silicon Debugging of
Failing Speedpaths

Mehdi Dehbashi∗
∗Institute of Computer Science, University of Bremen

28359 Bremen, Germany
Email: dehbashi@informatik.uni-bremen.de

Görschwin Fey∗†
†Institute of Space Systems, German Aerospace Center

28359 Bremen, Germany
Email: goerschwin.fey@dlr.de

Abstract—Debugging of speed-limiting paths (speedpaths) is
a key challenge in development of Very-Large-Scale Integrated
(VLSI) circuits as timing variations induced by process and
environmental effects are increasing. This paper presents an
approach to diagnose speedpaths under timing variations. First
timing behavior of a circuit and corresponding variation models
are converted into a functional domain. Then, our automated
debugging based on Boolean Satisfiability (SAT) diagnoses speed-
paths. The experimental results show the effectiveness of our
approach on ISCAS’85 and ISCAS’89 benchmarks suites. In
average, the diagnosis accuracy of 98.51% is achieved by our
approach.

Keywords—automated debugging, failing speedpath, timing
variation

I. INTRODUCTION

One of the major challenges in designing high-performance
VLSI circuits is diagnosis and analysis of speedpaths. A
speedpath is a frequency-limiting critical path which affects
the performance of a chip [1] [2]. A speedpath that violates
timing constraints at the post-silicon stage is called failing
speedpath [3]. Speedpaths fail due to, e.g., timing variations
induced by process, design and environmental effects [1].

Post-silicon validation involves applying test vectors to the
chip in order to verify its correct behavior. When a speed
failure is detected due to frequency constraints [4], the debug
team identifies failing speedpaths. But this is a time-consuming
process which requires a large effort. Thus, automated debug-
ging approaches to identify failing speedpaths are necessary
to speed up the process.

The loss of predictability in VLSI chips has triggered
research on Statistical Static Timing Analysis (SSTA). The
recent developments in SSTA are reviewed in [5]. SSTA
methods analyze a circuit considering timing variations. The
work in [3] proposes a formal procedure based on an Integer
Linear Programming (ILP) formulation to diagnose segments
of failing speedpaths due to process variations. The approach
identifies segments of failing speedpaths that have a post-
silicon delay larger than their estimated delay at the pre-silicon
stage. Parameterized Static Timing Analysis (PSTA) is used in
[6] to obtain a variational model for every candidate speedpath
from a given set of potential candidates. These variational
models are then combined to create a cost function. This
PSTA-based cost function is utilized by a branch and bound
approach to determine the most probable failing speedpaths.
The approach needs a set of user-supplied paths as an input,
and relies on post-silicon delay measurements prior to identi-
fying failing speedpaths.

The approach in [4] employs clock shrinking on a tester
combined with a CAD methodology to isolate failing speed-
paths. A scan-based debug technique to failing speedpaths is

This work has been funded in part by the German Research Foundation
(DFG, grant no. FE 797/6-1).

presented in [7]. The technique is based on at-speed scan
test patterns. In [8], a trace-based approach is presented to
debug failing speedpaths. The approach uses trace buffers
to provide real-time visibility to the speedpaths during the
normal operation. The work in [9] uses on-chip delay sensors
to improve timing prediction and to utilize them in order to
isolate failing speedpaths. Each sensor is a sequence of logic
gates with an approximate location on the layout. In [10],
the diagnosis resolution is enhanced by processing failure
logs at various slower-than-nominal clock frequencies. The
work in [1] uses a statistical learning-based approach to
predict failing speedpaths by measuring delays of a small
set of representative speedpaths. A formal approach to find
a small set of representative speedpaths in order to predict
the timings of a large pool of target paths is proposed in
[11]. A technique to automate debugging is presented in
[12] by using failing functional tests and then algorithmically
isolating failing speedpaths. The technique uses functional
implications without incorporating timing information. Using
only functional implications limits the diagnosis accuracy. An
approach based on Boolean satisfiability has been presented
in [13] to automate debugging. However, timing behavior of a
circuit and timing variations are not considered in the model.
Timing behavior of a circuit and timing variations are modeled
in [14] in a functional domain.

