
The System Verification Methodology for
Advanced TLM Verification

Marcio F. S. Oliveira1 Finn Haedicke2 Rolf Drechsler2,3

Christoph Kuznik1 Hoang M. Le2 Wolfgang Ecker4

Wolfgang Mueller1 Daniel Große2 Volkan Esen4

1C-LAB, University of Paderborn, 33102 Paderborn, Germany
{marcio, kuznik, wolfgang}@c-lab.de

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{finn, hle, grosse, drechsle}@informatik.uni-bremen.de

3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
4Infineon Technologies AG, 85579 Neubiberg, Germany

{Wolfgang.Ecker, Volkan.Esen}@infineon.com

ABSTRACT
The IEEE-1800 SystemVerilog [20] system description and
verification language integrates dedicated verification fea-
tures, like constraint random stimulus generation and func-
tional coverage, which are the building blocks of the Univer-
sal Verification Methodology (UVM) [3], the emerging stan-
dard for electronic systems verification. In this article, we
introduce our System Verification Methodology (SVM) as a
SystemC library for advanced Transaction Level Modeling
(TLM) testbench implementation. As such, we first present
SystemC libraries for the support of verification features like
functional coverage and constrained random stimulus gen-
eration. Thereafter, we introduce the SVM with advanced
TLM support based on SystemC and compare it to UVM
and related approaches. Finally, we demonstrate the appli-
cation of our SVM by means of a testbench for a two wheel
self-balancing electric vehicle.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: [Computer-Aided
Design (CAD)]

General Terms
Verification, Standardization

Keywords
UVM, SystemVerilog, SystemC, Functional Coverage, Con-
strained Random Stimulus Generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

1. INTRODUCTION
As electronic systems grow in complexity, verification ac-

tivities have started to dominate the design effort. To-
day, verification accounts for more than 70% of the total
development effort [27] with the trend to an exponential
growth [15]. To cope with that increasing complexity and
to boost productivity at Electronic System Level (ESL),
more efficient verification languages and technologies have
been introduced. Today, advanced verification languages
like IEEE-1800 SystemVerilog [20] and IEEE-1647 e [22] sup-
port features like assertion specification to define behavioral
properties, constrained random stimulus generation to gen-
erate directed randomized testbench input, and functional
coverage definitions to determine the verification closure.

For the structured implementation of testbenches, theUni-
versal Verification Methodology (UVM) [3] with the Open
Verification Methodology (OVM) [8] as a predecessor is well
accepted for ESL testbench implementation. UVM is a
methodology with a complementary library for RTL and
ESL verification, at which the full feature set comes as a
SystemVerilog and e implementation only.

On the other hand, IEEE 1666 SystemC is widely ac-
cepted for description and simulation of mixed HW/SW sys-
tems at higher levels of abstraction. For instance, the TLM
2.0 library has already been introduced in 2007 [4] and is
meanwhile integrated in the IEEE 1666-2011 SystemC stan-
dard [21]. However, in contrast to SystemVerilog, the sup-
port of dedicated verification features is very limited in Sys-
temC. This is an obstacle for adapting verification library
concepts like UVM to SystemC. For instance, SystemC has
no built-in language construct for functional coverage spec-
ification such as the covergroup metric of SystemVerilog.
Therefore, there exists an OVM implementation in SystemC
(OVM-SC) [10], which is limited to an OVM subset and
lacks various important modeling and verification features
like domain specific components, random stimulus genera-
tion facilities, sequence library management, sequence ar-
bitration, response to request routing, command-line pro-
cessor, and a register abstraction layer. Nevertheless, the

SystemC Verification (SCV) library [31] can be used as an
alternative for random stimulus generation and constraint
solving. However, it has several drawbacks: poor dynamic
constraint support, no constraint specification for dynamic
data-structures, low constraints specification usability for
composed data structures, insufficient information in case
of over-constraining, and substantial limits in constraints
complexity.

This paper presents the System Verification Methodology
(SVM) for SystemC, which is based on the OVM-SC [10]
implementation and incorporates verification best practices
and standards from OVM and partly UVM, such as factory
and configuration facilities and stimulus sequence generation
and management. The SVM library integrates functional
coverage and advanced constraint solving and constrained
random stimulus generation as mandatory features to Sys-
temC for true testbench support.

The remainder of this paper is organized as follows. The
next section presents related work in the areas of verification
tools and methodologies for the SystemC ecosystem. Section
3 introduces our contributions to improve the SystemC veri-
fication feature set. In Section 4 we present the SVM, which
integrates the two previous contribution in a feature rich li-
brary to boost the verification in SystemC environments. In
Section 5 we apply our SVM library to a high level control
model of a two wheel self-balancing electric vehicle. Finally,
Section 6 closes with conclusions and future directions.

2. RELATED WORK
For testbench implementation, several verification method-

ologies were developed such as the Universal Reuse Method-
ology (URM) [9] from Cadence, the Advanced Verification
Methodology (AVM) [28] from Mentor Graphics, and the
Verification Methodology Manual (VMM) [5] from Synop-
sys. Cadence and Mentor Graphics first joined efforts to the
Open Verification Methodology (OVM) [8] with a later unifi-
cation to the Universal Verification Methodology (UVM) [3]
with Synopsys. Additionally, the Open Verification Library
(OVL) [2] was developed by Accellera. OVL provides means
that may work as assertion, assumption, or coverage point
checkers. All verification methodologies came with a hand-
book and a complementary SystemVerilog library for test-
bench implementation. There is no SystemC support ex-
cept an OVM implementation published by Accellera which
implemented a very limited OVM subset in SystemC, i.e.,
OVM- SC [10], which was the starting point for our SVM
implementation.

More precisely, our SVM SystemC library is based on
the concepts of OVM multiple languages SystemC package
v2.1.1 and OVM for SystemVerilog v2.1.1 where its base
package was refactored to reflect the improvements from the
transition of OVM to UVM additionally improved by call-
backs, transaction routing, and recording facilities. We also
included a package with crucial structural components to
build the verification environment. For example, we imple-
mented stimulus sequences, sequence scheduler facilities, as
well as a command-line processor.

