
A New SAT-based ATPG for Generating
Highly Compacted Test Sets

Stephan Eggersglüß∗§ René Krenz-Bååth† Andreas Glowatz‡ Friedrich Hapke‡ Rolf Drechsler∗§

§ Cyber-Physical Systems, DFKI Bremen
∗University of Bremen,

28359 Bremen, Germany
{segg,drechsle}@informatik.uni-bremen.de

†Hochschule Hamm-Lippstadt
59063 Hamm, Germany

rene.krenz-baath@hshl.de

‡Mentor Graphics
21079 Hamburg, Germany

{andreas glowatz,friedrich hapke}@mentor.com

Abstract—The test set size is a highly important factor in the
post-production test of circuits. A high pattern count in the test
set leads to long test application time and exorbitant test costs.
We propose a new test generation approach which has the ability
to reduce the test set size significantly. In contrast to previous
SAT-based ATPG techniques which were focused on dealing with
hard single faults, the proposed approach employs the robustness
of SAT-solvers to primarily push test compaction. Furthermore,
a concept is introduced how the novel technique can be flexibly
integrated into an existing industrial flow to reduce the pattern
count. Experimental results on large industrial circuits show that
the approach is able to reduce the pattern count of up to 63%
compared to state-of-the-art dynamic compaction techniques.

I. INTRODUCTION

The test set size is of high importance for the post-
production test of circuits. Due to the limited storage capacities
of automatic test equipment and long test application time, a
high pattern count signifies high test costs. According to the
International Technology Roadmap for Semiconductors (ITRS)
[1], the test data volume will increase significantly in the next
years. This development is caused by an increasing complexity
of the applied faults models as well as a growing demand
for higher test quality. Despite significant advances of test
compression approaches [2], it is highly important to improve
the compaction of traditional scan patterns.

In order to achieve highly compacted test sets, each test
pattern has to detect as many faults as possible. Compaction
methods can roughly be classified in two different categories:
static compaction and dynamic compaction. Static compaction
techniques are applied to already generated tests. Here, several
patterns are merged into one test pattern by utilizing unspec-
ified bits [3].

Dynamic compaction methods [3]–[5] are more effective
but also computationally more intensive. These methods are
integrated into the Automatic Test Pattern Generation (ATPG)
process. The unspecified bits of a generated test cube are
used to detect additional faults. Here, the previously generated
test (cube) is given as constraint to the ATPG algorithm
which then tries to generate a test for both faults. By this,
the search space is incrementally restricted and the ATPG
algorithm may not be able to generate a common test for
the targeted set of faults although there exists one. In spite
of this limitation, effective techniques and heuristics were

developed based on this principle, e.g. [6]–[8]. Today dynamic
compaction methods are well established in the industrial
practice.

The approaches presented in [9], [10] introduced an addi-
tional compaction concept called Multiple Target Test Gen-
eration (MTTG). The main idea is to target multiple faults
simultaneously to generate a test. This is done by multiple path
sensitization using a structural ATPG algorithm, i.e. PODEM
[11] or FAN [12]. The procedure will find one test which
detects these faults if such a common test exists. However,
the proposed methods are computationally highly intensive and
not applicable to large circuits as reported in [5]. Therefore, the
approach in [10] is only applied to replace existing tests in a
post-generation phase while the method in [9] uses a simplified
problem description to cope with the high complexity of
MTTG.

In this paper, we present a new approach based on the
multiple target principle. In contrast to the previous methods,
the novel method is based on Boolean Satisfiability (SAT)
and such can benefit from the recent advances in this area.
Recently, SAT-based ATPG [13], [14] has been attracted much
attention as a robust complement to classical structural ATPG
providing a significantly increased fault coverage for industrial
circuits [15]. In particular, SAT-based algorithms perform very
well on hard problems due to their inherent learning features.
This motivates the use of SAT for MTTG since it is a
computationally very hard problem and previous approaches
had problems to cope with the complexity of MTTG. In
particular, the following contributions are introduced:
• New MTTG SAT formulation – It is shown how the

MTTG problem can be formulated as a SAT problem.
The new SAT formulation leverages the fact that parts of
the circuit can be shared for multiple faults and learned
information which boosts the search and can be used for
all targeted faults.

