
Coverage-driven Stimuli Generation
Shuo Yang∗ Robert Wille∗ Daniel Große∗ Rolf Drechsler∗†

∗Institute of Computer Science
University of Bremen, 28359 Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

{shuo,rwille,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Simulation-based verification is still one of the most
important methods to validate the correctness of System-on-
Chips. Here, explicitly specified stimuli need to be generated
which trigger certain scenarios of the design. However, so far
stimuli generation is mainly performed independently of the
desired coverage. In this work, we propose approaches for
coverage-driven stimuli generation. Despite a naı̈ve method, we
introduce and discuss automatic and interactive methods for an
improved stimuli generation. We show that explicitly considering
coverage metrics leads to smaller and complete sets of stimuli.

I. INTRODUCTION

The continuing improvements in fabrication technology that
persisted over the last 30 years enabled the integration of more
than 1 billion transistors in System-on-Chip (SoC) designs. The
development of SoCs of such complexity leads to enormous
challenges in Computer-Aided Design (CAD). In this context,
particularly verification, i.e. ensuring the functional correct-
ness of a design, is crucial.

Formal methods e.g. for equivalence checking (see e.g. [1],
[2]) and property checking (see e.g. [3], [4]) suffer thereby
from high computational costs and, thus, are not applicable
to complex designs yet. Consequently, simulation-based ver-
ification (see e.g. [5], [6]) is still the most frequently used
verification technique in industry.

However, using simulation-based methods, the whole func-
tionality of a Design Under Verification (DUV) can usually
not exhaustively be verified. Hence, explicitly specified stimuli
patterns are applied to the design. They are e.g. manually
provided by the verification engineers, randomly generated,
or determined by techniques like constraint-based random
simulation (see e.g. [6], [7], [8]). The purpose of these patterns
is to explicitly stimulate dedicated scenarios (in particular
corner cases) and, afterwards, compare the resulting responses
with the expected results.

To evaluate the applied stimuli and to ensure whether the
desired scenarios have sufficiently been triggered, coverage
metrics are applied (see e.g. [9]). A coverage metric can
be associated to a design’s functionality, structure, or source
code. It can serve as a termination criterion for a simulation-
based verification process and indicates whether a DUV has
sufficiently been triggered or not. Adequate verification results
are obtained when the respectively applied coverage metric is
satisfied.

Today, stimuli generation methods in combination with
proper coverage metrics are established concepts in the val-
idation of complex SoCs. But so far, stimuli generation is
mainly performed independently of the desired coverage. That
is, stimuli are generated without taking the coverage status of
previously generated stimuli into consideration. Exceptions of
this include e.g. the work presented in [10], [11]. However,
both considered very specific applications scenarios (embed-
ded software in case of [10] and a pipelined processor in case
of [11]) and do not provide a generic coverage-driven stimuli
generation scheme. Somewhat closer to that comes the work
presented in [12]. But here, not the coverage of particular
scenarios is considered. Instead, stimuli are generated using
correlations in the toggling activity of signals.

In this work, we consider coverage-driven stimuli generation
with respect to dedicated scenarios. We propose a methodol-
ogy that focuses on user-defined scenarios and aims for the
generation of a small set of stimuli by exploiting the respective
coverage metric provided by the verification engineer. For this
purpose three approaches are proposed:

• Naı̈ve: Iteratively generate stimuli triggering at least one
scenario until all scenarios are sufficiently covered

• Iterative: Additionally consider only those scenarios
which are not sufficiently covered

• Interactive: Additionally exploit design knowledge (in
combination with visualization methods) to refine the
constraints applied during the constraint-based random
simulation

In a case study, the proposed approaches are evaluated. This
evaluation shows that the consideration of coverage metrics
during stimuli generation significantly affects the resulting size
of the set of stimuli. While the naı̈ve approach leads to a very
large number of stimuli, a much smaller set can be obtained
when the iterative approach is applied. Moreover, interaction
of the verification engineers enables further reductions.

II. PROBLEM FORMULATION

This section briefly formalizes the context and provides a
definition of the problem to be addressed.