All of those libraries are based on dedicated verification
features from languages like IEEE-1800 SystemVerilog [20]
and IEEE-1647 e [22]. Therefore, a direct conversion of
those verification libraries to SystemC is not possible. Thus,
we first had to extend SystemC by functional coverage and

advanced constrained random stimulus generation, which we
presented in [26] and [19].

For SystemC functional coverage, [34] presents a vendor-
specific functional coverage implementation in SystemC. The
author of [33] uses the callback facility of the SCV library
to achieve functional equivalent of SystemVerilog value and
(simple) transition coverpoints. Moreover, the SCV intro-
spection facility and smart pointer callbacks are used to tie
variables to coverpoints. This leads to automatic sampling
of coverpoints, which is often not intended. Furthermore,
this approach does not include advanced features such as
cross coverage with select operators, illegal bins or default
bin declaration. Moreover, various vendors provide commer-
cial products for SystemC code, and limited functional and
transition coverage such as [23, 29].

For constrained random stimulus generation, the SCV li-
brary [31] provides a SystemC implementation. However,
it has limits in dynamic constraint support, dynamic data
structures, composed data structures, over-constraining, and
the complexity of constraints. Therefore, several improve-
ments for the SCV library have been introduced. In [16] bit
vector operators have been added and the uniform distribu-
tion among all constraint solutions is ensured in all cases.
An approach to determine the exact reasons in case of over-
constraining has been presented in [17]. In [37] the BDD-
based constraint-solver is replaced by a method which uses
a generalization of Boolean Satisfiability (SAT).
In contrast to our implementation, all these approaches

compensate only some of the SCV weaknesses. In particu-
lar, no constraints on dynamic data structures can be spec-
ified, constraints cannot be controlled dynamically during
run-time, references to the state of constraints are not avail-
able, and no inline constraints are possible limiting the us-
ability. In addition, the integration of different constraint
solvers working in parallel is mandatory to reduce the time
for stimulus generation to a minimum.

3. SYSTEMC EXTENSIONS FOR VERIFI-
CATION

Before we introduce our System Verification Methodology
(SVM) library, we first present SystemC verification exten-
sions, which are required as a basis for SVM, i.e., functional
coverage and advanced constrained random stimulus gener-
ation.

3.1 Functional Coverage
Functional coverage is a user-defined metric that measures

how many percentages of the verification objectives are met
by the test plan. It can be, for instance, used to measure
if interesting scenarios, corner cases or specification invari-
ants have been observed, validated, and tested by means of
covergroups and coverpoints. The coverage of a group Cg is
the weighted average of the coverage of all items i defined
in the group. It is computed by the following equation:

Cg =

∑
i Wi · Ci∑

i Wi
,

whereas Wi is the weight associated with item i and Ci is
the coverage of item i. The remainder of this section out-
lines details of the functional coverage implementation of the
SVM as a SystemC library, which is based on the following
assumptions:

Coverage Library

OSCI SystemC

Evaluation Bins CrossBins Transitions Goals

Sampling Implicit via hierarchy Explicit via argument

Connecting

API API functions Macros Database

sc_signal pointer reference callback

ISO/IEC C++ Boost Libraries

Figure 1: Elements according to IEEE-1800 covergroup
concept.

• Metric Expressiveness
A structured hierarchical composition of a functional
coverage metric shall be enabled. The metric elements
shall allow the capturing of coverage information in
fine-grained fashion, e.g., like the concept of cover-
groups, coverpoints and bins in SystemVerilog.

• Interoperability
To collect and evaluate functional coverage no modifi-
cations of the SystemC kernel are permitted.

• Build Environment Dependencies
The functional coverage facility shall not rely on the
SystemC Verification Library (SCV). Moreover, it may
only use header file includes of third-party libraries
such as the boost library.

• Advanced TLM Verification
Multiple explicit samplings per delta cycle shall be
supported to allow coverage of pre and post transac-
tion event coverage.

The main facility of the functional coverage library is a
single factory class providing all necessary setup and man-
agement API calls for the creation and administration of
the implemented coverage metric elements. Moreover, the
factory handles the administration of the coverage database,
which stores collected functional coverage information (i) to
capture already sampled coverage information prior to the
next run and (ii) to save this data after the test, which is
simplified by a set of convenience API functions. This al-
lows temporal merging of coverage results from independent
simulation runs of the same coverage metric.

3.1.1 Functional Coverage Metric
The library is organized in different layers, as given in Fig-

ure 1. Besides explicit sampling, a connection layer allows
the binding of coverpoints to sc_signals, variables or call-
back functions of the DUT (Design under Test). The evalua-
tion layers provide the implementation of the SystemVerilog
metric elements such as covergroups, coverpoints, and bins
as well as the definition of associated goals and weights for
the overall functional coverage computation.

3.1.2 Coverage Features
As such, the coverage library implements covergroups,

coverpoints, and coverpoints. Each coverpoint may contain
an arbitrary number of (normal) bins, illegal bins, ignore
bins, and an optional default bin. A default bin contains all
non-specified intervals of a data type. Default bins, one per
coverpoint, and their corresponding intervals can be gen-
erated for integer data types. Once an illegal bin is hit,
the library notifies and halts the simulation. The hits of
ignore bins will be counted but ignored for the overall cov-
erage percentage calculation of bins and coverpoints, respec-
tively. Each bin may also have numerous integer intervals as-
signed. A coverpoint can contain transition bins, which may
be associated with an arbitrary number of integer sequences
to implement simple successional value transition coverage.
Allowing multiple samplings within one SystemC simulator
delta cycle, we do not rely on SC_MODULEs and clock sensi-
tive SC_METHODs within the implementation. The sampling
process can be triggered from the outside in a method call
fashion.