• Integration into dynamic compaction flow – Besides the
SAT formulation for MTTG, we present a method how
to flexibly integrate SAT-based MTTG into an existing
dynamic compaction flow that it can be easily used in
industrial practice. As a result of the integration, the
approach is able to produce test sets with a significantly
reduced pattern count for stuck-at as well as transition



faults.
The rest of the paper is organized as follows. The next sec-

tion discusses preliminaries. In particular, a short introduction
to dynamic compaction and SAT-based ATPG is presented.
Section III shows how MTTG is formulated as a SAT problem
and Section IV describes how SAT-based MTTG can be
effectively integrated into a dynamic compaction flow. Exper-
imental results on large circuits which show the applicability
in an industrial flow are presented in Section V. Section VI
concludes this paper.

II. PRELIMINARIES

Section II-A introduces the applied dynamic compaction
flow. A brief introduction to SAT-based ATPG is given in
Section II-B.

A. Dynamic Compaction

In contrast to static compaction techniques which operate
on previously generated test patterns, dynamic compaction
methods are integrated into the ATPG process. The main idea
is that bits in the test which are left unspecified by the ATPG,
i.e. assigned with the don’t care value X , are used for detecting
other faults as well.

Algorithm 1 Dynamic Compaction Flow
FaultList FPrim = AllUndetectedFaults();
TestSet T = ∅;
while Fprim 6= ∅ do

Fault fprim = PopFault(FPrim);
Test t = DoATPG(fprim);
if t == ∅ then

continue;
end if
FaultList FAdd = AllUndetectedFaults();
while FAdd 6= ∅ do

Fault fadd = PopFault(Fadd);
t = DoATPG(fadd, t);

end while
T = T ∪ t;

end while
return T ;

Algorithm 1 shows the pseudo-code of a dynamic com-
paction procedure. First, some undetected primary target fault
fprim is chosen from the fault list and a test is generated for
fprim. If a test is found, then the procedure loops over all
yet undetected faults and calls the ATPG with the previously
computed test assignments as constraints. In other words, the
ATPG can only assign the remaining unspecified inputs to
generate a test for the additional target fault fadd.

This incremental limitation of the search space might
prevent finding a test for fadd. On the other side, this is
advantageous for traditional ATPG algorithms since they do
not perform well on hard reasoning problems. In contrast,
SAT-based ATPG algorithms behave very robust on such
problems. Previous publications on SAT-based ATPG mainly

b

a

c

d

e

sa0

sa0

Fig. 1. Dynamic Compaction Example

focused on dealing with hard single-fault problems. In this
paper, we firstly employ the robustness of SAT to push test
pattern compaction. The following example clarifies the issue
discussed above.

Consider the example given in Figure 1, where the stuck-
at-0 (sa0) fault at output e is assumed to be the primary target
fault fprim and an sa0 fault at the input a is an additional target
fault fadd. If the ATPG computes a test for fprim, where input
b is assigned to ’1’, then there exists no additional assignment
which would allow the detection of fadd since any test to detect
fadd would require the assignment b = 0. The proposed SAT-
based technique allows to concurrently generate a common
test for fprim and fadd. If such a test would not exist, then
the SAT solver would indicate that the problem instance is
unsatisfiable. In other words, if a common test for a set of
faults exists, then it is guaranteed that the proposed algorithm
will find it. In contrast to that traditional dynamic compaction
approaches do not assure the successful compaction of these
faults. The successful compaction of the same set of faults
depends on several parameters such as ATPG-internal decision
heuristics or the ordering of the faults list.

B. SAT-based ATPG

Classical ATPG algorithms work on a structural gate level
netlist and apply efficient implication procedures to generate
tests. In contrast to these structural ATPG algorithms, SAT-
based ATPG algorithms work on a Boolean formula in Con-
junctive Normal Form (CNF). A CNF Φ is a conjunction of
clauses. A clause ω is a disjunction of literals, where a literal
is a Boolean variable in positive (x) or negative (x) form. A
CNF Φ is satisfied if all clauses in Φ are satisfied and a clause
ω is satisfied if at least one literal in ω is satisfied. A positive
literal is satisfied if the corresponding variable is assigned with
1 while a negative literal is satisfied with an assignment 0.

