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Abstract—Due to its promising applications in domains like
quantum computation or low-power design, synthesis of re-
versible circuits has become an intensely studied topic. However,
many synthesis methods are limited by non-scalable function
representations like truth tables. As an alternative, synthesis
exploiting graph-based representations have been suggested. The
underlying structure is a decision diagram (DD) that may vary
regarding reduction methods, decomposition rules, or ordering
restrictions.

In this work, we review the progress of DD-based synthesis.
It is shown that dedicated transformation rules can be applied
to generate circuits for functions with a large number of inputs.
We discuss the effect of different decomposition types or typical
DD improvements like complement edges and re-ordering. Fur-
thermore, we describe how DD-based synthesis can be exploited
to transfer theoretical results known from decision diagrams into
the domain of reversible circuits. Finally, further directions for
future work are outlined.

I. INTRODUCTION

Reversible circuits realize n-input n-output functions that
map each possible input vector to a unique output vector
(i.e. bijections). Although reversible logic significantly differs
from conventional (irreversible) logic (e.g. fan-out and feed-
back are not directly allowed), it has become an intensely
studied research area in recent years. In particular, this is
caused by the fact that reversible logic is the basis for several
emerging technologies. Examples include applications in the
domain of

o Low Power Computation, where the fact that no infor-
mation is lost in reversible computation can be exploited
(see e.g. [1], [2], [3]),

o Adiabatic Circuits, a special low power technology to
where reversible circuits are particularly suited for (see
e.g. [4]),

e Encoding and Decoding Devices, which always realize
one-to-one mappings and, thus, inherently follow a re-
versible computing paradigm (see e.g. [5]),

e Quantum Computation, which enables to solve many
relevant problems significantly faster than conventional
circuits and inherently is reversible (see e.g. [6]), and

o Program Inversion (see e.g. [7]), as programs based on a
reversible computation paradigm would allow an inherent
and obvious program inversion.

Further applications of reversible logic can be found in the
domain of optical computing [8], DNA computing [2], and
nano-technologies [9].

However, for a long time, synthesis of reversible circuits
was limited. Exact (see e.g. [10], [11]) as well as heuristic
(see e.g. [12], [13], [14], [15], [16], [17]) methods have been
proposed (see e.g. [18] for a more detailed overview). But
both are applicable only for relatively small functions. Exact
approaches reach their limits with functions containing more
than 6 variables [11] while many heuristic methods are able to
synthesize functions with at most 30 variables [16]. Moreover,
often a significant amount of run-time is needed to achieve
these results.

These limitations are caused by the underlying techniques.
The existing synthesis approaches often rely on truth tables
(or similar descriptions like permutations) of the function to
be synthesized (e.g. in [12], [13]). But even if more compact
data-structures like DDs [15], positive-polarity Reed-Muller
expansion [16], or Reed-Muller spectra [17] are used, the same
limitations can be observed since all these approaches apply
similar strategies (namely selecting reversible gates so that the
choosen function representation becomes the identity).

In order to address this problem, an alternative based on
decision diagrams (DD) has been introduced in [19]. DD-
based synthesis can cope with significantly larger functions.
The basic idea is thereby as follows: First, for the function
to be synthesized a decision diagram [20] is built. This can
efficiently be done for large functions using existing well-
developed techniques. Then, each node of the decision diagram
is substituted by a cascade of reversible gates. Finally, all
cascades are combined forming the desired circuit. By this, a
much more efficient data-structure has been exploited allowing
for synthesis of reversible circuits for significantly larger
functions. Besides that, the concept of DD-based synthesis can
be exploited to transfer theoretical results known for decision
diagrams into the domain of reversible circuits.

In this work, we review the general ideas and the progress
on DD-based synthesis that has been made in the last years. We
particularly describe the initial idea and discuss how different
decomposition types as well as typical DD improvements
like complement edges or re-ordering affect the size of the
resulting circuits. Furthermore, how to transfer theoretical
results from DDs to reversible circuits is described. Besides
that, directions for future work are outlined.

II. BACKGROUND
A. Reversible Circuits

Reversible circuits are digital circuits with the same number
of input signals and output signals. Furthermore, reversible
circuits realize bijections only, i.e. each input assignment maps
to a unique output assignment. Accordingly, computations can
be performed in both directions (from the inputs to the outputs
and vice versa).