In this paper we propose an approach based on Boolean
Satisfiability (SAT) to automate debugging of failing speed-
paths. Given a circuit and an erroneous behavior observed on
circuit outputs due to timing variations, our approach extracts
potential failing speedpaths. To automate debugging, first
timing behavior of a circuit and corresponding timing variation
models are converted into a functional domain [14]. Then a
debugging instance is formulated in Conjunctive Normal Form
(CNF). Afterwards our algorithm extracts failing speedpaths
usig a SAT solver as an underlying engine. The diagnosis ac-
curacy and the performance of the approach are experimentally
shown on the ISCAS’85 and ISCAS’89 benchmark suites.

The remainder of this paper is organized as follows.
Section II introduces preliminary information on timing pa-
rameters and speedpath debugging. Timing variation fault
models are presented in Section III. Then, our methodology
is presented in Section IV. Section V explains how timing
behavior of a circuit and timing variations are converted
into the functional domain. Then, the debugging method is
demonstrated. Section VI presents experimental results on
benchmark circuits. The last section concludes the work.

II. PRELIMINARIES

A. Timing Parameters
The amount of time that a signal needs to propagate from

the component inputs to its outputs is called Delay. Timing

variation is a change of the component’s delay. An increase
of the component delay due to timing variation is called
slowdown. A decrease of the component delay due to timing
variation is called speedup.

A time unit is considered to be an arbitrarily fine-grained but
discrete unit of delay. The delays of gates and interconnects
are assumed to be an integer multiple of one time unit. In
a circuit where the shortest path delay is Ds time units, and
the longest path delay is Dl time units, the current output Ot

depends on the inputs of It−Ds
, It−Ds−1, . . . , It−Dl

. Indices
denote the times of input with a step of one time unit. Each
index is also called time step.

A clock period is defined as T time units. The input to
the combinational logic changes only once per clock cycle in
synchronous circuits. The times of inputs with a step of one
clock period are denoted by clock cycles. If the circuit has a
clock period of T , the output at time step t depends on the
inputs of the following clock cycles:

∀i, a ≤ i ≤ b : [It−iT−1, . . . , It−(i+1)T] (1)

a = dDs/T e − 1 , b = dDl/T e − 1

The times of input are partitioned according to the clock period
T by this formula. In each clock cycle, the inputs are assumed
to be fixed. For example, when Ds = 1, Dl = 5, T = 5,
Ot depends on input values from time steps that fall within
the previous clock cycle [It−1, It−2, It−3, It−4, It−5], and in
this clock cycle, the inputs do not change: It−1 = It−2 =
It−3 = It−4 = It−5. When T = 4, Ot depends on input
values from time steps that fall within the following clock
cycles: [It−1, It−2, It−3, It−4], [It−5, It−6, It−7, It−8]. This
case is also called overclocking in which T < Dl. In this case,
the current output depends on the inputs of multiple previous
clock cycles. We note that, for our purpose, delay variation
has the same effect as overclocking, since the delays of the
gates will be scaled up, while the clock period remains the
same.

When a slowdown occurs or the clock is overscaled, the
longer paths fail because the input does not have enough time
to propagate to the output. In this case, the current output
result depends not only on the input of one previous clock
cycle but also on the inputs of multiple previous clock cycles.
The "older" inputs (the inputs of the clock cycles more distant
from current time t) influence the output through longer paths
and the "newer" inputs (the inputs of the clock cycles closer
to the current time t) affect the output through shorter paths.

An untimed gate is a gate with a delay of one time unit. An
original gate is converted to untimed gates by inserting buffers
at the output of the corresponding gate [14] [15]. A circuit in
which all components have a delay of one time unit is called
untimed circuit.