3.2 Advanced Constrained Random Stimulus
Generation

Constrained random verification applies stimuli to the DUT
that are solutions of constraints. These solutions are deter-
mined by a constraint solver. Thereby, the generated stimuli
are much more likely to hit corner cases. This is due to the
fact that scenarios are simulated which the verification engi-
neer might have not thought of. Furthermore, the stimulus
generation process is automated and hence a huge set of sce-
narios can be executed leading to higher coverage. Hence,
for large and complex systems the confidence in the correct
functionality significantly increases.

In the following we describe our developed constrained
random stimulus generation library.

3.2.1 Features
Our constrained random stimulus generation is based on

crave [19], an advanced Constrained RAndom V erification
Environment for SystemC. crave provides the following fea-
tures:

• New Constraint Specification API
An intuitive and user-friendly API to specify random
variables and random objects has been developed.

• Dynamic Constraints and Data Structures
Constraints can be controlled dynamically at run-time.
Moreover, constraints for elements of dynamic data
structures like STL vectors can be specified.

• Improved Usability
Inline constraints can be formulated and changed in-
crementally at run-time. Furthermore, automatic de-
bugging of unsatisfiable constraints is supported.

• Parallel Constraint Solving
BDD-based and SAT/SMT-based techniques have been
integrated for constraint solving. A portfolio approach
is used to enable very fast generation of constraint so-
lutions.

Those features are supported as follows, where we take
the example in Figure 2 for further outlines.

1 struct packet : public rand_obj {
2 randv< unsigned int > src_addr;
3 randv< sc_uint<16> > dest_addr;
4 rand_vec< char > data;
5
6 packet(int &expected_max_size) : src_addr(this),

dest_addr(this), data(this) {
7 constraint(src_addr() <= 0xFFFF);
8 constraint("diff", src_addr() != dest_addr());
9 soft_constraint(dest_addr() % 4 == 0);

10
11 constraint(data().size() % 4 == 0 &&

data().size() < reference(expected_max_size));
12 constraint.foreach(data, _i, IF_THEN(_i == 0,

’A’ <= data()[_i] && data()[_i] <= ’Z’));
13 constraint.foreach(data, _i, IF_THEN(_i != 0,

’a’ <= data()[_i] && data()[_i] <= ’z’));
14 constraint.soft_foreach(data, _i, data()[_i] +

data()[_i-1] > ’a’ + ’b’);
15 }
16 };

Figure 2: Constrained Packet.

3.2.2 Constraint Specification
We first introduce the APIs for the creation of the ele-

mentary entities: random variables and constrained random
objects.

Random Variable.
The template class randv<T> represents a random vari-

able of the C/C++ or SystemC built-in type T. All standard
applicable operators (arithmetic, comparison, logical, etc.)
are overloaded so that an instance x of randv<T> behaves
as if it were a variable of type T. A call x.next() assigns
a random value in the range of T to x. While the focus
of crave is on complex constraints with many variables, it
also supports simple constraints on a single variable. Two
member functions addRange and addWeightedRange can be
used to refine the distribution of x.next(). Furthermore, x()
returns a symbolic link to the value of x to be used to specify
constraints in conjunction with other instances of randv<T>
as shown hereafter.

Random Object and Constraint Inheritance.
Complex constrained random objects can also be speci-

fied. They must inherit from the class rand obj provided
by crave. Such an object can contain several instances of
randv<T> and rand obj . Constraints for each of these in-
stances as well as constraints between them can be specified
in a constructor of the object. For the instance x of rand obj ,
x.next() randomizes all belonging instances of randv<T>
and rand obj , respecting the specified constraints. The in-
heritance/reuse of constraints in crave is straightforward.
The user can add more fields and constraints to an existing
random constrained object by using C++ class inheritance.

The following example outlines the application of crave
features. The constrained packet in Figure 2 inherits from
rand obj and consists of a source address as randv<unsigned
int>, a destination address as randv<sc uint<16>>, a data
field as a randomized vector (see Section 3.2.3), and a set of
constraints. The source address is constrained to be in the
range [0x0, 0xFFFF] (Line 7) and the both addresses must
not be the same (Line 8). Both constraints are so-called hard
constraints, i.e., they must be satisfied otherwise next() fails.
The second constraint is also a named constraint, which en-
ables dynamic management of constraints as described later
in Section 3.2.3. Line 9 shows a soft constraint stating that

the destination address should be a multiple of four. Soft
constraints can be ignored by the constraint-solver if they
cannot be satisfied in conjunction with the specified hard
constraints. As it can be seen in all constraints, the symbolic
links to the actual instances of randv are used. Line 11-14
declare constraints related to the randomized vector, which
will be explained in the next section.

3.2.3 Dynamic Data Structures and Constraints
This section introduces vector constraints, references, and

dynamic constraint management as three distinctive features
of crave, which are not supported by the SCV library.

Vector Constraints.
The SCV library offers no direct support for the con-

strained randomization of dynamic data structures such as
vectors. The user must mimic dynamic data structures by
using arrays of fixed-size. This is inconvenient and not
memory-efficient. Furthermore, the upper bound on size
of dynamic data structures might not be known at the time
of constraint specification. crave offers a template class
rand vec<T> for the constrained randomization of vectors,
where currently C/C++ and SystemC built-in data types
are supported as template parameter T.

The class rand vec<T> also implements the APIs of the
STL class vector and thus behaves as if it is an STL vector.
Similar to randv<T>, for an instance v of rand vec<T>,
v refers to the actual vector while v() is the symbolic vec-
tor used to specify constraints. For the symbolic vector v(),
v().size() refers to the size, v()[i] to a symbolic vector ele-
ment, and v()[i - c] to a previous element relative to v()[i]
(i is a predefined constant in crave and c is a positive
constant). The symbolic elements v()[i] and v()[i - c] are
used in a foreach constraint.

Back to the example shown in Figure 2. The vector con-
straints can now be explained: Line 12 and 13 ensure that
the first element is capitalized and the remainder is in lower
case letters, respectively. Both are hard constraints. The
last constraint is a soft foreach constraint: two consecutive
elements cannot be aa, ab or ba. The first one (Line 11)
forces the size of the vector to be a multiple of four and
strictly less than an upper bound. This upper bound can
change dynamically depending on max expected size. This
is captured by the concept of references introduced next.