Reversible circuits are composed as cascades of reversible
gates. Each reversible gate over the inputs X = {z1,...,2,}
consists of a (possibly empty) set C' = {x;,,...,2;,} C X
of control lines and a set T C X \ C of target lines.
The most commonly used reversible gate is the Toffoli
gate TOF(C,z;) [21], which consists of a single target
line z; € X \ C whose value is inverted if all values on
the control lines are set to 1 or if C = (), respectively. All
remaining values are passed through the gate unaltered.

Example 1: Fig. 1(a) shows a Toffoli gate drawn in standard
notation, i.e. control lines are denoted by @, while the target
line is denoted by . A circuit composed of several Toffoli
gates is depicted in Fig. 1(b). This circuit maps e.g. the input
111 to the output 110 and vice versa.
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Fig. 1. Toffoli gate and Toffoli circuit

To measure the cost of a reversible circuit, different metrics
are applied (sometimes depending on the addressed technol-
ogy). In general, the number of circuit lines is an important
criterion. In particular in the domain of quantum computation,
the number of lines is equal to the number of qubits — a
restricted resource.

Beyond that, the costs of the respective gates themselves
are important, too. Since simply counting the number of gates
does not adequately reflect the effort to realize them, so
called quantum costs are applied. They measure how many
elementary quantum operations are needed in order to realize
a reversible gate [6]. In the past, different methods have been
introduced that convert a reversible gate into its equivalent
quantum operations (see e.g. [22], [23], [24]). Accordingly,
different metrics for quantum costs are applied.

B. Binary Decision Diagrams

A Boolean function f : B” — B can be represented by
a Decision Diagram (DD) [20]. A DD is a directed acyclic
graph G = (V, E) where e.g. a Shannon decomposition

f=Tife,—0+Tife,=1 (1 <0< n)

is carried out in each node v € V. The functions f;,—o
and f,,—1 are the cofactors of f. In the following, the node
representing fy,—o (fz,=1) is denoted by low(v) (high(v))
while x; is called the select variable. A DD is called free if
each variable is encountered at most once on each path from
the root to a terminal node. A DD is called ordered if in
addition all variables are encountered in the same order on all
such paths. The size k of a DD is defined by the number of
nodes.

In the past, several techniques to optimize the size of
DDs have been developed. In particular shared nodes [20],
i.e. nodes v which have more than one predecessor, allow
significant reductions. In particular, functions f : B" — B™
(i.e. functions with more than one output) can be represented
more compactly using shared nodes. Further reductions can be
achieved if complement edges [25] are applied. This enables
the representation of a function as well as of its negation by a
single node only. Furthermore, the size of a DD significantly
depends on the chosen ordering of its input variables [20].

Example 2: Fig. 2(a) shows a DD representing the func-
tion f = T1T2T3%4 + T1T2X3T4 + T1ToT3Tq + T1T2T3T4 aS
well as the respective co-factors resulting from the application
of the Shannon decomposition.

III. DD-BASED SYNTHESIS

In this section, we briefly review DD-based synthesis of
reversible circuits as introduced in [19] for Binary Decision
Diagrams [20]. This provides the basis for the remaining
paper, where the application of optimization techniques for
decision diagrams to the synthesis approach is discussed.
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(b) Resulting circuit

Fig. 2. Example for BDD-based synthesis

The aim of each synthesis approach is to determine a circuit
realization for a given Boolean function. It is well known, that
Boolean functions can efficiently be represented by DDs [20].
Having a DD G = (V, E)), a reversible circuit can be derived
by traversing the DD and substituting each node v € V' with
a cascade of reversible gates. The respective cascade of gates
depends on the successors of the node v. Table I provides
the cascades of Toffoli gates for all possible scenarios of a
DD node. Note that this sometimes requires an additional
(constant) line.

Based on these substitutions, a method for synthesizing a
Boolean function as a reversible circuit can be formulated:
First, a DD for function f to be synthesized is created. This
can efficiently be done using state-of-the-art DD packages
(e.g. CUDD [26]). Next, the resulting DD G = (V, E) is
traversed by a depth-first search. For each node v € V,
cascades as depicted in Table I are added to the circuit. If
the entire DD has been traversed, a circuit realizing f has
been obtained.