Since in general not all possible stimuli can be simulated
on the DUV, dedicated stimuli are generated to trigger certain
(user-defined) scenarios of the DUV. Such a scenario is defined
as follows:
Definition 1. A scenario Si (0 ≤ i < n) is a Boolean
function over variables from the set of DUV signals. For the
specification of a scenario, a constraint is formulated by using
the typical HDL operators such as e.g. logic AND, logic OR,
arithmetic operators, and relational operators.

In the following, the terms scenario and constraint are
used interchangeably. The set of scenarios is denoted by
S = {S0, . . . , Sn−1}.

Generated stimuli are supposed to trigger at least one
scenario, which formally means:
Definition 2. A stimulus satisfies at least one scenario if the
following formula evaluates to true:

n−1∨
i=0

Si (1)

Example 1. Consider an ALU example, where the ALU
has the typical select input s to define the operation to be
performed on the data inputs a and b. Possible scenarios
are for instance S0 = (s = 0) (triggering an addition) and
S1 = (s = 1) (triggering a subtraction). Then, the stimulus
a = 23, b = 12, s = 1 satisfies a scenario (here S1), while
a = 23, b = 12, s = 3 does not.

Since the number of triggered scenarios is important, we
define:
Definition 3. Given the DUV and a set S of scenarios. For
each scenario Si ∈ S, the coverage status cSi

denotes the
total number of stimuli which have triggered the scenario Si.

The goal in simulation-based verification is to generate
stimuli (and also check their response) so that all scenarios
S are sufficiently covered. The term “sufficiently” is thereby
user-defined via a threshold value. This is captured as:
Definition 4. For each scenario Si (0 ≤ i < n), a thresh-
old tSi is defined by the verification engineer. A scenario
is considered “sufficiently” covered iff Si is triggered by at
least tSi

different stimuli, i.e. iff cSi
≥ tSi

.



Simulation-based verification terminates, when a sufficient
number of stimuli has been generated:

Definition 5. A set of stimuli is considered sufficient iff it
sufficiently covers all scenarios of a given set S. In the
following, sufficient sets of stimuli are denoted by Ssuff .

Due to various methods used for simulation-based verifi-
cation, the nature and, particularly, the size of a sufficient
set Ssuff of stimuli varies significantly. In general, the size
of Ssuff should be as small as possible since this reduces the
time for both, stimuli generation and subsequent simulation.
However, how to efficiently generate compact sufficient sets of
stimuli has hardly been considered in the past. Motivated by
this, we address the following research question in this paper:

How can we efficiently determine a set of stim-
uli Ssuff , so that each scenario Si is triggered by
at least tSi

different stimuli and, at the same time,
keeps the size of Ssuff small?

In the next section, solutions for this problem are proposed.

III. GENERAL IDEA

To efficiently determine a set Ssuff of stimuli, constraint-
based stimuli generation [6] is exploited. Here, stimuli are
generated from a given set of constraints by means of a
constraint solver, i.e. stimuli are determined by the solver
which satisfy the provided constraints. However, the nature
of the provided constraints will affect the resulting size of the
set of stimuli.

In this work, we present and evaluate different approaches
of constraint-based stimuli generation in order to solve the
problem stated above. The general idea of each approach is
briefly outlined in the following. Afterwards, details on the
respective implementations are provided in the next section.
In total, we distinguish between three different approaches:

1) Naı̈ve Approach:
The naı̈ve approach simply generates stimuli using the
constraint introduced above to satisfy at least one sce-
nario, i.e.

C =
n−1∨
i=0

Si. (2)

That is, all scenarios are always considered until all of
them have sufficiently been covered. While this method
is simple and can easily be applied, it is not well
placed to reduce the size of Ssuff . In fact, since the
constraint can already be satisfied by a single sufficiently
covered scenario, no effective “guidance” of the solver
takes place, i.e. scenarios poorly covered so far are not
explicitly addressed.