References.
In many cases, the randomization depends on the dynam-

ically changing state of the verification environment. To
include the state in the constraints using the SCV library,
the user must use additional variables to save the state and
to update them manually whenever the state is changed.
For this purpose, crave provides references as a convenient
shortcut. A reference in crave basically links a “real” vari-
able with a symbolic variable, which can be used during
constraint specification. Before the constraints are solved,
the value of this symbolic variable is fixed to the actual value
of the linked variable.

Dynamic Constraint Management.
During the verification process, it is very useful that the

user can enable/disable specific constraints of a random ob-
ject. With the SCV library, the user has to mimic the feature
by adding an auxiliary variable and constrain this variable in
an implication with the constraints to be enabled/disabled,
which is inconvenient and inefficient. crave‘s constraint

management APIs of rand obj : enable constraint(name) and
disable constraint(name) allow to directly enable/disable
named constraints. Note that the vector constraint foreach
can also be named and intentionally soft constraints cannot
be enabled/disabled.

Where the previous features demonstrated different use
cases where crave offers clear advantages over the SCV li-
brary, the next paragraphs discuss important usability en-
hancements of crave compared to the SCV library.

3.2.4 Usability

Inline and Incremental Constraints.
Constraints in crave can be specified without a formal

constraint class. A standalone constrained random genera-
tor can be created anywhere and used with arbitrary vari-
ables and constraints. In practice, this reduces the effort
when coding non-trivial testbench environments. A gener-
ator can use all features of crave except for inheritance.
However, incremental constraint specification is supported.
This feature is very helpful for dynamic testbenches. After
the generator has been executed for a certain set of con-
straints, new constraints can arbitrarily be added, e.g., to
generate more general values first and more specific ones
later. The use of inline constraints will be demonstrated
later in the case study.

Debugging Constraint Contradictions.
The composition of constraints to large sets can easily

give contradiction(s) in the global constraint. The manual
debugging of such a contradiction is very time-consuming.
Therefore, crave can automatically identify which named
constraints are part of a conflict. This is completely done
on a formal level. Therefore, all minimal subsets of the
constraints that form a conflict will be reported.

3.2.5 Parallel Constraint Solving
Various alternatives to BDD-based constraint solving have

been studied, see e.g. [25]. Approaches based on Boolean
Satisfiability (SAT) [32, 24] or Satisfiability Modulo Theories
(SMT) [37] gave very good results for constraints, which are
hard to be solved by BDDs. However, in general it is not
possible to know in advance which type of constraint solver
will show the best performance. Therefore, crave uses a
portfolio approach. Instead of running a specific constraint
solver, an SMT-based constraint solver as well as a BDD-
based constraint-solver are executed in parallel for the same
set of constraints. We use metaSMT [18] for implement-
ing the constraint solving in crave. Essentially, metaSMT
allows engine independent programming by providing a uni-
fied interface to different solvers, e.g., CUDD [35], Z3 [11],
Boolector [7], MiniSAT [12], PicoSAT [6], SWORD [36], and
AIGER [1]).

Overall, solutions for complex constraints can be gener-
ated very fast.

4. SYSTEM VERIFICATION
METHODOLOGY

For the seamless integration of the presented functional
coverage and advanced constrained random stimulus gener-
ation techniques an appropriate integration within a verifi-
cation methodology is essential. For this, we introduce the
System Verification Methodology (SVM) library for RTL and
TLM [30]. The SVM library provides the building blocks

for efficient testbench modeling with integrated functional
coverage and constrained random stimulus libraries for Sys-
temC verification extension as introduced before. The build-
ing blocks of the SVM library include base classes, utilities,
and macros, which support the engineer to construct disci-
plined artefacts improving the reuse of verification compo-
nents and stimuli.

Taking advantages from SystemC abstract modeling and
refinement features, the methodology used in SVM follows
the principles of OVM and UVM. In this sense, SVM is
developed in compliance with OVM and UVM, thus keeping
the best possible interoperability between these libraries.

4.1 Verification Methodology for SystemC
SVM was designed to be compatible with the standard

IEEE SystemC simulators. Its packages are defined for a
seamless integration of the library into different verification
flows, as well as legacy verification environments. Asser-
tions, randomization/constraint solver, and coverage pack-
ages implement dedicated TLM verification features. The
SVM base, components, and sequences packages will be fur-
ther outlined in the next subsections.

4.1.1 Base Package
This package is an extension to the OVM multiple lan-

guages release v2.1.1, a donation of Cadence to the OVM
community, which includes a SystemC implementation. Orig-
inally, this package contained elements for factory automa-
tion, environment configuration, simulation control, and a
root component, which is the base for all other verification
components. We additionally included a callback facility,
a command-line processor, and a transaction routing and
recording feature and moved the base component to the com-
ponent package, which reflects the alignment to UVM.

The verification methodology implementation follows the
factory design pattern, which introduces higher abstraction
in the process of instantiating components/objects. In this
context, it is possible to change object behavior by provid-
ing different implementations with same interface without
changes in the object itself that applies that interface. Ex-
amples of the application of the factory in the verification
process are when it is required to change stimuli, e.g., using
a stimulus generator with more constraints, or providing a
different driver to adapt the way data is sent to the DUT,
e.g., considering a refinement from TLM to RTL. The fac-
tory implementation provides facilities to overwrite types
and to control the effect of object creation in the entire en-
vironment or to a specific object.

The library also provides a configuration facility, which
allows the registration of a configuration to affect the en-
tire environment or a specific object. By registering a con-
figuration, a verification component/object queries for an
existing configuration that applies to it and performs the
required adaptation. The configuration can adapt the com-
ponent topology - the types and number of subcomponents,
and its fields. For example, one can consider a component
reading from its configuration table, the name of the input
file to read stimuli, or the number and type of components,
which are instantiated and bound to a communication bus.
Although automatic configuration is provided by the latest
OVM SystemVerilog version, due performance and reusabil-
ity problems [13], we decided not to support this feature in
the current SVM release.