B. Speedpath Debugging
At the post-silicon stage, test vectors are applied to the chip

and the clock period is reduced until an error is observed
on outputs, registers or latches [6] [16]. This step is called
clock shrinking. The error is detected by comparing the output
values of the chip with the nominal output values obtained
from simulation at the specified clock period. The activating
test vectors at the specified frequency and the observed error

c
a

b

(a) An untimed AND gate with delay = 2

1
c

a

b
2
c 1

0

c

1
c

2
c

FIS

(b) One-time-unit slowdown fault injection

a

b
1
c

2
c 1

0

c1
c

2
c

FIS

(c) One-time-unit speedup fault injection

3
c

1
c

a

b
2
c

c

FIS

00

01

10

1
c
3
c

2
c

(d) One-time-unit slowdown/speedup fault injec-
tion

Fig. 1. Fault models for timing variations

constitute an Erroneous Trace (ET). Having an erroneous
trace, debugging starts to find failing speedpaths or some
segments of failing speedpaths as fault candidates. In this
paper, a gate is considered as the smallest segment on a failing
speedpath. Here, a fault candidate includes both spatial and
temporal information about the sensitized gate.

We assume that all registers are observable. In this case,
an erroneous trace includes at least input vectors of two
clock cycles as explained in Section II-A. An erroneous
trace is denoted by ET and has the following parameters:
ET (IC0, IC1, OC2, T). A test vector applied to the circuit
inputs is denoted by IC . Parameters IC0 and IC1 are the
test vectors of two consecutive clock cycles causing an error.
Parameter OC2 shows the observed error (erroneous output
value) and parameter T is the clock period in which the error
was observed.

III. FAULT MODEL

In this section, we present slowdown and speedup fault
models. These models will be used in our experiments in
order to inject faults and to evaluate a circuit against timing
variations.

A. Slowdown Fault Model
Figure 1(a) shows an untimed AND gate with a delay of two

time units. To activate a slowdown of one time unit on a signal,
we need the value of the signal one time step ago. Therefore,
instead of selecting the value of a signal in the current time, its
value at the previous time step is selected. To do this, a buffer
with a delay of one time unit is inserted at the output of the
untimed gate (Figure 1(b)). In a simulation tool, the value of
signal c1 at one time step ago can be found on the successor
signal c2. A multiplexer is added to select c1 or c2. The
multiplexer delay is zero. The select line of the multiplexer is
controlled by a Fault Injection Signal (FIS). When FIS = 0,
signal c1 is selected and the circuit has its normal behavior. If
FIS is activated for one time step, signal c2 is selected which
has the value of signal c1 at one time step ago. The slowdown
fault model can be used to evaluate the silicon effects like mis-
modeled logic cells, capacitive-coupling, and voltage droop.
These silicon effects are investigated in [6].

TAM Engine
TAM

TAM_DBG

Netlist Delay Library
 Timing Variation

(D)

Testbench

(Test Vectors, Clk Shrinking)

Chip

ET

FCs

Fig. 2. Overview of proposed methodology

B. Speedup Fault Model
Figure 1(c) shows a model to activate speedup. It is assumed

that a gate has a delay of more than one time unit. Therefore,
there is at least one buffer at the output of an untimed gate. In
this case, to activate a speedup of one time unit, no additional
buffer is required. In Figure 1(c), signal c2 holds the current
value of the original gate output. The value of signal c2 at
the next time step can be found on signal c1. Again when
FIS = 0, the gate has a normal behavior. When FIS = 1
for one time step, a speedup of one time unit is activated by
selecting signal c1.

C. Slowdown and Speedup Fault Model
To have the ability to activate a speedup or a slowdown of

one time unit, a multiplexer with three data inputs and one
additional buffer is required. This case is shown in Figure
1(d). When FIS = 00, normal behavior is selected (signal
c2). When FIS = 01, a speedup of one time unit is activated
by selecting signal c1. When FIS = 10, a slowdown of one
time unit is activated by selecting signal c3.

When signal FIS is activated for one time step, a transient
fault is injected. Signal FIS can be activated permanently or
with a special time distribution to inject a permanent fault or
a distributed fault.