2) Iterative Approach:
An improvement of the “naı̈ve approach” can be gained
by additionally considering the threshold tSi

of each
scenario Si. For this purpose, an iterative approach is
proposed. At the beginning, the complete constraint is
considered as done in the naı̈ve approach via Equation 2.
In contrast to the naı̈ve approach, after certain iterations
an analysis on the sufficiency of the determined set of
stimuli with respect to the thresholds of the scenarios
is performed. All scenarios which already have been
sufficiently covered by the stimuli generated so far are
removed. Overall, the constraint is modified iteratively
to

C =
n−1∨
i=0

(Si ∧ (cSi ≥ tSi)). (3)

By this, only those scenarios are considered any further
for which still stimuli need to be generated. This pro-
cedure continues until no insufficiently covered scenario
remains, i.e. until Eq. (3) evaluates to 0.

3) Interactive Approach
Finally, we also propose to make use of the design
knowledge of the verification engineer. In fact, manual
interaction and manual revisions of the constraint can
help to further guide the solver through the constraint-
based stimuli generation process. For this purpose, we
propose new monitoring and analysis methods which aid
the designer in understanding the scenarios still left to
be triggered. Based on this, revisions and adjustments on
the constraint can be performed which, eventually, lead
to a better search for more appropriate stimuli directly
addressing the still not sufficiently covered scenarios.
This works as follows: For the set of all scenarios
S = {S0, ..., Sn−1} a subset of insufficiently covered
scenarios is selected and replaced by a new one such
that these scenarios can be triggered simultaneously.
Formally, the scenario subset R = {Si0 , ..., Sim

} ⊂ S
is substituted by a new scenario R′ and the constraint
for stimuli generation is

C = (R′∧(
∧

0≤j≤m

csij
≥tsij

))∨
n−1∨
i=0

i 6=i0,...,i6=im

(Si∧ (cSi ≥ tSi)).

(4)
For a correct substitution we thereby need to guarantee
that, if the new constraint R′ evaluates to true, each
substituted scenario Sij

(0 ≤ j ≤ m) also evaluates to
true, i.e.

R′ ⇒ Sij for each Sij ∈ R. (5)

For instance, a new scenario R′ may combine two
scenarios which is possible if they are independent. This
allows to simultaneously check both scenarios.
Overall, now the generated set of stimuli guarantee
to drive the coverage of {Si0 , ..., Sim} closer to their
respective thresholds simultaneously. As a consequence,
less stimuli are needed to produce a set Ssuff . This pro-
cedure continues until no insufficiently covered scenario
remains.

All approaches have their respective advantages and disad-
vantages as illustrated later in Section V.

IV. IMPLEMENTATION

The implementation of the proposed approaches are detailed
in this section. First, the automatic approaches, i.e. the naı̈ve
approach and the iterative approach, are described. Afterwards,
the interactive one is detailed.

A. Automatic Approaches
The implementation of the naı̈ve approach is straight-

forward. Simply the complete constraint (Equation 2) is passed
to the solver which generates stimuli until all scenarios have
sufficiently been triggered. Except for the threshold checks,
this requires no further analysis or reformulation.

In contrast, the iterative approach includes a periodical
analysis of the threshold values tSi

and a corresponding
refinement of the complete constraint. Any scenario Si ∈ S
that has been triggered by at least tSi

different stimuli is
removed from further consideration. In order to satisfy this
goal, the coverage status cSi

for each scenario Si must be
monitored.

The pseudo-code of the iterative approach is given in
Algorithm 1. The inputs to this algorithm are the DUV denoted
by D, the set S of scenarios to be considered, the set T
of thresholds (each tSi

associates to Si), and a number k
controlling the number of stimuli to be generated in each
iteration.

The algorithm starts with the initialization of two sets: First,
the set Suncov contains all scenarios Si that have not been
sufficiently triggered. At the beginning, it is initialized with S
(Line 1). Hence, all scenarios of D are under consideration.
Second, the set Slog records all stimuli generated so far. It



Algorithm 1: Iterative Approach
Input: Design D, Scenarios S, Thresholds T , k
Suncov = S ;1
Slog = ∅ ;2

Instance =
∨

Si∈Suncov

Si ∧D ∧
∨

Sstimi
∈Slog

Sstimi
;

3
Generate k stimuli Sstim ;4
Slog = Slog ∪ Sstim ;5
Simulate D with Sstim ;6
Update coverage status cSi for each Si ∈ Suncov ;7
foreach Si ∈ Suncov do8

Suncov = Suncov \ Si (cSi ≥ tSi ) ;9
if Suncov 6= ∅ then10

goto 3 ;11
else12

return ;13
14

serves to produce different stimuli in each iteration during the
simulation-based verification process. At the beginning, Slog
is empty (Line 2).

