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Abstract. Due to the steadily increasing complexity, the design of em-
bedded systems faces serious challenges. To meet these challenges ad-
ditional abstraction levels have been added to the conventional design
flow resulting in Electronic System Level (ESL) design. Besides abstrac-
tion, the focus in ESL during the development of a system moves from
design to verification, i.e. checking whether or not the system works as
intended becomes more and more important. However, at each abstrac-
tion level only the validity of certain properties is checked. Completeness,
i.e. checking whether or not the entire behavior of the design has been
verified, is usually not continuously checked. As a result, bugs may be
found very late causing expensive iterations across several abstraction
levels. This delays the finalization of the embedded system significantly.
In this work, we present the concept of Completeness-Driven Develop-
ment (CDD). Based on suitable completeness measures, CDD ensures
that the next step in the design process can only be entered if complete-
ness at the current abstraction level has been achieved. This leads to an
early detection of bugs and accelerates the whole design process. The
application of CDD is illustrated by means of an example.

1 Introduction

Although embedded systems have witnessed a reduction of their development
time and life time in the past decades, their complexity has been increasing
steadily. To keep up with the (customer) requirements, design reuse is common
and, hence, more and more complex Intellectual Property (IP) is integrated.
According to a recent study [26], the external IP adoption increased by 69%
from 2007 to 2010. In 2010, 76% of all designs included at least one embedded
processor. As a result, the development of embedded systems moves from design
to verification, i.e. more time is spent in checking whether the developed design
is correct or not. In fact, in the above mentioned time period, there has been a
4% increase of designers compared to an alarming 58% increase of verification
engineers.

To face the respective verification challenges, significant effort has been put
into clever verification methodologies and new flows have been investigated. A
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major milestone for the development and verification of embedded systems has
become the so-called Electronic System Level (ESL) design which is state-of-the-
art today [5]. Here, the idea is to start designing a complex system at a high
level of abstraction – typically using an algorithm specification of the design. At
this level, the functionality of the system is realized and evaluated in an abstract
fashion ignoring e.g. which parts might become hardware or software later.

The next level of abstraction is based on Transaction Level Modeling (TLM)
[10, 15]. As modeling language typically SystemC [1, 7, 16] is used which offers
the TLM-2.0 standard [4]. A TLM model consists of modules communicating
over channels, i.e. data is transferred in terms of transactions. Within TLM,
different levels of timing accuracy are available such as untimed, loosely-timed,
approximately-timed, and cycle-accurate. The respective levels allow e.g. for
early software development, performance evaluation, as well as HW/SW parti-
tioning and, thus, enable a further refinement of the system.

Finally, the hardware part of the TLM model is refined to the Register Trans-
fer Level (RTL), i.e. a description based on precise hardware building blocks
which can subsequently be mapped to the physical level. Here, the resulting
chip is eventually prepared for manufacturing.

While this flow is established in industry today, ESL-based design focuses
on the implementation and verification of the system. However, although the
validity of certain properties of the implementation is checked at the various ab-
straction levels, often the behavior is not completely considered in these stages.
Completeness, i.e. checking whether or not certain behavior of the resulting de-
sign has been verified, is usually not continuously checked. This typically causes
expensive iterations across several abstraction levels and delays the finalization
of the embedded system significantly.

In this work, we present the concept of Completeness-Driven Development
(CDD). The idea of CDD ensures that the next step in the design process
can only be entered if completeness at the current abstraction level has been
achieved. For this purpose, suitable completeness measures are needed for each
abstraction level in a CDD flow. With CDD, the focus moves from implementa-
tion to completeness while completeness is targeted immediately. Overall, CDD
has the following advantages:

– In-place verification: New details are verified when they are added.

– No bug propagation: Bugs are found as soon as possible since complete-
ness ensures verification quality. As a consequence, bugs are not propagated
to lower levels.

– Long loop minimization: Loops over several abstraction levels may only
occur due to design exploration or unsatisfied non-functional requirements.