IV. METHODOLOGY

Figure 2 shows the overall view of our methodology. At
the post-silicon stage, the correct timing behavior of a circuit
is validated by applying test vectors to the chip while clock
shrinking is performed. In Figure 2, this step is performed in
a testbench environment. When an erroneous trace is observed
due to violating frequency constraints, debugging starts to find
failing speedpaths. An Erroneous Trace (ET) includes the test
vectors activating a timing fault at a specified frequency and
the corresponding erroneous output values.

Test vectors should be applied at-speed to the chip as the test
vectors in consecutive clock cycles may activate a timing fault.
A tester can be used to apply test vectors unintrusively [4].
In microprocessor-based systems, Software-Based Self-Testing
(SBST) methods [17] can be effectively used to apply test
vectors at-speed in order to validate the timing behavior of an
internal module.

Having an erroneous trace, our goal is to automatically find
potential speedpaths which have failed and have created the
erroneous output values of the corresponding erroneous trace.
To automate debugging, first we convert the timing behavior of
a circuit into the functional domain. When the timing behavior
of a circuit is available in the functional domain, formal
verification methods can comprehensively analyze the timing
effects of the circuit. In Figure 2, the TAM engine models the

0C
I

1C
I

2C
O

Fig. 3. TAM_DBG instance for combinational circuits

TAM_DBG

0I
2O

TAM_DBG

VC

TAM_DBG

0S

1I

1S

1I

1S

2I

2S

3I

3S

3O 4O

2I

2S

4S

C = 2 C = 3 C = 4

Fig. 4. TAM_DBG instance for sequential circuits

timing behavior of a circuit in the functional domain with a
discrete unit of delay. The inputs of the TAM engine are a
netlist and a delay library. The output of the TAM engine is
called Time Accurate Model (TAM).

Having the TAM and an ET, the debugging process starts.
This step is denoted by TAM_DBG in Figure 2. In the
TAM_DBG engine, timing variation models are added ac-
cording to the user-defined maximum timing variation D.
The timing variation model can vary the value of a signal
along the time axis. The behavior of timing variations is
controlled by a constraint called Variation Control (VC). In
this case, debugging investigates whether a timing variation
on a signal is observable as the erroneous output value of the
corresponding erroneous trace. This investigation is performed
by constraining the output and inputs of the created model
to the values of the erroneous trace. The TAM_DBG engine
identifies fault candidates whose timing variation may cause
the erroneous behavior of the ET.

For combinational circuits, we assume that they are a part
of synchronous circuits. Thus, the inputs to the combinational
logic changes only once every cycle. For combinational cir-
cuits, the instance of Figure 3 is created by our framework.

In sequential circuits, if all registers are observable, then
they are treated like the combinational circuit of Figure 3. In
this case, IC includes both inputs and state bits. But when not
all registers are observable, the error may be detected several
clock cycles after fault activation. In this case, the sequential
circuit is unrolled as many times as the number of clock
cycles constituting the erroneous trace. In each unrolled clock
cycle, a TAM_DBG model is created and the VC controls
the timing variations on the whole created instance. Figure
4 shows a sequential circuit. The erroneous trace has three
clock cycles. In each clock cycle, a TAM_DBG model is used
where its output (Oi+1, Si+1) depends on the inputs and state
bits of two clock cycles (Ii−1, Si−1, Ii, Si). The overall model
is formulated as follows:

ΦC =
n∏

i=1

TAM_DBG (Ii−1, Si−1, Ii, Si, Oi+1, Si+1) (2)

Parameter n is the length of erroneous trace which indicates
the number of clock cycles needed to observe the error. The
diagnosis accuracy depends on the granularity of the time unit
and the accuracy of the variation models. A time unit should
be selected such that timing variations are an integer multiple
of one time unit.

1

1

1

1

1 t
c

1 t
d

2 t
c

2 t
a

3 t
b

2 t
b

t
e

1

1

a

b c

d

1
e

t

 t-1

 t-2

 t-3

T = 3

1C
I

2C
O

Fig. 5. (a) Untimed circuit (b) TAM circuit

V. TAM-BASED DEBUGGING

In this section, first we shortly demonstrate the TAM model
by an example from [14]. Then, we utilize it to debug failing
speedpaths.