Then, k stimuli Sstim are generated (Line 3 - Line 4).
For this purpose, we form an instance by ANDing up the
insufficiently covered scenarios (∨Si where Si ∈ Suncov),
the negation of the previously applied stimuli Slog , and the
design D. Next, we run the constraint-solver for this instance.
If we get a solution, satisfying assignments are extracted for
the primary inputs and internal states of the DUV D. They
form the set of new stimuli Sstim (Line 4). For blocking them
in subsequent iterations, they are stored in Slog (Line 5).

Next, the determined stimuli Sstim are simulated on the
DUV (Line 6). This enables to update the coverage status cSi

for each insufficiently triggered scenario Si (Line 7). Based
on this information, we possibly reformulate the complete
constraint for stimuli generation. The coverage status cSi

of each scenario Si (Si ∈ Suncov) is compared with its
corresponding threshold tSi

. In case cSi
≥ tsi

, the scenario
Si has been sufficiently triggered in the previous iteration and,
hence, it is removed from further considerations (Line 9). The
algorithm continues on Line 3 if there are still insufficiently
covered scenarios.

B. Semi-automatic approach
There are similarities of the iterative and interactive ap-

proach. However, revisions and adjustments on constraints
are performed manually, which makes the approach semi-
automatic.

As motivated in Section III, based on design knowledge
the verification engineer selects a subset of insufficiently
covered scenarios and replaces the scenarios by a new one.
We demonstrate this in the following example. The example
exploits that clever stimuli can trigger two scenarios at the
same time (which allows parallel simulation and checking).

Example 2. Consider a RISC processor example, where three
scenarios S = {S0, S1, S2} are under consideration. S0 and
S1 (s = 0/1) specify scenarios of an ALU as in Example
1. S2 is a scenario triggering the program counter (PC) with
typical control inputs en (PC enable) and le (PC load), i.e. S2
is specified as S2 = (en = 1 ∧ le = 0) (triggering a PC
incrementation). Instead of constraint C = S0 ∨ S1 ∨ S2,
i.e. instead of (s = 0) ∨ (s = 1) ∨ (en = 1 ∧ le = 0),
the scenario subsets R = {S0, S2} or R = {S1, S2} can be
substituted by R′ = S0 ∧ S2 = (s = 0 ∧ en = 1 ∧ le = 0) or
R′ = S1∧S2 = (s = 1∧en = 1∧ le = 0), respectively. In the
case where an ALU addition or subtraction is executed, also
the PC is incremented to point to the next instruction. Hence,
the generated stimuli with C = R′ can trigger the scenario

Fig. 1: Visualization aiding the verification engineers

S2 and, at the same time, additionally either S0 or S1. By
modifying the constraint as described, this is enforced.

Following this idea, the interactive approach works by
(1) manually formulating a new (and better) scenario R′

substituting scenarios R ⊂ S, (2) generating and applying
k stimuli, (3) removing sufficiently covered scenarios, and
(4) repeating this procedure until Ssuff is achieved.

Since the formulation of a new scenario (Step (1)) is
a manual step, we thereby aid the responsible verification
engineers by newly developed visualization techniques. More
precisely, in addition to a full and hierarchical display of
the DUV (using the visualization tool RTLvision by Concept
Engineering), the engineers can explicitly highlight scenarios
and dependent signals as well as their coverage status value
cSi

and their corresponding threshold value tSi
. Fig. 1 shows

a screenshot of the developed visualization. This intuitive
interface helps to locate potential candidates for substitution.

In this sense, the interactive approach is based on the
iterative approach. However, instead of R ∈ Suncov , the newly
generated scenario R′ is applied to generate the stimuli. More
formally, the respective instance (Line 3 in Algorithm 1) is
modified as follows:

Instance = R′ ∧D ∧
∨

Sstimi
∈Slog

Sstimi
(6)

Accordingly, a new threshold value tR′ with

tR′ = max{tSi0
, ..., tSim

}({Si0 , ..., Sim} = R) (7)

is added guaranteeing that all scenarios {Si0 , ..., Sim} im-
plied by R′ become sufficiently covered when cR′ ≥ tR′ .
Afterwards, the algorithm continues with stimuli generation,
simulation, and removal of sufficiently triggered scenarios
analogously to Algorithm 1.