On top of that, SVM supports a transaction facility as
transactions represent important flows of data object, such
as instructions, pixels and data items. The transaction fa-
cilities allow users to record transactions, route response to
specific requests, and to control timing information for a
transaction.

SVM also comes with a callback facility. A callback is
an extension mechanism used in complement to the factory,
which allows changing the behavior of components without
change of the component itself. It can be used to modify
the component parameter definition during generation of a
testbench or to provide flexible mechanism to allow execu-
tion of personalized behavior before or after executing an
arbitrary function. One obstacle in the direct conversion
of testbenches between SystemC and SystemVerilog is that
their simulation kernels perform different execution phases.
They must be harmonized in order to change the environ-
ment, the configuration of objects, start multiple sections,
etc. On top of that, OVM defines multiple phases, improving
the simulation phases as given by the SystemVerilog simu-
lation standard. We started with the phase implementation
from OVM-SC as it is aligned with the OSCI SystemC sim-
ulator and already widely accepted. Although there is a ba-
sic alignment in OVM-SC between the phases of OVM and
SystemC, some further adaptation is still required due the
different between construction and connection performed in
SystemC and OVM. Since most of the construction of the
OVM hierarchy is performed in the Build Phase, the Con-
nection Phase is required so that all components are created
in the time of connection. Although the Connect Phase
callback is available in the OVM-SC, it is not automati-
cally called by SystemC kernel, so that a binding has to
be performed inside of the Build Phase. However, in or-
der to improve the conformance to OVM, we implemented
the automatic call to the Connection Phase after the execu-
tion of the Build method of each component. Note that it
still executes in the Build Phase and full hierarchical names
cannot be used in this phase. However, by using this two
distinguished phases, i.e., Build and Connection, the code
for connect components can be easily identified and is ready
to be used in an SystemC Connection Phase, in the case of
potential future SystemC extensions.

4.1.2 Components
OVM-SC provides one verification component, which must

be used as base class for all other components. In compar-
ison to OVM-SC, we add an additional package with struc-
tural components, which support the development of ver-
ification environments and tests in a well-structured way.
It includes classes, such as Agents, Drivers, Monitors, etc.
These components allow the construction of a topology easy
to use, to understand, and to reuse. They reduce some im-
plementation details, improve automation and are the base
for future improvements. Currently, SVM provides the fol-
lowing components:

Test : This module has to be extended by the user in order
to generate a self-contained test for the DUT. Instances of
different Test modules can be used to perform a set of tests,
which can be executed in batch mode. Each test can con-
tain one or more Environments in order to verify multiple
properties or views.

Environment : This module encapsulates the configuration
and instantiation of the topology of verification components.

It may contain Agents, Monitors, Scoreboards, etc. that are
configured for different environments.

Agent : This module is an abstract container for Driver,
Monitor and Sequencer. It is used to emulate the DUT or a
functional behavior of components that must be connected
to the DUT. Active Agents emulate devices connected to the
DUT and passive Agents are used to monitor DUT activity.

Driver : This module drives the signal to the DUT ports.
Drivers receive SequenceItems (transaction data) and pass
them to DUT. It has detailed information about the DUT
interface and its logic and can be used to refine or adapt
SequenceItems to a DUT interface.

Monitor : This module extracts transactions, signals and
other information from DUTs and makes them available to
other components. Typically, a monitor is a subcomponent
of an Agent, so that it checks only data relevant for the
parent Agent.

Subscriber : This module is used to perform coverage anal-
ysis and check the information from DUT provided by Mon-
itors. Multiple Subscribers can be connected to a Monitor.
Each Subscriber is responsible to encapsulate different cov-
erage and verification logic.

Scoreboard : Scoreboards may receive different pieces of
information from different Monitors for self-checking Envi-
ronments. Additionally, it can provide coverage information
and verify the design at the functional level.

4.1.3 Sequences
The central task in the verification process is to generate

and coordinate the stimuli for the DUT. Beyond standard
stimuli generation technologies, such as constrained random
stimulus generation, the management and arbitration of gen-
erated stimuli require special attention to create reusable
stimuli. For this purpose, we add a package in our SVM
library that contains classes, which support the definition of
stimuli and sequences of stimuli. These classes encapsulate
the procedure to generate data for the DUT and allow the
organization of different data in sequences of stimuli, which
can be hierarchically or sequentially organized in libraries.
Moreover, different arbitration modes are available to pro-
vide the right sequence distribution.

SequenceItem: SequenceItem represents data for stimulus
and response of the DUT. It may represent a command, a
bus transaction, or a protocol package. The fields in a Se-
quenceItem may be randomized to generate different stimuli
in different runs.

Sequence: Sequence implements the procedure to create
SequenceItems. Sequences can be reused or combined hier-
archically to generate complex stimuli. When Sequences are
used sequentially they can represent the different phases of
a stimulus, such as configuration phase prior to a communi-
cation phase. Additionally, Sequences may be combined, in
order to create a hierarchy of stimuli or to generate stimuli
in parallel to multiple interfaces of a DUT. They are de-
noted as Virtual Sequences, which are associated to Virtual
Sequencers, containing subsequences to coordinate the flow
of stimuli. This feature allows users to generate complex
stimuli combining Sequences from a library.

Sequencer : Sequencers are used to generate and to coordi-
nate the Sequences submitted to the Driver or the response
to it. Using Sequencers, the user may model time in differ-
ent scenarios and call the randomization mechanism in Se-
quences and Sequence Items to generate stimuli. They pro-

vide different arbitration modes to select the next Sequence
in the library: FIFO, Weighted Priority Distribution, Ran-
dom, Strict FIFO, Strict Random, and a user implemented
arbitration comparison.

4.2 OVM, UVM, and SVM Comparison
The status of our current SVM library (including func-

tional coverage and constraint random stimulus generation)
can be classified best when we compare it with OVM and
UVM as given in Table 1.