– Correctness and efficient iterations: The essential criterion is design
correctness which is ensured via completeness along each design step. Thus,
iterations are only necessary at the current abstraction level.
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Fig. 1. Conventional flow

CDD is illustrated by means of an example at two representative abstraction
levels (Sect. 3). Before, the addressed problem and the proposed CDD flow is
described in more detail in the next section.

2 Completeness-Driven Development

2.1 Established ESL flow

Figure 1 shows a rough sketch of the established ESL flow for embedded sys-
tems. To cope with the increasing complexity, requirements for the system are
not incorporated at once, but subsequently added leading to a continuous refine-
ment. Usually, the functional requirements are considered first at higher levels
of abstraction. Non-functional requirements are added afterwards in the lower
levels of the design flow. This allows designers to concentrate on the behavior
of the system first. This procedure is sufficient for early simulation (through an
executable specification) as well as analysis of the correctness of the functional
aspects.

As can be seen in Fig. 1, newly incorporated requirements are verified against
prior design states and the specification. However, although a positive verifica-
tion outcome ensures the correctness of the system with respect to the proper-
ties that are checked, full correctness cannot be ensured as it is unclear whether
enough properties have been considered. For this task, completeness checks have
to be applied. However, today completeness checkers are typically not used con-
tinuously, i.e. coverage checks are performed after several design steps and, even
worse, mainly at lower levels of abstraction – too late in the overall design pro-
cess.

As a consequence, behavior that has not been verified at the current abstrac-
tion level is not considered until the lower stages of the design flow. If it turns
out that this unconsidered part contains bugs, a large portion of the design flow
needs to be repeated, leading to long and expensive verification and debugging
loops.
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Fig. 2. Overview CDD flow

2.2 Envisioned Solution

To solve the problem described above, we propose the concept of CDD. CDD
shifts the focus from implementation to completeness, i.e. completeness is added
orthogonally to the state-of-the-art flow. By this, completeness checks are per-
formed at a high level of abstraction and during all refinement steps. As a conse-
quence in each situation, the next step in the design process can only be entered
if completeness at the current abstraction level has been achieved.

A major requirement for this flow is that suitable coverage measures must be
available for each abstraction level. For the lower levels of abstractions different
approaches already exist, see e.g. [12, 13, 17, 11, 19]. Also solutions of industrial
strength are available, for instance [9]. In contrast, on higher level of abstraction
only a few approaches have been proposed. Most of them are based on simu-
lation, e.g. [21, 20, 8, 24], and, hence, are not sufficient since the identification
of uncovered behavior is not guaranteed. On the formal side, initial approaches
have been devised for instance in [3, 22]. If, within a specific abstraction level, an
implementation step can be adequately formalized as a model transformation,
then completeness results can be propagated through several transformations,
as long as their correctness is ensured. As an example, in [2], behavior preserving
transformations are used to refine the communication model of a system.

In the following, we demonstrate CDD at two representative abstraction lev-
els. The design is composed through Behavior Driven Development (BDD) [23]
and subsequent refinement/IP-reuse. BDD is a recent development approach
which has its roots in software Test Driven Development (TDD) [6]. Essentially,
in TDD testing and writing code is interleaved while the test cases are written
before the code. In doing so, testing is no longer a post-development process,
which in practice is often omitted due to strict time constraints. BDD extends
TDD in the sense that the test cases are written in natural language, easing
the communication between engineers and stakeholders. In BDD, all test cases
are called acceptance tests. To summarize, in contrast to the current flow from
Fig. 1, with CDD completeness is considered additionally at each abstraction
level as shown on the right hand side in Fig. 2. This is demonstrated using a
concrete example in the next section.
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3 Completeness-Driven Development in Action

In this section, we present an example to demonstrate the proposed CDD flow.
We first review the applied abstraction levels and the respective flows at a glance.
The details are then explained in the following subsections.

In the example, the development of a calculator is considered. In the process,
we use two abstraction levels: the behavioral level and the register transfer level.
The overall flow from Fig. 2 is partitioned into two subflows for each respective
abstraction level as depicted in Figs. 3 and 4, respectively. As can be seen,
in conjunction with BDD at the behavioral level and the refinement/IP-reuse
approach at RTL, completeness analysis techniques tailored for each respective
method are employed (see right hand side of both figures).