Due to the homogeneity of the Boolean formula, very
efficient implication strategies as well as effective conflict-
based learning techniques can be applied and are incorporated
in modern SAT solvers, e.g. [16]. In order to apply robust
SAT solvers, the ATPG problem has to be formulated as a
SAT instance in CNF [17].

Each signal s in the circuit C is assigned a Boolean variable
xs which represents the state of the signal. Then, each gate g ∈
C is transformed into a set of clauses by using the characteristic
function of the gate type. Table I shows the CNF representation
for the basic gate types. The CNF ΦC for the complete circuit
is then composed by the conjunction of the clauses of all gates



TABLE I
CNF FOR BASIC GATES WITH OUTPUT c AND INPUTS a, b

Gate type CNF
AND (c + a + b) · (c + a) · (c + b)

NAND (c + a + b) · (c + a) · (c + b)

OR (c + a + b) · (c + a) · (c + b)

NOR (c + a + b) · (c + a) · (c + b)

Output ConeTransitive Fanin Cone

Fault Site

Fig. 2. Illustration of Fault f

g1, . . . , gn:

ΦC =
n∏

i=1

gi

In order to generate a test for fault f , the CNF of the circuit
ΦC has to be augmented by fault-specific constraints Φf . These
constraints include the fault site, a copy of the faulty output
cone and fault propagation conditions, e.g. a D-chain encoding
[17]. Note that not the complete circuit CNF has to be used
but only those parts which are able to structurally influence the
fault activation and propagation. This is illustrated in Figure 2
and in the following denoted by Φf

C .
Therefore, the complete CNF Φf

test for test generation for
fault f is given by the following formula:

Φf
test = Φf

C · Φf

The CNF Φf
test is then given to a SAT solver which solves the

formula. If no solution exists, i.e. the formula is unsatisfiable,
the fault is untestable. Otherwise, the solver returns a solution
from which the test can be easily extracted.

III. SAT-BASED MULTIPLE TARGET TEST GENERATION

This section presents a new SAT formulation which guar-
antees to generate a test which detects multiple target faults if
such a test exists.1

In order to detect one fault f , two different conditions have
to be satisfied: fault activation and fault propagation (denoted
above together with Φf ). The fault activation condition affects
only the correct copy of the circuit. Here, a difference between
the correct and faulty circuit has to be invoked. This is simply

1Note that only the single stuck-at and single transition fault model is
assumed, i.e. the test is guaranteed to detect these faults if they occur
independently from each other.

done by setting the value of the fault site of the correct
circuit to the opposite value of the fault’s value, i.e. 0 (1) for
detecting a stuck-at-1 (stuck-at-0) fault and denoted by Φf

act.
The difference has then to be propagated to an observation
point. This is done by duplicating the output cone of the fault
site (Φf

faulty) and adding fault propagation conditions (Φf
prop).

The propagation conditions involve variables from the correct
part of the circuit as well as from the faulty part of the circuit
since they are responsible to establish a difference between
both parts.

When multiple faults f1, . . . , fn are targeted, each fault fi

has to be activated and propagated to an observation point. A
conjunction of the SAT instances for all faults is not possible,
since different tests for each fault would be generated. In order
to ensure that one test is generated which detects f1, . . . , fn,
the correct copy of the circuit has to be shared for all faults.
This is necessary because the test is extracted from the correct
copy of the circuit. However, each fault has to be propagated
separately since the single stuck-at (transition) fault model is
assumed. Otherwise, the faults may possibly mask each other
as assumed in the multiple stuck-at (transition) fault model.