The basis for comparison with OVM is the OVM version
2.2.1, as OVM is the first standardized verification method-
ology library. After its publication, OVM incorporated some
features from UVM 1.1. The most prominent is the UVM
Register Abstraction Layer, supported by the UVM Regis-
ter Kit for OVM, which originates from Synopsys VMM and
joined work from Synopsys and Mentor Graphics. However,
to use this feature some UVM components must be used
together with the OVM library.

As the first UVM release was comparable the latest ver-
sion of OVM, they show not much difference. Later UVM
releases included new features, mainly a command-line pro-
cessor, a Register Abstraction Layer, an improved simula-
tion control (Phasing), and with general improvements of
the API.

In February 2009, Cadence donated the OVM-ML pack-
age to ovm-world.org including the OVM-SC. At the same
time, a functionally equivalent UVM for SystemC (UVM-
SC) version, with minor changes, was donated by Cadence
to uvmworld.org under the UVM multiple-languages pack-
age umbrella.

Table 1 highlights the main differences between UVM-
SC and UVM, the original version for SystemVerilog. It
can easily be seen there that UVM-SC lacks most of the
features provided by UVM, which are mandatory to perform
coverage-driven and constrained-random verification.

The SVM library supports almost all missing features
missing of OVM/UVM for SystemC, by adding features based
on the OVM for SystemVerilog version 2.2.1. Additionally,
we integrated the libraries for the functional coverage and
stimulus generation features of SystemC. Moreover, SVM is
complemented with a powerful assertion language for Sys-
temC, which was first introduced in [14].

Therefore the set of libraries tailored for advanced TLM
verification, which integrates SVM provides powerful tools
to develop CDV and CRV testbenches for SystemC environ-
ments using TLM and RTL models.

5. CASE STUDY
Our case study implements a high-level control model of a

two wheeled self-balancing electric vehicle. The closed-loop
control model, a classic inverted pendulum control, receives
its driving commands from the user’s balance and through a
vertical steering axis with immediate impact of the driving
motors.

We created a virtual platform, which runs the control al-
gorithms wrapped in SystemC components as given in Fig-
ure 3. The virtual platform is composed of one CPU, sen-
sors and actuators, communicating through a TLM2 bus.
A command interface receives commands from the steering
axis and forwards it to the CPU component using the TLM2
bus.

The testbench consists of a SVM Test component that is

Table 1: Comparison of OVM, UVM and SVM.

Feature OVM UVM UVM-SC SVM

Call-backs Yes Yes No Yes
Comparison Yes Yes No No
Command-Line
Processor

No Yes No Yes

Configuration Yes Yes Yes Yes
Factory Yes Yes Yes Yes
Methodological
Components

Yes Yes Yes Yes

Objection Yes Yes No No
Packing Yes Yes Yes Yes
Simulation Con-
trol and Phasing

Yes I Yes Yes

Polices Yes Yes No No
Recording Yes Yes SCV Yes
Register Abstrac-
tion Layer

Yes Yes No YES

Reporting Yes Yes SC SC
Routing Yes Yes No Yes
Sequencing Yes Yes No Yes
Synchronization Yes Yes SC SC
Assertion SV SV No I
Coverage SV SV SCV I
Constrained Ran-
dom Stimuli

SV SV SCV I

Yes - The library provides the feature; No - The library does not pro-
vide the feature; I - Improved feature; SC - Feature from the SystemC
Language; SV - Feature provided by SystemVerilog language; SCV -
Feature provided by SystemC Verification Library.

SVM Agent

DUT

TLM2 Bus

CPU Sensor Actuator

Command
Interface

SVM Test

SVM
Monitor

TLM
Proxy

SVM
SubscriberSequenceOfCommands

SequenceOneCommand

SVM
Sequencer

SVM
Driver

Figure 3: Verification testbench structure.

1 class SVMAgent : public svm agent {
2 public:
3 tlm::tlm analysis port<tlm::tlm generic payload > aport;
4 SVMDriver ∗pDriver;
5 SVMMonitor ∗pMonitor;
6 SVMSequencer ∗pSequencer;
7
8 SVMAgent(sc core::sc module name name);
9

10 SVM COMPONENT UTILS(SVMAgent)
11
12 void SVMAgent::build(){
13 svm agent::build();
14 get config int(”debug”, debug);
15 pSequencer = DCAST<SVMSequencer∗>(

svm factory::create component(”SVMSequencer”,
””,”pSequencer”));

16 }
17 };
18 SVM COMPONENT REGISTER(ActorAgent);

Figure 4: Partial code showing the SVMAgent structure.

the main container for the testbench. The SVM Test con-
tains one SVM Agent that replaces the steering axis and is
composed by one TLM2 SVM Driver and one TLM2 SVM
Monitor. The SVM Agent contains a SVM Sequencer,
which receives sequences of stimuli from the SVM Test and
schedules it to the SVM Driver, which drives the stimuli for
the DUT interface. Figure 4 shows an excerpt of the SVM
Agent code. At Line 18 SVM defined macros are used to
register components within the factory, the creation of com-
ponent using the factory at line 15 as well as the acquisition
of configuration values at Line 14.

When it comes to the stimulation of TLM2 interfaces, the
question of how to organize a driver and a monitor is im-
portant. In RTL verification, this separation is fairly simple
since a RTL driver is connected via signals to the DUT.
A RTL monitor, hence, needs to be connected to the same
signals for observing the behavior. At TLM, however, a con-
nection is usually done on a port-to-port basis, i.e., initiator
to target connections. Hence, it was necessary to incorpo-
rate a so called ”TLM-Proxy”. This proxy broadcasts any
incoming transaction to both the monitor and towards the
DUT. However, the broadcast to the monitor happens twice
- once at the beginning of the transaction and once when the
transaction call has returned from the DUT. This allows a
monitor to observe pre- and post-conditions of a transaction.

The connection to the DUT is established through a reg-
ular SystemC TLM2 initiator to target binding. Hence, a
delta-free connection could be established between the DUT
and the verification component. This also enables the ver-
ification environment to perform tests, which check the be-
havior of the TLM model by performance optimization tech-
niques such as the Quantum Keeping mechanism.