The development process starts with a document of requirements (see Fig. 3).
The translation of these initial requirements to acceptance tests requires an in-
termediate step that derives low-level requirements. The following BDD process
first produces the acceptance tests from these requirements and generates a set
of corresponding testcases written in SystemC. Afterwards, the SystemC behav-
ioral model is incrementally developed to pass the defined testcases one at a



time. The defined behavior has been fully implemented, if the model passes all
testcases. As a consequence, we perform a completeness check to ensure that all
requirements have already been considered and the testcases are complete. The
result of this step is a complete set of properties that have been generalized from
the tests.

After the completeness at behavioral level has been achieved, we proceed to
the lower abstraction level at RTL (see Fig. 4). The SystemC model is refined to
an RTL model in Verilog. In this refinement step, IP components are integrated.
The functionality and the completeness of the RTL model are subsequently as-
sured by using property checking and property-based coverage analysis, respec-
tively.

In the remainder of this section, we first briefly describe the path from the
initial requirements to the acceptance tests of BDD. Afterwards, the model and
the development process at the behavior level and the RTL are presented in nec-
essary detail focusing on the completeness analysis at both levels of abstractions.

3.1 From Requirements to Acceptance Tests

An excerpt of a list of requirements describing the functionality of the considered
calculator reads as follows:

REQ1 The system shall be able to perform calculation with two given numbers.
At least addition, subtraction, and multiplication shall be supported.

REQ2 The system shall be able to store the last calculated result and perform
calculation with this number and another given number.

REQ3 A given number:

1. can have a positive integer value;
2. can have a negative integer value;
3. shall have up to 3 digits;
4. can be 0.

REQ4 If the result of a calculation has more than 3 digits, the system shall
report an error.

REQ...

These requirements are then translated to low-level requirements that cap-
ture precisely the expected behavior of the calculator in each specific case. For
example, the first two low-level requirements (LLR1 and LLR2 in the follow-
ing) specify the addition operation of the calculator. Note that the relation to
the initial high-level requirements is maintained when specifying each low-level
requirement.

LLR1 The system shall be able to add two given numbers in the
range [−999, 999]. If the sum of the given numbers fits in the
range [−999, 999], the system shall return this value. This requirement cor-
responds to REQ1, REQ3 and REQ4.



LLR2 The system shall be able to add two given numbers in the
range [−999, 999]. If the sum of the given numbers does not fit in the
range [−999, 999], the system shall report an error. This requirement cor-
responds to REQ1, REQ3 and REQ4.

LLR3 The system shall be able to subtract the second given number from the
first one ...

LLR...

At the beginning of the BDD process, the low-level requirements are compiled
into acceptance tests which are provided in a very close form to a testcase and
also contain precise values of the numbers given to the calculator. For example,
the acceptance test that corresponds to LLR1 is as follows:

When the numbers < a > and < b > are given
And I want to add < a > and < b >
Then the result should be < c > (where < c >=< a > + < b >)
Examples:

a 0 7 20 1 ...
b 0 4 17 997 ...

c 0 11 37 998 ...

Through BDD, these acceptance tests can now be used to determine an
according SystemC description.

3.2 CDD at High Level of Abstraction

Generating the Behavioral Model in SystemC. First, the BDD process
generates a system description following a TLM modeling style. That is, the data
transported to and from the calculator is modeled as a payload shown in Fig. 5.
It contains the requested operator, two given numbers, and also the status and
the result of the calculation. The functionality of the calculator shall be fully
captured in a function calculate which receives a payload, performs the requested
calculation, and writes back the result into the payload.

After this basic structure has been defined, the BDD process continues with
the translation of the acceptance tests to executable testcases in SystemC. Fig-
ure 6 exemplarily shows a testcase which corresponds to one of the precise cases
in the acceptance test for the low-level requirement LLR1 shown earlier. Line 2
declares a SystemC port to which the calculator will be connected later. In
Lines 11–16, a payload with a request operator as well as numbers is initialized
and sent to the calculator through the port, while afterwards the received results
are checked.