The correct shared copy of the circuit C for faults f1, . . . , fn

including the fault activation conditions is composed as fol-
lows:

Φf1,...,fn

C = (Φf1
C ∪ . . . ∪ Φfn

C ) · (Φf1
act ∪ . . . ∪ Φfn

act )

The faulty circuitry is represented by the following formula.
Note that no parts of the CNF are shared between the faults
to ensure separate detection:

Φf1,...,fn

faulty = Φf1
faulty · . . . · Φ

fn

faulty

The fault propagation conditions are composed analogously as
follows:

Φf1,...,fn
prop = Φf1

prop · . . . · Φfn
prop

However, each clause set Φfi
prop uses the variables from the

corresponding faulty output cone from fi and from the correct
circuit C. Finally, the complete SAT instance Φf1,...,fn

test for
MTTG for multiple faults f1, . . . , fn is as follows:

Φf1,...,fn
test = Φf1,...,fn

C · Φf1,...,fn

faulty · Φf1,...,fn
prop

This is illustrated in Figure 3 with an example for three
faults f1, f2, f3. The shared correct circuit consists of the
faulty output cones of each fault (marked through dashed
triangles) and their transitive fanin cone. All faults have to be
activated simultaneously. Each faulty output cone is duplicated
and connected to the correct circuit at the border that the
correct signals of the side inputs can be fed into the faulty
output cone. Even when the output cones share parts of the
correct circuits, no parts are shared in the faulty circuitry.
Additionally, the propagation constraints are included.

The most important advantage of using SAT-based algo-
rithms is the inherent application of its conflict-based learning
abilities. The robustness and the ability to solve hard problem
instances stem from this feature. Sharing the correct circuit
which is often the largest part of the SAT instance means
that all information learned in this part can be used for all



Φ

Φ

Φ

f1

f2

f3

faulty

faulty

faulty

Φ
f3
prop

Φ
f2
prop

Φ
f1
prop

Φ
f1
act

Φ
f2
act

Φ
f3
act

Shared Correct Circuit

Φ
C

f1,f2,f3

Fig. 3. SAT instance for Multiple Target Test Generation

faults and has not to be calculated for each fault separately
as typically done by structural approaches using multiple
path sensitization. By this, MTTG is significantly improved
compared to the earlier approaches.

IV. INTEGRATION INTO DYNAMIC COMPACTION

This section describes how SAT-based MTTG can be effec-
tively integrated into the dynamic compaction flow in indus-
trial practice. Targeting each fault combination is far too time
consuming to be used in practice. Furthermore, SAT-based
MTTG is more complex than classical dynamic compaction.
Often, a large number of faults have a good random testability.
There is no need to use MTTG for these kind of faults, since
it is likely that these faults can be efficiently compacted by
the classical dynamic compaction flow.

Therefore, a combination of the classical dynamic com-
paction flow (as described in Algorithm 1) and SAT-based
MTTG is proposed. The complete procedure is shown in
Algorithm 2. At first, the classical dynamic compaction flow is
started with the goal to prune a large number of faults which
are easy to detect with only few test patterns. The number
of additional targets detected by one test serves as a break
criterion for the classical flow. When this number falls below
a certain limit (denoted by N ), the classical flow is aborted
and the MTTG stage is started with the aim to compact the
remaining faults more intensively. This procedure is based on
the observation that classical dynamic compaction often needs
long run times to generate tests for the remaining faults and
a large part of the test set is used to detect only few faults.

In the MTTG stage, a set G of NUM faults is chosen
(denoted by MTTG fault list in the following). The faults in
G are treated in a similar way than the faults in the additional
target loop in the classical dynamic compaction flow. At first,
the primary target fault is taken out of G and added to the
internal MTTG fault set H . If the fault is redundant, it is
removed from the MTTG fault set. Otherwise, the fault is kept.
Then, the subsequent fault in the MTTG fault list G is added
to H and the MTTG is started for all faults in H . If all faults
in H can be tested by one test, the test is temporary stored
and the next fault is added to H . Note that the temporarily
stored test is not used as constraint. If no test can be found for

Algorithm 2 MTTG Dynamic Compaction Flow
TestSet T = ∅;
{Do Classical Dynamic Compaction until break criterion
N is reached.}
T = ClassicalDynamicCompaction(N );
FaultList F = AllUndetectedFaults(T );
while F 6= ∅ do
{Get a set of NUM not easy to detect faults which are
likely to be combined.}
FaultList G = GetPartialFaultList(F , NUM);
FaultSet H = ∅;
Test t1;
while G 6= ∅ do

Fault f = PopFault(G);
H = H ∪ f ;
{Do MTTG for all faults ∈ H and temporarily save
the resulting test if exists}
Test t2 = DoMTTG(H);
if t2 == ∅ then

H = H \ f ;
else

t1 = t2;
end if

end while
{Give the test calculated by MTTG as constraint to the
classical additional target loop}
t = DoAdditionalTargetLoop(F \G, t1);
T = T ∪ t1;
F = AllUndetectedFaults(T );

end while
return T

multiple faults, the fault which was added lastly is removed
from H and it is proceeded with adding the subsequent fault.