Extending the svm_sequence_item class we defined the
Command Item class, which holds the stimuli generated for
the DUT command interface. Each Command Item to the
DUT can either make it turn left/right by a given angle or
increase/decrease its speed by a given percentage, or simply
stop the vehicle. Therefore, the Command Item contains
three fields: the command, the given degree, and the given
percent. The constraints for each Command Item are shown
in Figure 5. As can be seen at Line 3 and 4, degree and per-
cent are constrained to be zero if command does not indicate
a turn or a change of speed, respectively.

1 constraint(0 <= degree() && degree() <= 36);
2 constraint(0 <= percent() && percent() <= 100);
3 constraint(IF THEN(command() != ifx::IFX TURN LEFT

&& command() != ifx::IFX TURN RIGHT, degree() ==
0));

4 constraint(IF THEN(command() !=
ifx::IFX INCREASE SPEED && command() !=
ifx::IFX DECREASE SPEED, percent() == 0));

Figure 5: Constraints for One Command Item.

1 BIN: IFX ACTOR CMD:TURN LEFT::: 2014 Hits
2 BIN: IFX ACTOR CMD:TURN RIGHT::: 1965 Hits
3 BIN: IFX ACTOR CMD:INCREASE SPEED::: 1985 Hits
4 BIN: IFX ACTOR CMD:DECREASE SPEED::: 2068 Hits
5 BIN: IFX ACTOR CMD:STOP::: 1968 Hits
6 BIN: IFX ACTOR DEGREE:DEGREE::: 3979 Hits
7 BIN: IFX ACTOR PERCENT:PERCENT::: 4053 Hits
8
9 BIN: SEQ LENGTH:0−15::: 1908 Hits

10 BIN: SEQ LENGTH:16−30::: 57 Hits
11 BIN: SEQ LENGTH:31−..::: 3 Hits

Figure 6: IXF_ACTOR transaction coverage.

The DUT is stimulated by two hierarchical sequences,
which define how the Command Items are driven to the
command interface. At high level, we define one Sequence
of Commands, which is the main container for the gener-
ated sequences. It creates sets of Sequence One Command,
so that pattern of commands can be generated and grouped,
building a library of stimuli. Finally, each Sequence One
Command holds an Command Item, which is randomized
and is ready to be driven to the DUT. For this, one Command
Item is pushed by the SVM Sequencer to the driver. Fol-
lowing that, the SVM Driver interprets the Command Item
and executes two transactions in the command interface -
one for the command and one for the parameter. In or-
der to investigate the verification closure of the simulation
runs, we monitor the received transactions within the SVM
Monitor component. A SVM Subscriber is connected to
SVM Monitor and implements a functional coverage metric
with four coverpoints as follow:

IFX_ACTOR_CMD has bins corresponding to command val-
ues. This allows checking the distribution of the gen-
erated commands during the simulation.

IFX_ACTOR_DEGREE which implements bins for degree
values, therefore keeping track of the path.

IFX_ACTOR_PERCENT which collects coverage of the alter-
ing of the speed, expressed in percentage ranging from
0 to 100.

SEQ_LENGTH which covers the number of consecutive com-
mands before a STOP command occurs.

In the first run of stimuli, we send 10,000 random Command
Items to the DUT. As shown by the first seven lines of the
collected coverage. in Figure 6, the first run examines the
design thoroughly. However, the main shortcoming is that
the STOP command was executed too often. That means,
that long sequences of turns and speed changes before stop
are not sufficiently considered. This is visible in the last
three lines in Figure 6: most considered sequences have only
between 0 and 15 commands.

Therefore, in the second run, we send several constrained
sequences of commands to the DUT. The constraints for the

1 Generator<Context> inline constraints;
2 rand vec<IfxCommandValT> commands;
3 randv<int> tmp;
4
5 inline constraints(25 <= tmp() && tmp() <= 40);
6 inline constraints(commands().size() == tmp());
7 inline constraints.foreach(commands, i, IF THEN(i == 0,

commands()[i] == ifx::IFX INCREASE SPEED));
8 inline constraints.foreach(commands, i, IF THEN ELSE(i <

reference(tmp) − 1, commands()[i] != ifx::IFX STOP,
commands()[i] == ifx::IFX STOP));

9 inline constraints.foreach(commands, i, (commands()[i] !=
commands()[i − 1]) || (commands()[i] !=
commands()[i − 2]) || (commands()[i] !=
commands()[i − 3]));

10
11 while (sequenceCount−− > 0) {
12 inline constraints.next();
13 // generate each individual command item and deliver it

to the DUT
14 ...
15 }

Figure 7: Constraints for One Command Sequence.

sequences are captured using inline constraints on a random
vector of crave as depicted in Figure 7. The first two con-
straints ensure that each sequence contains between 25-40
commands. The third constraint forces the first command
to be an increase of speed. The fourth constraint specifies
that all commands should not be a stop command with the
exception of the last command. Finally, no four consecu-
tive commands in a sequence should be equal. After the
generation of a vector of commands (Line 12), each individ-
ual command item is generated respecting the constraints
in Figure 5 with the command field being fixed to the cor-
responding value in the generated vector.

We defined also a similar set of constraints in the SCV
library using fixed size array of commands. However, even
for only 25 commands, the SCV library has not been able to
generate a single sequence after several hours. This result is
consistent with the experimental comparison of crave and
SCV reported in [19].

6. CONCLUSIONS
In this paper we presented the System Verification Method-

ology (SVM) as a set of SystemC libraries for TLM testbench
implementation. SVM combines missing building blocks for
advanced functional verification with SystemC. The com-
bination of advanced constraint solving and random stim-
ulus generation capabilities with a functional coverage fa-
cility under the umbrella of a verification methodology al-
lows building highly modular testbenches in a standardized,
structured, efficient, and reusable way. The SVM is com-
pletely compliant to existing standards as it is based on
the concepts of OVM Multiple-Languages - SystemC pack-
age v2.1.1 and OVM for SystemVerilog v2.1.1 that has been
refactored for UVM.