A. Model

To construct the TAM, first all gates are converted to
untimed gates. Each untimed gate has a delay of one time
unit. This process is performed by inserting buffers at the
output of each gate. After this step, all components in the
circuit have a delay of one time unit. In the example of Figure
5(a), to sake of simplicity, it is assumed that all gates already
have a delay of one time unit. Having an untimed circuit,
the TAM circuit is created. The underlying idea to construct
the TAM is to use copies of a gate to represent the value of
a gate at different points in time. Therefore, if an untimed
gate is exercised several times at different time steps (e.g.
due to reconvergent fanout), one copy of the untimed gate in
each related time step is created. In Figure 5(b), gate NOT
is duplicated as it has been exercised at two different times
through different paths. In the TAM circuit of Figure 5(b),
each signal st represents an original signal s at time step t.
In the worst case, the size of the TAM may be exponentially
larger than the original circuit. However, in our experiments
the increase in size was manageable.

Furthermore, a constraint to model a clock period is applied
as mentioned in Section II-A. In Figure 5(b), the clock period
is T = 3. Therefore, the signals bt−2 and bt−3 should have
the same value. To model maximum timing variation D, D
additional copies of the TAM are created. Figure 6 shows this
case when D = 1. Multiplexers on the outputs of TAM gates
can activate a timing variation by selecting the value of a signal
from different time steps. The select lines of multiplexers
are controlled by Variation Control (VC) modeling timing
variations. When there is a maximum timing variation D = 1
at T = 3, therefore the output OC2 may depend on the inputs
of two clock cycles IC0 and IC1. In this case, the older inputs
(IC0) affect the output through longer paths. The newer inputs
(IC1) affect the output through shorter paths.

After creating the instance of Figure 6, debugging starts.
The inputs IC0 and IC1 and the output OC2 are constrained

1

1

1

1

1 t
c

1 t
d

2 t
c

2 t
a

3 t
b

2 t
b

t
e

1

0

d

t
e

1

1

0

1

0

1

0

d

t
c

2

d

t
c

3

d

t
d

2

t

 t-1

 t-2

 t-3

 t-4

1

1

1

1

d

t
e

1

d

t
c

3

d

t
c

2

d

t
b

3

d

t
b

4

d

t
a

3 d

t
d

2

1C
I

T = 3

0C
I

2C
O

Fig. 6. TAM_DBG instance

to the values of the erroneous trace obtained from a testbench.
Then, debugging answers the following question: Which fault
candidate at which time step can be activated to cause the
erroneous behavior of the corresponding erroneous trace?

B. Algorithm
Figure 7 shows the debugging algorithm as pseudocode.

The inputs of the algorithm are a TAM circuit, an erroneous
trace ET , and maximum variation delay D. The output of the
debugging algorithm is a set of fault candidates F . Each fault
candidate Fi ∈ F , i = 1, 2, . . . , |F|, includes the location and
the time step of a gate.

In line 2, the TAM circuit is duplicated D times. Then,
multiplexers are inserted to model timing variations (line 3).
Set SEL is a set of select lines of multiplexers. The variable
seli ∈ SEL, i = 1, 2, . . . ,m, holds the integer value of the
select lines related to multiplexer i. Line 5 constrains the CNF
by parameters of the erroneous trace ET . Variable d is a
variable for timing variation and is initialized to 1 (line 7).
The constraint of line 10 guides debugging to find minimum
timing variations causing the erroneous behavior. If the CNF is
satisfiable, all solutions are extracted and debugging finishes
(lines 14-15). Otherwise, the previous constraint is removed
(line 19) and d increases (line 20) in order to find a solution
with an increased timing variation in the next step. This pro-
cedure repeats until d reaches the maximum timing variation
D (line 22).

When there are multiple erroneous traces, one TAM_DBG
instance for each erroneous trace is created. For transient
faults, select lines of a single gate in different instances and
in different time steps should be independent, because in each
erroneous trace, some independent transient faults may be
activated. For permanent faults, select lines of a single gate
in different instances and in different time steps are connected
to each other. A transient fault and a permanent fault can be
distinguished by reapplying test vectors to detect whether the
erroneous behavior is observed again.