After all testcases have been written, the SystemC model (essentially the
function calculate) is developed step-by-step to gradually pass all testcases. The
final version of calculate is depicted in Fig. 7. For example, the first development
step has added Line 5 and Lines 14–21 to satisfy the testcases defined for the
addition of two given numbers. Lines 14–21 check the intermediate result, then
raise the error status flag or write the valid result back, respectively. This code



1 struct calc payload {
2 Operator op;
3 int number1;
4 int number2;
5 CalcStatus calc status;
6 int result;
7 };

Fig. 5. Calculator payload

1 struct testcase : public sc module {
2 sc port<calculator if> calc port;
3
4 SC HAS PROCESS(testcase);
5
6 testcase(sc module name name) : sc module(name) {
7 SC THREAD(main);
8 }
9

10 void main() {
11 calc payload p;
12 p.op = ADD;
13 p.number1 = 7;
14 p.number2 = 4;
15 calc port−>calculate(p);
16 assert(p.calc status == CALC OKAY && p.result == 7+4);
17 }
18 };

Fig. 6. A testcase for the calculator

lines are also common for the other operations, so that only Line 6 and Line 7
had to be added to make the testcases for subtraction and multiplication pass.
The SystemC model has been successfully tested against all defined testcases.

Checking the Completeness. Since the relation between the initial require-
ments, the low-level requirements, the acceptance tests, and the testcases in
SystemC have always been maintained in each translation step, it is very easy
to trace back and check whether all requirements have been considered.

To check the completeness of the testcases, they are first generalized into
formal properties. As the whole functionality of the calculator is captured in the
function calculate, the properties only need to reason about the behavior at the
start and the end of each calculate transaction. Most of the generalization pro-
cess can be automated, however, human assistance is still required in providing
adequate invariants.



1 void calculate(calc payload& p) {
2 p.calc status = CALC OKAY;
3 switch (p.op) {
4 case NOP : break;
5 case ADD : acc = p.number1 + p.number2; break;
6 case SUB : acc = p.number1 − p.number2; break;
7 case MULT : acc = p.number1 ∗ p.number2; break;
8 case ACC ADD :
9 ...

10 default :
11 // unknown op −> error response
12 p.calc status = CALC ERROR;
13 }
14 if (p.calc status == CALC OKAY) {
15 if (acc > MAX VAL || acc < MIN VAL) {
16 p.calc status = CALC ERROR;
17 acc out of range = true;
18 } else {
19 p.result = acc;
20 }
21 }
22 }

Fig. 7. Function calculate

To illustrate the concept, Fig. 8 shows two generalized properties for the addi-
tion of two given numbers. Both properties are written in a flavor of the Property
Specification Language (PSL) extended for SystemC TLM [25]. As mentioned
earlier, we only need to sample at the start (:entry) and the end (:exit) of the
function/transaction calculate. Property P1 covers the case that the sum of two
given numbers fits in the range so that the calculation will be successful and the
sum will be returned, while P2 specifies the calculation in the other case, i.e. the
sum is out of range. In both cases, the valid range had to be provided manually
as an invariant. Both properties then represent the generalized behavior which
is partly considered by the testcases. This generalized behavior is also proven by
the high-level property checking method in [18].

However, as determined by the completeness check, behavior remained uncov-
ered. In fact, the invariant for P1 is insufficient. More precisely, the completeness
check has detected an uncovered testcase:

p.number1 == 0 and p.number2 == 999.

This is representative for the general forgotten case of

p.number1 + p.number2 == 999.

The result in this case is not defined by neither P1 nor P2. If this uncovered
testcase would have been included in the set of testcases from the beginning,



P1: default clock = calculate:entry || calculate:exit;
always (calculate:entry && p.op == ADD && (−999 < p.number1 +

p.number2 && p.number1 + p.number2 < 999))
−> next (calculate:exit && p.calc status == CALC OKAY &&

p.result == p.number1 + p.number2)

P2: default clock = calculate:entry || calculate:exit;
always (calculate:entry && p.op == ADD && ((p.number1 +

p.number2 >= 1000) || (p.number1 + p.number2 <= −1000))
−> next (calculate:exit && p.calc status == CALC ERROR)

Fig. 8. Generalized properties for addition

it would have been impossible to provide the insufficient invariant for P1, since
a generalized property must be compliant with the testcases it covers. This
demonstrates clearly the usefulness and necessity of completeness at this high
level of abstraction.