V. CASE STUDY

The proposed approaches have been implemented in C++
and evaluated by means of a case study. As case study, we
used the design of a simple RISC processor described in [13].
This processor employs a Harvard architecture and, thus, is
composed of typical components like a control unit (CU), a
program counter (PC), and an ALU. Operands of the ALU are
fetched from an external data memory (RAM) to which the
result are also written back. The stack pointer (SP) represents a
special register that enables standard stack operations targeting
the memory.

For the simulation-based verification, seven scenarios have
been considered:
S0 Reset: Initialize the PC and SP.
S1 Alu Not: Invoke a NOT operation in the ALU.
S2 Alu Sub: Invoke a subtraction operation in the ALU.
S3 Pc Incr: Increment the PC by 1.



S4 Pc Jump: Update the PC with a target address.
S5 Stack Push: Stack push, triggered by a function call.
S6 Stack Pop: Stack pop, triggered by return of a function.

The threshold tsi
for each scenario Si has been set to 40.

The maximum number of stimuli to be generated by the naı̈ve
approach has been set to k = 600. The number of stimuli to
be generated by the iterative approach and by the interactive
approach has been set to k = 50 for each iteration. All
evaluations have been conducted on an AMD Athlon 3700
machine with 4 GB of memory running linux.

Table I shows the results obtained by applying the naı̈ve
approach. The second row denotes the respective scenarios,
while the third row denotes the coverage status for each
scenario, i.e. the number of stimuli triggering the respective
scenarios. Bold indicates insufficiently covered scenarios in
each iteration. As can be seen, after 600 generated stimuli
still not all scenarios have been sufficiently covered. In fact,
scenarios S0 and S2 are below the threshold. This empha-
sizes the need for an elaborated support of coverage-driven
stimuli generation. Just generating stimuli without an explicit
consideration of the respective coverage metric does not lead
to satisfactory results.

In contrast, the iterative approach shows considerable im-
provements. Results are provided in Table II. The first column
denotes the respective scenarios, while the remaining columns
denote the respective coverage status for each iteration. Here,
a sufficient set of stimuli can indeed be generated. This set
eventually is composed of 350 stimuli, i.e. is even smaller than
the non-sufficient set of stimuli which has been generated by
the naı̈ve approach.

In Table II, the evolvement of this set can be retraced:
At the beginning, all scenarios are considered simultaneously.
After the first iteration, S1 is already sufficiently triggered.
Hence, this scenario is removed from further consideration.
This continues until the sixth iteration, where only scenario
S6 remained left. That is, in the last iteration, only stimuli
satisfying S6 are generated eventually leading to a sufficient
set of stimuli for all scenarios.

Furthermore, the coverage status for all scenarios except S3
and S4 remained unchanged after their respective threshold has
been achieved. This allows the conclusion that S3 and S4 share
concurrency with other scenarios which have not sufficiently
been triggered at that time. As mentioned above, such concur-
rency can be exploited to generate stimuli triggering multiple
scenarios and, therefore, lead to a further reduction of the
number of needed stimuli. This is the case in the interactive
approach which is evaluated next.

Results obtained by the interactive approach are provided in
Table III. The denotation of this table is almost identical to Ta-
ble II – just a further row (denoted by R′) is added which lists
interactively added scenarios for each iteration. Also here, a
sufficient set of stimuli can be generated. With 250 stimuli, this
set is even smaller than the two sets generated using the other
approaches. In fact, overall an improvement of approx. 60%
(compared to the naı̈ve approach) and approx. 30% (compared
to the iterative approach) is documented.

This improvement was possible because of the interactive
addition of new scenarios (in the second iteration and the
third iteration). The former one became obvious, after S1
got sufficiently been covered. Here, scenario S2 (invoke a
subtraction in the ALU) and scenario S3 (increment the PC
by 1) have been ANDed up. This immediately led to stimuli
sufficiently satisfying both scenarios. Similarly, a better con-
straint S4∧S5 was determined in the third iteration exploiting
the concurrency of a PC jump and a Stack push operation. As
a consequence, scenarios S4 and S5 also became sufficiently
triggered immediately.