VI. EXPERIMENTAL RESULTS

In this section, we use TAM-based debugging experimen-
tally to debug logic circuits under timing variations. The ex-
periments are carried out on a Quad-Core AMD Phenom(tm)

1 f u n c t i o n TAM_DBG (In : TAM, ET, D, Out : F)
2 Duplicate (TAM, D)
3 SEL = Insert_Multiplexers()
4 seli ∈ SEL, i = 1, 2, . . . , m
5 Add_Constraint (ET : IC0, IC1, OC2, T)
6 F = ∅
7 d = 1
8 do
9 {

10 Add_Constraint ((
Pm

i=1 seli) = d)
11
12 i f Solve() == SAT then
13 {
14 F = Extract_All_Solutions()
15 break
16 }
17 e l s e
18 {
19 Remove_Constraint ((

Pm
i=1 seli) = d)

20 d = d + 1
21 }
22 } whi le d ≤ D
23 end f u n c t i o n

Fig. 7. TAM-based debugging

II X4 965 Processor (3.4 GHz, 8 GB main memory) running
Linux. We use the combinational and sequential circuits of
ISCAS’85 and ISCAS’89 benchmark suites to evaluate our
approach. We synthesize the circuits using Synopsys Design
Compiler with Nangate 45nm Open Cell Library [18]. The
TAM-based debugging described in this paper is implemented
using C++ in the WoLFram environment [19]. For the experi-
ments, one time unit is 0.01ns. MiniSAT is used as underlying
SAT solver [20].

We utilize a simulation testbench to obtain the effect of
timing variations on the outputs. The simulation testbench is
implemented using Verilog in the ModelSim environment. In
the simulation testbench, there are two instances of a circuit:
golden instance and faulty instance. The outputs of these two
instances are compared to detect an error and constitute an
erroneous trace. A single slowdown fault of one time unit
is injected in the circuit to create a faulty instance. Several
points in the circuit are chosen as fault locations. At a clock
period T , random test vectors are generated and applied to
the golden instance and the faulty instance of the circuit. If
no error is observed for the activated faults, the clock period
is decreased (clock shrinking). Having a new clock period,
the procedure repeats until an erroneous behavior is observed.
Test vectors activating the fault at the specified frequency
and the corresponding erroneous output values constitute an
erroneous trace. The erroneous trace is given to TAM-based
debugging. Having the initial erroneous trace, TAM-based
debugging starts to find potential fault candidates.

Table I presents the experimental results. The table shows
the circuit name (first column), the total number of gates
(#Gates), the required run time (Time) measured in CPU
seconds (s), and the final number of fault candidates (#FC).
Each fault candidate is a gate indicating if a slowdown of
one time unit at the appropriate time step on the output of
the corresponding gate occurs, the erroneous behavior of the
erroneous trace is created. The number of fault candidates
(#FC) indicates the diagnosis accuracy of TAM-based debug-
ging. A smaller number of #FC indicates a higher accuracy.
The diagnosis accuracy may increase by having higher quality
erroneous traces [21]. As the diagnosis accuracy is opposite

to the number of fault candidates, we define the diagnosis
accuracy as follows:

Diagnosis_Accuracy = 1− #FC

#Orig
(3)

The ninth column shows the diagnosis accuracy in percent.
In this column, a larger number indicates a higher diagnosis
accuracy.

The second column in the table shows the total number of
gates in the original circuit. By inserting buffers at the output
of the original gates, it is converted to an untimed circuit. The
total number of gates in the untimed circuits is shown in the
third column. Afterwards, the TAM circuit is constructed. The
fourth column shows the total number of gates in the TAM
circuits. In our experiments, the circuit c6288 of ISCAS’85 is
omitted. This circuit is a multiplier known to have a very large
number of paths and requires special approaches like [22] to
handle the paths.

For circuit c17, the number of original gates is 6, while
the number of untimed gates is 26. It shows that 20 (26 - 6)
additional buffers have been added to the original circuit to
create the untimed circuit.