By this, the procedure collects all faults in the MTTG fault
list which can be detected by one test according to the given
fault ordering. Eventually, the last generated test is given to
the classical additional target loop as constraint. That means,
the test is treated as a generated primary target fault test and
the classical dynamic compaction procedure tries to leverage
all remaining unspecified bits in order to detect as many faults
as possible.

The effectiveness of this procedure depends strongly on the
compilation of the MTTG fault list G, since these are the
faults which are to be compacted intensively. In the current
version, the list G is composed using a sophisticated structural
heuristic, which has shown to be very effective.

The following example demonstrates the MTTG procedure:
Example 1: Given a list of undetected faults

F = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10

At first, a set of NUM = 5 faults is chosen and ordered in the
MTTG fault list G:

G = f1, f2, f3, f4, f5



The first fault f1 is added to the fault set H and test generation
is started for f1. Since f1 is testable (Test t1), the second fault
f2 is added to H and MTTG is used for both faults in H .
The resulting test t2 detecting both faults f1, f2 is temporarily
stored. Then, f3 is added to H and MTTG is started for
f1, f2, f3. It turned out that there is no test for all three faults.
Therefore, f3 is removed from H .

As a next step, f4 is added to H and a test is generated
for all faults included in H: f1, f2, f4. The resulting test t3 is
stored. Fault f5 is then added to H (H = {f1, f2, f4, f5}) and
MTTG is started to generate a test for all faults in H . Since
this failed, i.e. the SAT instance is unsatisfiable, and all faults
in G were processed, test t3 is used as the final MTTG test
and given to the additional target loop. Assume that t3 can be
augmented to detect fault f7 and f8 using classical dynamic
compaction. The remaining fault list F is as follows:

F = f3, f5, f6, f9, f10

The fault list is then processed the same way as described
above until all faults are detected.

V. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed approach. At first, the experimental setup is described
in Section V-A. Section V-B gives the concrete compaction
results.

A. Experimental Setup

The proposed approach was implemented in C++ and in-
tegrated into an industrial test environment The underlying
SAT solving engine is MiniSat v1.14 [16]. The experiments
were conducted on an AMD Athlon 64 with 4096 MB RAM
and a processor speed of 3000 MHz running GNU/Linux. The
approach was evaluated on ITC’99 benchmarks as well as on
large industrial circuits for the stuck-at as well as the transition
fault model using launch-on-capture. The name of the indus-
trial circuit roughly denotes the size of the circuit, i.e. l2787k
contains about 2.7 million elements. The proposed approach is
compared to a highly competitive dynamic compaction flow
used in industrial practice. This flow was particularly opti-
mized for producing very small test sets and uses additional
techniques such as reverse order fault simulation to reduce the
pattern count. Additionally, we provide experimental results
for the ITC’99 benchmark set obtained by the well-known
Atalanta ATPG-tool [18]. Note that the backtrack limit of
the Atalanta-tool has been adapted to achieve similar fault
coverages in comparison to the industrial flow.

As described above, the MTTG approach is integrated such
that, at first, the classical flow is used to prune a large number
of easy-to-detect faults. As a break condition for the classical
flow, we chose a number of additional targets N = 20. That
is, when the number of additional targets found by the ATPG
falls below the limit of N = 20, the MTTG stage is started.
As size of the MTTG fault list G, we chose the parameters,
NUM = 5, NUM = 10 and NUM = 50.

B. Compaction Results

Table II shows the experimental results for the stuck-at
fault model. The second and third column provide the results
achieved by the Atalanta tool. The industrial benchmarks were
not run on Atalanta since it does not support any tri-state
elements. Column DynComp shows the compaction results,
i.e. the number of tests, and the run times generated by the
classical dynamic compaction flow only.