We successfully applied our methodology to a high level
control model of a two wheel self-balancing electric vehicle
and performed regression tests within larger case studies. At
this point, a pretty stable implementation of SVM is appar-
ently achieved as it has also been applied to more complex
industrial designs. The next step will be the completion
towards complete UVM. This is mainly the support of the
register abstraction layer.

7. ACKNOWLEDGMENTS
This work was partly funded by the German Ministry

of Education and Research (BMBF) through the project
SANITAS (01M3088), the DFG SFB 614, the ITEA2
projects VERDE (01S09012) and TIMMO-2-USE
(01IS10034), and the DFG Reinhart Koselleck project
DR 287/23-1. We greatly appreciate the cooperation with
the project partners.

8. REFERENCES
[1] Aiger. http://fmv.jku.at/aiger/.
[2] Accellera Organization, Inc. Open Verification Library

(OVL), May 2009.

[3] Accellera Organization, Inc. Universal Verification
Methodology (UVM), May 2012.

[4] J. Aynsley. OSCI TLM-2.0 LANGUAGE
REFERENCE MANUAL. Open SystemC Initiative
(OSCI), 2009.

[5] J. Bergeron. Writing Testbenches: Functional
Verification of HDL models. Kluwer Academic
Publishers, 2003.

[6] A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.

[7] R. Brummayer and A. Biere. Boolector: An efficient
SMT solver for bit-vectors and arrays. In Tools and
Algorithms for the Construction and Analysis of
Systems, pages 174–177, 2009.

[8] Cadence Design Systems, Inc. Open Verification
Methodology Multi-Language (OVM-ML).

[9] Cadence Design Systems, Inc. Universal Reuse
Methodology (URM).

[10] Cadence Design Systems, Inc. OVM-SC Library
Reference Version 2.0.1, February, 2009.

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340, 2008.

[12] N. Eén and N. Sörensson. An extensible SAT-solver.
In SAT, pages 502–518, 2003.

[13] A. Erickson. Are OVM & UVM Macros Evil? A
Cost-Benefit Analysis. In Proceeding of Design and
Verification Conference (DVCON), Mar. 2011.

[14] V. Esen. A new assertion language covering multiple
levels of abstraction. PhD thesis, 2008.

[15] H. Foster. Redefining Verification Performance (part
2), August 2010.

[16] D. Große, R. Ebendt, and R. Drechsler. Improvements
for constraint solving in the SystemC verification
library. In ACM Great Lakes Symposium on VLSI,
pages 493–496, 2007.

[17] D. Große, R. Wille, R. Siegmund, and R. Drechsler.
Contradiction analysis for constraint-based random
simulation. In Forum on Specification and Design
Languages, pages 130–135, 2008.

[18] F. Haedicke, S. Frehse, G. Fey, D. Große, and
R. Drechsler. metaSMT: Focus on your application
not on solver integration. In DIFTS’11: 1st
International workshop on design and implementation
of formal tools and systems, pages 22–29, 2011.

[19] F. Haedicke, H. M. Le, D. Große, and R. Drechsler.
CRAVE: An advanced constrained random verification
environment for SystemC. In International Symposium
on System-on-Chip (SoC), 2012. Available at
www.systemc-verification.org.

[20] IEEE Computer Society. IEEE Standard for System
Verilog-Unified Hardware Design, Specification, and
Verification Language - IEEE 1800-2009. 2009.

[21] IEEE Computer Society. IEEE 1666-2011 Standard
SystemC Language Reference Manual. IEEE Std
1666-2011, 2011.

[22] IEEE Computer Society. Standard for the Functional
Verification Language e. IEEE Std 1647-2011
(Revision of IEEE Std 1647-2008), pages 1 –495, 26
2011.

[23] JEDA Technologies, Inc. JEDA ESL Validation
Solution.

[24] H. Kim, H. Jin, K. Ravi, P. Spacek, J. Pierce,
B. Kurshan, and F. Somenzi. Application of formal
word-level analysis to constrained random simulation.
In Computer Aided Verification, 2008.

[25] N. Kitchen and A. Kuehlmann. Stimulus generation
for constrainted random simulation. In International
Conference on Computer-Aided Design, pages
258–265, 2007.

[26] C. Kuznik and W. Müller. Functional Coverage-driven
Verification with SystemC on Multiple Level of
Abstraction. Proceedings of DVCON, 2011.

[27] W. K. Lam. Hardware Design Verification: Simulation
and Formal Method-Based Approaches (Prentice Hall
Modern Semiconductor Design Series). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[28] Mentor Graphics, Inc. Advanced Verification
Methodology (AVM).

[29] NextOp Software, Inc. NextOp assertion-based
verification.

[30] M. F. S. Oliveira, C. Kuznik, W. Mueller, W. Ecker,
and V. Esen. A SystemC Library for Advanced TLM
Verification. In Proceeding of Design and Verification
Conference (DVCON), Mar. 2012.

[31] Open SystemC Initiative. SystemC Verification
Library v1.0p2, 2006.

[32] S. M. Plaza, I. L. Markov, and V. Bertacco. Random
stimulus generation using entropy and XOR
constraints. In Design, Automation and Test in
Europe, pages 664–669, 2008.

[33] K. Schwartz. A technique for adding functional
coverage to SystemC. In DVCON 2007. Willamette
HDL Inc., 2007.

[34] R. Siegmund, U. Hensel, A. Herrholz, and I. Volt. A
functional coverage prototype for SystemC-based
verification of chipset designs. In 9th European
SystemC User Group Meeting at Design, Automation
and Test in Europe, 2004.

[35] F. Somenzi. CUDD: CU Decision Diagram Package
Release 2.4.1. University of Colorado at Boulder, 2009.

[36] R. Wille, G. Fey, D. Große, S. Eggersglüß, and
R. Drechsler. Sword: A SAT like prover using word
level information. In VLSI of System-on-Chip, pages
88–93, 2007.

[37] R. Wille, D. Große, F. Haedicke, and R. Drechsler.
SMT-based stimuli generation in the SystemC
verification library. In Forum on Specification and
Design Languages, pages 1–6, 2009.