Overall, the case study confirmed the benefits of coverage-
driven stimuli generation. Without an explicit consideration
of coverage metrics, it was not possible to generate a set
of stimuli which sufficiently covers all scenarios. In contrast,
using the iterative approach, such a set has been determined.
Additionally exploiting design knowledge by the verification
engineers further improves the results.

VI. CONCLUSIONS

In this work, we considered coverage-driven stimuli gener-
ation. We proposed approaches that not only generated stimuli
for a given set of scenarios, but additionally incorporated
respective coverage metrics during this process. A case study
demonstrated the benefits of the proposed approach: Explicitly
considering coverage metrics led to smaller and complete sets
of stimuli. The results can further be improved by manual
interaction. For this purpose, the verification engineers are
supported by visualization techniques.

VII. ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
projects SANITAS under contract no. 01M3088 and VisES
under contract no. 01M3197B.

TABLE I: Naı̈ve approach
Threshold: 40, k: 600, CPU: 51m22.204s
Constraints S0 S1 S2 S3 S4 S5 S6
csi 11 50 39 407 138 46 67

TABLE II: Iterative approach
Threshold: 40, k: 50, CPU time: 29m9.827s
Constraints csi after each iteration

50 100 150 200 250 300 350
S0. Reset 0 3 3 3 3 53 53
S1. Alu Not 42 42 42 42 42 42 42
S2. Alu Sub 1 1 1 1 51 51 51
S3. Pc Incr 31 78 78 128 128 128 128
S4. Pc Jump 3 3 53 53 53 53 103
S5. Stack Push 10 0 0 49 49 49 49
S6. Stack Pop 2 2 3 4 4 4 54

TABLE III: Interactive Approach
Threshold: 40, k: 50, CPU time: 14m50.706s
Constraints csi after each iteration

50 100 150 200 250
S0. Reset 0 0 0 0 50
S1. Alu Not 42 42 42 42 42
S2. Alu Sub 1 51 51 51 51
S3. Pc Incr 31 81 81 81 81
S4. Pc Jump 3 3 53 103 103
S5. Stack Push 0 0 50 50 50
S6. Stack Pop 2 2 2 52 52
R′ none S2 ∧ S3 S4 ∧ S5 none none

REFERENCES

[1] D. Brand, “Verification of large synthesized designs,” in Int’l Conf. on
CAD, 1993, pp. 534–537.

[2] S. Disch and C. Scholl, “Combinational equivalence checking using
incremental SAT solving, output ordering, and resets,” in ASP Design
Automation Conf., 2007, pp. 938–943.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193–207.

[5] J. Bergeron, Writing Testbenches Using SystemVerilog. Springer Verlag,
2006.

[6] J. Yuan, C. Pixley, and A. Aziz, Constraint-based Verification. Springer,
2006.

[7] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrainted
random simulation,” in Int’l Conf. on CAD, 2007, pp. 258–265.

[8] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based stimuli
generation in the SystemC verification library,” in Forum on Specifica-
tion and Design Languages, 2009, pp. 1–6.

[9] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design & Test of Comp., vol. 18, no. 4, pp.
36–45, 2001.

[10] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach, J. Ruf, T. Kropf,
and W. Rosenstiel, “Coverage driven verification applied to embedded
software,” in IEEE Annual Symposium on VLSI, 2007, pp. 159 –164.

[11] P. Mishra and N. Dutt, “Functional coverage driven test generation for
validation of pipelined processors,” in Design, Automation and Test in
Europe, 2005, pp. 678–683.

[12] S. M. Plaza, I. L. Markov, and V. Bertacco, “Toggle: A coverage-guided
random stimulus generator,” in Int’l Workshop on Logic Synth., 2007,
pp. 351–357.

[13] D. Große, U. Kühne, and R. Drechsler, “HW/SW Co-Verification of
Embedded Systems using Bounded Model Checking,” in ACM Great
Lakes Symposium on VLSI, 2006, pp. 43–48.