Example 3: A circuit realizing the function represented by
the DD as shown in Fig. 2(a) is realized. First, the co-
factor f; can easily be represented by the primary input z4.
Having the value of f; available, the co-factor fo can be
realized by the first two gates depicted in Fig. 2(b)'. In this
manner, respective sub-circuits can be added for all remaining
co-factors until a circuit representing the overall function f
results. The remaining steps are shown in Fig. 2(b).

As a result, circuits are synthesized which realize the given
function f. Since, each node of the DD is only substituted by a
cascade of gates, the proposed method has a linear worst case
run-time and memory complexity with respect to the number
of nodes in the DD.

INote that an additional circuit line is added to preserve the values of x4
and x3 which are still needed by the co-factors f3 and fa, respectively.
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IV. IMPROVEMENTS

For the first time, DD-based synthesis allowed the automatic
realization of large reversible functions, i.e. functions with
more than 100 inputs. At the same time, optimization of
decision diagrams has heavily been considered by researchers
in the past (using e.g. new decomposition types, complement
edges, or reordering strategies). This builds the basis for
further improvements of reversible circuit synthesis through
decision diagrams. In this section, some of the improvements,
which have already been investigated, are briefly discussed.
Afterwards, further research directions are outlined.

A. Consideration of Alternative Decompositions

Besides Shannon, further decompositions of Boolean func-
tions exist. In particular, positive Davio and negative Davio
decomposition defined by

f=foi=0®xi fz,=2
f = fﬂci:1 @Ez : fii:2

with f,.—o = fs,—0 @ fu,=1 have been established in the
past?. Considering positive and negative Davio decomposition
has several benefits for reversible circuit design since

o for certain functions they enable decomposing a given
function into a smaller number of different sub-functions,
i.e. the size of the decision diagram is reduced,

e in many cases they enable more compact realizations as
reversible circuits, and

« they enable the preservation of the values of some co-
factors without additional circuit lines so that the overall
line count can be kept small.

Consequently, smaller circuits may result if these alternative
decompositions are applied. This has been investigated in de-
tail in [28] for Kronecker Functional Decision Diagrams [29].
To this end, further substitutions for the respective decompo-
sitions have been developed. Table II lists the cases which
additionally have to be considered.

Example 4: Fig. 3(a) shows a decision diagram represent-
ing the function f = T1T2T3%4 + T1X2X3T4 + T1T2X3T4 +
T1T2X3x4, Where positive Davio decomposition is applied
to each node. Traversing this decision diagram, first the co-
factor f; is considered. This can be represented by the primary
input x4. Then, the co-factor f, can be realized. Continuing
this process until the depth first-traversal is completed, a circuit
as depicted in Fig. 3(b) results.

As shown by the example, using positive and negative
Davio decomposition, a more compact reversible circuit can
be realized for the considered function. More precisely, in
comparison to the resulting circuit from Fig. 2 the number
of lines is reduced by 2, the number of gates by 5, and the
quantum cost by 17 for this simple example.

(pos. Davio)
(neg. Davio)

B. Complement Edges

Further reductions in DD sizes can be achieved if Comple-
ment Edges (CEs) [25] are applied. If a CE is applied, the
output value of its connected node becomes inverted. This
allows to represent a (sub-)function as well as its negation
by a single node only. The effect of CEs to the resulting
circuit size has been investigated in [30]. Also here, proper
substitutions have been determined which take the inversion
by CEs into account. Based on this, it was shown that the
consideration of CEs, in fact, may lead to larger cascades
in comparison to the substitution without CEs. However,
the resulting reduction in the size of the decision diagram
compensated this drawback in the majority of the cases. This
demonstrates that exploiting optimization of decision diagrams
does not necessarily improve the resulting reversible circuits.