3.3 CDD at RTL

Generating the RTL Model in Verilog. The RTL model is created in a re-
finement process starting with the behavioral SystemC model. First, the payload
(see Fig. 5) is refined to inputs and outputs of the overall design: both numbers
and the operator become inputs, while the result and the calculation status be-
come outputs. Subsequently, the sufficient bit-width for each input and output
has to be determined based on the values it has to represent. Both number in-
puts and the result output are in the range [−999, 999] and thus each of them
needs 11 bits. The calculation status contains two states that can be represented
using only one bit. For the operator input, three bits are required since its value
can either be reset or one of the six supported arithmetic operators.

After the inputs and the outputs have been identified, we proceed to the
translation of the algorithmic behavior. Some parts of the algorithmic behavior
can be translated one-to-one, for example, the range check of the numbers. Before
any computation, the respective inputs are checked if their values are within
the valid range. The function calculate of the SystemC model is refined to two
additional modules: the module CALCULATE to perform the actual calculation,
and the module SELECT that stores the last calculated result and delivers it to
CALCULATE when an accumulative operation is chosen.

To speed up the development, we integrate two existing IP components into
the module CALCULATE: an Arithmetic Logic Unit (ALU) – for the addition
and subtraction – and a multiplier. Both IPs are taken from the M1 Core [14].
The ALU itself has 15 different operation modes, including the arithmetic func-
tions addition and subtraction, some shift and some Boolean operations. Both
units can handle numbers up to 32 bits. Thus, an additional check has to be
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added to ensure that either the calculated result is in the allowed range or the
status output is set.

The overall structure of the RTL design is depicted in Fig. 9. As can be
seen, the two number inputs, the operator input, the result output, and the
calculation status are denoted as a, b, op, results, and status, respectively. In
each calculation, the inputs are checked first in the unit CHK1 whether they are
within the valid range. Then, they are forwarded to the CALCULATE module.
The CALCULATE module calculates the result using either the ALU or the
multiplier depending on the value of the input op. This result is then checked
again in unit CHK2.

Checking the Completeness. After the RTL model has been completely
implemented, its correctness has to be verified. For this task, the complete set
of properties at the behavioral model is also refined to a set of RTL properties.
Essentially, timing needs to be added to the properties while adjusting the syntax
of the PSL properties.

After all refined properties have been proven, we perform the completeness
check at RTL using the method proposed in [19]. The check detects uncovered
behavior of the RTL model for the value 1112 of the 3-bit operator input op.
The other seven values correspond to the defined operations of the calculator
and hence the behavior in these cases is fully specified by the property set. In the
case of 1112, the ALU performs an unintended operation (a shift operation). This
mismatch is possible because the ALU has not been specifically developed for the
calculator (in fact as mentioned above the ALU is an external IP component).
This shows clearly that completeness checks are necessary, in particular, since
integrated IPs may have additional but unintended behavior.

4 Conclusions

In this paper, we have presented the concept of Completeness-Driven Develop-
ment (CDD). With CDD, completeness checks are added orthogonally to the



state-of-the-art design flow. As a result, completeness is ensured already at the
highest level of abstraction and during all refinement steps. Hence, bugs are
found as soon as possible and are not propagated to lower levels. As a result, ex-
pensive design loops are avoided. We have demonstrated the advantages of CDD
for an example. For two abstraction levels (behavioral level and RTL) we have
shown that completeness is essential for correctness and efficient development.

Going forward, to implement the concept of CDD, high-level and continu-
ous completeness measures are necessary. Furthermore, innovative methods to
support correct transformation as well as property refinement need to be inves-
tigated.
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