Column MTTG stage shows the overall results after the
MTTG stage, as described in Section IV, in terms of run
time and test set size. In the columns NUM = X, the pattern
count of the corresponding configuration is shown while the
corresponding run time is given in column Time. Generally,
increasing the size of the MTTG fault list results also in a
longer run time since more SAT instances have to be built
and to be solved.

The results for NUM = 5 and for NUM = 10 show that
the approach is able to significantly reduce the pattern count
already with small MTTG fault lists, see for instance l49k
and l2787k, where traditional dynamic compaction does not
succeed to reduce the pattern count significantly. However, the
pattern count increases slightly for some circuits, e.g. l57k and
l565k. This is due to the heuristic nature of the fault selection
for the MTTG. It can also be observed that the benchmark
circuits behave differently than the industrial circuits. Here,
the proposed techniques do not seem to be effective and are
very time consuming.

Increasing the size of the MTTG fault list (NUM = 50)
solves the limitation. Here, the pattern count for all circuits
are reduced compared to the classical dynamic compaction
flow. Column %NUM = 50 shows the reduction of the test
set size compared to the classical flow in percent. For some
circuits, e.g. l57k and l565k, the reduction rate is rather small.
For these circuits, a significant increase of the parameter NUM
did not result in much better reduction rates. Therefore, we
believe that the test set size for these circuits is already close
to minimum.

The highest reduction rate can be achieved for the circuits
l88k and l2787k with only 70% and even 36% of the original
test set size of the industrial dynamic compaction. This shows
the tremendous impact on the test set size of the proposed
approach.

Table III further shows the impact on the test set size for the
transition fault model where the problem of the large pattern
count is much more serious. This can especially be seen by
the larger total pattern counts for this fault model. The run
time behavior for transition faults is generally similar to the
behavior for stuck-at faults and therefore not reported here.
The results show that the same high reduction rates can be
achieved for transition faults. The highest reduction rates are
achieved for the circuits l80k and l177k where the original test
set size is reduced to only approx. 69% and 37%, respectively.

In summary, the proposed approach proved its effectiveness
on large industrial circuits and is able to significantly reduce
the test set size for the stuck-at fault model as well as for the
transition fault model in comparison to an industrial ATPG



TABLE II
EXPERIMENTAL RESULTS - STUCK-AT

Atalanta [18] DynComp MTTG stage
Circuit Time #Pat Time #Pat Time NUM = 5 Time NUM = 10 Time NUM = 50 % NUM = 50

b14 0:13m 1086 0:57m 781 2:00m 757 2:49m 742 10:04m 723 92.6
b15 3:06m 642 1:00m 467 2:40m 466 3:35m 466 11:32m 423 92.5
b17 24:36m 2514 6:53m 1104 13:26m 1105 15:26m 1120 28:58m 1079 97.7
b18 1:08h 9112 1:04h 1159 1:16h 1162 1:23h 1170 1:57h 1154 99.6
I49k - - 5:19h 353 14:05h 272 20:06h 274 49:33h 280 79.3
I57k - - 2:19m 457 3:31m 459 3:51m 452 7:18m 437 95.6
I80k - - 2:55m 261 3:26m 238 3:42m 245 5:12m 230 88.1
I88k - - 3:41m 767 4:42m 600 5:20m 579 10:19m 539 70.3

I177k - - 6:40m 554 19:28m 543 25:44m 524 1:03h 486 87.7
I456k - - 1:47h 1630 2:44h 1542 2:51h 1501 5:24h 1498 91.9
I462k - - 21:04m 750 27:04m 714 28:59m 701 50:28m 683 91.1
I565k - - 29:11m 519 33:00m 569 36:02m 526 1:14h 503 96.9
I2787k - - 12:07h 3104 12:20h 1590 14:14h 1405 25:19h 1130 36.4

TABLE III
EXPERIMENTAL RESULTS - TRANSITION

Circuit DynComp NUM = 5 NUM = 10 NUM = 50 % NUM = 50
b14 1383 1359 1346 1205 87.1
b15 1228 1174 1141 1000 81.4
b17 2431 2401 2346 2248 92.5
b18 2705 2576 2551 2445 90.4
I57k 1762 1663 1616 1501 85.2
I80k 544 471 433 378 69.5
I88k 7807 7904 7563 7158 92.0
I99k 3981 3611 3613 3570 89.7

I177k 2809 1291 1142 1059 37.7

flow which is tailored to generate highly compact test sets.