The number of untimed gates for c499 is larger than for
c432. But the number of TAM gates for c432 is larger than
for c499. This shows that in c432 there are more paths in
comparison to c499 which consequently increase the size of
the TAM. The number of fault candidates for c432 is 20 (20
gates), while the number of fault candidates for c499 is 2
(2 gates). In our experiments, all fault candidates together
highlight failing speedpaths or some segments of failing speed-
paths. Each fault candidate includes the location and the time
step of fault activation.

Also the number of untimed gates for c5315 is larger than
for c3540, while the number of TAM gates for c3540 is larger
than for c5315, which indicates a larger number of paths
in c3540. Therefore, the required time to create the TAM
increases for c3540 which is shown in the table. In the table,
usually debugging needs a longer time than the TAM creation
process. But when a circuit has a large number of paths
(for example c3540 and c7552), the time for TAM creation
increases.

For sequential circuits, we assume that all registers are
observable. In the table, #Gates for sequential circuits indicates
the number of combinational components excluding the num-
ber of flip flops. As the table shows, the debugging time for
the most of sequential circuits is longer than the TAM creation
time. For circuits s15850, s35932, and s38584 which are the
larger circuits and have more paths, the TAM construction time
is longer than the debugging time.

The final row in the table shows the average values for
each column. On average, the diagnosis accuracy of 98.51%
is achieved by our approach.

VII. CONCLUSION

This paper introduced a methodology to automate debug-
ging for logic circuits under timing variations. In the frame-
work, first the timing behavior of a circuit is converted into
the functional domain under a discrete model of time unit.
The new circuit is called Time Accurate Model (TAM). Then,

TABLE I
TAM-BASED DEBUGGING

Circuit Time (s) #FC

Comb. Original TAM TAM DBG Total %

c17 6 26 35 0.00 194.97 194.97 2 66.67

c432 115 511 15446 135.01 1473.17 1608.18 20 82.61

c499 179 840 4358 4.60 212.58 217.18 2 98.88

c880 172 814 6483 14.95 1258.92 1273.87 17 90.12

c1355 238 1112 14338 93.33 2024.13 2117.46 26 89.08

c1908 142 658 5171 6.68 260.50 267.18 3 97.89

c2670 280 1296 8817 35.28 1391.03 1426.31 19 93.21

c3540 391 1792 50664 2347.64 1010.63 3358.27 10 97.44

c5315 632 3042 18283 290.24 1158.21 1448.45 16 97.47

c7552 772 3657 58468 3240.66 2093.90 5334.56 21 97.28

Seq.

s27 9 40 79 0.01 260.47 260.48 3 66.67

s298 59 277 893 0.20 468.80 469.00 6 89.83

s386 67 300 575 0.09 387.46 387.55 5 92.54

s444 83 370 1158 0.45 554.80 555.25 7 91.57

s526 97 442 1235 0.49 562.96 563.45 7 92.78

s713 96 421 3538 4.44 907.97 912.41 13 86.46

s838 130 642 2250 2.03 799.09 801.12 11 91.54

s953 216 967 3567 4.40 685.47 689.87 9 95.83

s1196 280 1279 9124 30.16 1509.14 1539.30 21 92.50

s1238 278 1278 10842 49.59 1100.84 1150.43 15 94.60

s1494 315 1443 4373 6.54 271.74 278.28 3 99.05

s5378 635 2884 8355 41.62 566.05 607.67 7 98.90

s9234 813 3836 17473 274.10 722.63 996.73 9 98.89

s15850 1537 7389 64402 4365.84 654.56 5020.40 5 99.67

s35932 3630 17728 18869 865.25 474.14 1339.39 4 99.89

s38584 6438 29651 89018 9394.33 701.84 10096.20 1 99.98

Average 677.31 3180.58 16069.77 815.69 834.85 1650.54 10.08 98.51

#Gates when Time Unit = 0.01ns Diag. Accuracy

Untimed

variation models are inserted in the TAM. Afterwards, TAM-
based debugging finds potential fault candidates including their
spatial and temporal information. The experimental results
showed that the approach achieves 98.51% diagnosis accuracy.