C. Ordering of DDs

Finally, the exploitation of different ordering strategies of
decision diagrams has been considered [30]. It is well known
that the order of the variables has a high impact on the
size of the resulting DD [20]. Hence, several approaches

2In fact, it has been proven that Shannon, positive Davio, and negative
Davio decomposition are sufficient to efficiently decompose Boolean func-
tions [27].
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Fig. 3. Example for synthesis exploiting Davio decomposition

have been proposed to achieve good orderings (e.g. through
sifting [31] or evolutionary algorithms [32]) or to determine
exact results [33] in the past. As observed in [30], the selected
ordering, in fact, also has a strong effect on the size of the
resulting circuits. Usually, an ordering which improves the
DD size also improves the circuit size. However, also here
examples have been found showing that optimization for DDs
not always leads to smaller circuits.

D. Future Directions

The improvements discussed above only represent “the tip
of the iceberg” of possible methods one can apply to improve
DD-based synthesis. In fact, DD-optimization is a very well
investigated topic. Most of the presented methods have not

yet been investigated for exploitation during reversible circuit
synthesis. Promising directions to be considered include:

Consideration of Entire Sub-trees: So far, only single
nodes of a decision diagram are solely mapped to re-
versible circuit cascades. However, it is very likely that
much better results can be achieved if also frequently
occurring sub-trees in the DD are substituted with corre-
sponding cascades.

Adjusting the Cost Function of the DD: So far, all
optimizations have been applied using the number of
nodes in the decision diagram as cost function. However,
it would be much more appropriate if instead the expected
quantum costs or the expected number of lines (according
to the mappings of Table I and Table II) would be applied.
Then, e.g. re-ordering would not try to minimize the
number of nodes, but the actually desired result, i.e. the
size of the resulting circuit.

Extending the Graph Structure: Due to the restrictions
e.g. with respect to ordering and decomposition, many
Boolean functions cannot efficiently be represented. Con-
sequently, extended graph structures have been proposed
in the past. Examples include e.g. Read-k-times DDs,
i.e. a generalization of DDs in which variables may occur
up to k times on each path [34], or Mod20OBDDs [35],
where certain XOR nodes are exploited. Both techniques
allow for a smaller representation of functions which also
can be exploited during reversible circuit synthesis.
Reducing the Number of Resulting Circuit Lines: DD-
based synthesis particularly suffers from a large number
of additional lines in the resulting circuits (as observed in
detail in [36]). An initial approach to reduce this number
has been presented in [37]. However, more detailed
investigations are still left for future work.
Consideration  of  Alternative  DDs:  Alternative
DDs, e.g. Quantum Multiple Valued Decision
Diagrams (QMDDs) [38], provide a more specific
data-structure for reversible functions. Hence, developing
synthesis based on these DDs seems plausible. First
promising results following this direction have been
presented in [39] where QMDDs have been exploited
to realize large functions with the minimal number of
circuit lines.



In order to realize these ideas, the implementation of the
existing DD-based synthesis approaches available through
RevKit [40] can be exploited.

V. THEORETICAL CONSIDERATION

Besides practical issues, also the theoretical background
of decision diagrams has intensely been studied in the past
(see e.g. [41], [42], [43]). Since the results of DD-based
synthesis as applied so far are asymptotically bounded by the
number of nodes in the decision diagram, these theoretical
results can easily be transferred to the domain of reversible
circuits. More precisely, if a function f with n primary
inputs and represented by a DD of size k invoking Shannon
decomposition only is synthesized, the resulting circuits are
composed of at most

e k+n circuit lines (since besides the input lines, for each

node at most one additional line is added) and

o 3-k gates (since for each node cascades of at most 3 gates

are added according to the substitutions of Table I).

Although this already allows some interesting conclusions
(e.g. each function can be realized as reversible circuits with at
most 3 - 2" gates, symmetric functions can always be realized
with a quadratic number of gates, etc.), the underlying upper
bound is quite weak. It is very likely that many further results
(e.g. tighter upper bounds for general functions as well as for
respective function classes) can be derived. Hence, a detailed
analysis of the theoretical results that can be obtained by the
DD-based synthesis is a promising research direction.

VI. CONCLUSIONS

In this work, we reviewed the general idea and the progress
on DD-based synthesis that has been made in the last years.
Besides that, we outlined further directions that can be ad-
dressed in future work. To this end, the implementation of
the existing DD-based synthesis approaches available through
RevKit [40] may provide a good starting point.
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