VI. CONCLUSIONS

The test set size for the post-production test is an important
aspect for reducing test time and hence test costs in industrial
practice. Classical dynamic compaction techniques are fast
but use constrained test generation methods due to reasons
of complexity. As a result, multiple faults which could be be
tested with a single test may be missed which increases the
pattern count of the test set.

In this paper, we proposed a new SAT formulation to gener-
ate tests for multiple faults simultaneously. The robustness and
the learning features of SAT-based algorithms are leveraged
in order to prevent unnecessary computations and to boost
the efficiency of Multiple Target Test Generation (MTTG).
Techniques have been presented how the resulting MTTG
approach can be effectively integrated into a dynamic com-
paction flow as used in industrial practice. The experimental
results on large industrial circuits have shown the feasibility
of the approach and the tremendous impact on the test set
size. The test set size can be reduced by up to 63% in
comparison to sophisticated dynamic compaction techniques.
Future work is the development of sophisticated heuristics for
fault grouping to increase the effectiveness of the approach
and the integration of incremental SAT techniques for run time
reduction.

REFERENCES

[1] “International technology roadmap for semiconductors – test and test
equipment,” 2007, http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[2] J. Rajski, J. Tyszer, and N. Zacharia, “Test data decompression for
multiple scan designs with boundary scan,” IEEE Transactions on
Computers, vol. 47, no. 11, pp. 1188–1200, 1998.

[3] P. Goel and B. C. Rosales, “Test generation and dynamic compaction
of tests,” in Proceedings of the International Test Conference, 1979, pp.
189–192.

[4] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A method
to generate compact test sets for combinational circuits,” in Proceedings
of the International Test Conference, 1991, pp. 194–203.

[5] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-effective
generation of minimal test sets for stuck-at faults in combinational logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 12, pp. 1496–1504, 1995.

[6] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test
pattern generation,” in Proceedings of the VLSI Test Symposium, 1998,
pp. 446–452.

[7] S. Remersaro, J. Rajski, S. M. Reddy, and I. Pomeranz, “A scalable
method for the generation of small test sets,” in Proceedings of Design,
Automation and Test in Europe, 2009, pp. 1136–1141.

[8] A. Czutro, I. Polian, P. Engelke, S. M. Reddy, and B. Becker, “Dynamic
compaction in SAT-based ATPG,” in Proceedings of the IEEE Asian Test
Symposium, 2009, pp. 187–190.

[9] G.-J. Tromp, “Minimal test sets for combinational circuits,” in Proceed-
ings of the International Test Conference, 1991, pp. 204–209.

[10] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 11, pp. 1370–1378, 1995.

[11] P. Goel, “An implicit enumeration algorithm to generate tests for
combinational logic,” IEEE Transactions on Computers, vol. 30, no. 3,
pp. 215–222, 1981.

[12] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,” IEEE Transactions on Computers, vol. 32, no. 12, pp. 1137–
1144, 1983.

[13] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille, “On acceleration of SAT-based ATPG for industrial
designs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1329–1333, 2008.

[14] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker,
“TIGUAN: Thread-parallel integrated test pattern generator utilizing
satisfiability analysis,” in Proceedings of the International Conference
on VLSI Design, 2009, pp. 227–232.

[15] S. Eggersglüß and R. Drechsler, “Efficient data structures and method-
ologies for SAT-based ATPG providing high fault coverage in industrial
application,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 30, no. 9, pp. 1411–1415, 2011.

[16] N. Eén and N. Sörensson, “An extensible SAT solver,” in Proceedings of
the International Conference on Theory and Applications of Satisfiability
Testing, ser. Lecture Notes in Computer Science, vol. 2919, 2004, pp.
502–518.

[17] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Com-
binational test generation using satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 9, pp. 1167–1176, 1996.

[18] H. K. Lee and D. S. Ha, “Atalanta: an efficient ATPG for combinational
circuit,” Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Tech. Rep., 1993.