REFERENCES

[1] P. Bastani, K. Killpack, L.-C. Wang, and E. Chiprout, “Speedpath
prediction based on learning from a small set of examples,” in Design
Automation Conf., 2008, pp. 217–222.

[2] L. Lee, L.-C. Wang, P. Parvathala, and T. M. Mak, “On silicon-based
speed path identification,” in VLSI Test Symp., 2005, pp. 35–41.

[3] L. Xie, A. Davoodi, and K. K. Saluja, “Post-silicon diagnosis of
segments of failing speedpaths due to manufacturing variations,” in
Design Automation Conf., 2010, pp. 274–279.

[4] K. Killpack, S. Natarajan, A. Krishnamachary, and P. Bastani, “Case
study on speed failure causes in a microprocessor,” IEEE Design & Test
of Computers, vol. 25, no. 3, pp. 224–230, 2008.

[5] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: From basic principles to state of the art,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 27, no. 4, pp. 589–607, 2008.

[6] S. Onaissi, K. R. Heloue, and F. N. Najm, “PSTA-based branch and
bound approach to the silicon speedpath isolation problem,” in Int’l
Conf. on CAD, 2009, pp. 217–224.

[7] J. Zeng, R. Guo, W.-T. Cheng, M. Mateja, J. Wang, K.-H. Tsai, and
K. Amstutz, “Scan based speed-path debug for a microprocessor,” in
European Test Symposium, 2010, pp. 207–212.

[8] X. Liu and Q. Xu, “On signal tracing for debugging speedpath-related
electrical errors in post-silicon validation,” in Asian Test Symposium,
2010, pp. 243–248.

[9] M. Li, A. Davoodi, and L. Xie, “Custom on-chip sensors for post-silicon
failing path isolation in the presence of process variations,” in Design,
Automation and Test in Europe, 2012, pp. 1591–1596.

[10] V. J. Mehta, M. Marek-Sadowska, K.-H. Tsai, and J. Rajski, “Timing-
aware multiple-delay-fault diagnosis,” IEEE Trans. on CAD, vol. 28,
no. 2, pp. 245–258, 2009.

[11] L. Xie and A. Davoodi, “Representative path selection for post-silicon
timing prediction under variability,” in Design Automation Conf., 2010,
pp. 386–391.

[12] R. McLaughlin, S. Venkataraman, and C. Lim, “Automated debug of
speed path failures using functional tests,” in VLSI Test Symp., 2009,
pp. 91–96.

[13] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[14] M. Dehbashi, G. Fey, K. Roy, and A. Raghunathan, “On modeling and
evaluation of logic circuits under timing variations,” in EUROMICRO
Symp. on Digital System Design, 2012.

[15] K. P. Ganeshpure and S. Kundu, “On ATPG for multiple aggressor
crosstalk faults,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 29, no. 5, pp. 774–787, 2010.

[16] K. Killpack, C. V. Kashyap, and E. Chiprout, “Silicon speedpath
measurement and feedback into EDA flows,” in Design Automation
Conf., 2007, pp. 390–395.

[17] M. Psarakis, D. Gizopoulos, E. Sánchez, and M. S. Reorda, “Micropro-
cessor software-based self-testing,” IEEE Design & Test of Computers,
vol. 27, no. 3, pp. 4–19, 2010.

[18] Nangate 45nm Open Cell Library, http://www.nangate.com.
[19] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler, “WoLFram

– a word level framework for formal verification,” in IEEE/IFIP Int’l
Symposium on Rapid System Prototyping, 2009, pp. 11–17.

[20] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[21] M. Dehbashi, A. Sülflow, and G. Fey, “Automated design debugging in
a testbench-based verification environment,” in EUROMICRO Symp. on
Digital System Design, 2011, pp. 479–486.

[22] W. Qiu and D. M. H. Walker, “An efficient algorithm for finding the k
longest testable paths through each gate in a combinational circuit,” in
Int’l Test Conf., 2003, pp. 592–601.

