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Abstract—In the ESL design flow, the crucial task of developing
a golden model that correctly implements the natural-language
top-level specification has received little attention so far. The
major drawback of the current practice is the isolation of design
and verification. Motivated by this and the recent advance of
verification techniques for SystemC ESL models, we propose a
novel methodology to develop a correct SystemC golden model
from the top-level specification. The proposed methodology is
driven by the requirements and the scenarios in the specification
with design and verification going hand in hand. An early
formalization of requirements and scenarios produces a set of
properties and a testbench together with a code skeleton that
will be successively extended to a full SystemC ESL model. The
availability of properties and a testbench beforehand enables
verification-driven development of the model. The advantages
of the methodology are discussed and demonstrated by a case
study.

I. INTRODUCTION

Today’s System-on-Chips (SoCs) integrate an increasingly
large number of hardware and software components. Such
complex systems are extremely challenging to develop un-
der tight time-to-market constraints. To cope with this very
challenging development task, the level of abstraction has
been raised beyond RTL to the so-called Electronic System
Level (ESL) [1]. Communication and synchronization at ESL
are modeled in terms of abstract operations and events rather
than as low level signals or wires. For the description of
ESL designs, the C++ class library SystemC [2], [3], [4] has
become the de-facto standard. SystemC provides fundamental
modeling components such as processes, modules, ports, in-
terfaces and channels together with an event-driven simulation
kernel to describe systems at different levels of abstraction. For
abstracting the communication Transaction Level Modeling
(TLM) has been standardized in SystemC [2].

The starting point of the ESL design flow is a top-level spec-
ification. This specification is written in natural language and
contains requirements and scenarios for the system to be de-
veloped, which have been agreed upon by all the stakeholders.
In [1], the ESL design flow is divided into six main steps in a
top-down manner: specification and modeling, pre-partitioning
analysis, partitioning, post-partitioning analysis and debug,
post-partitioning verification, and HW/SW implementation.
The top-level specification is manually converted to an ESL
design in the first step. This first abstract design is considered
a golden model. It is used as reference for the subsequent
steps following the SystemC refinement methodology to create
synthesizable hardware and software descriptions. However,
the crucial task of developing a golden model, which correctly
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implements the natural language specification, has received
little attention so far.

In current practice, the designer implements the first ESL
model according to his interpretation of the specification.
Then, the verification engineer formulates properties and test-
cases following his understanding of the specification and
the already existing implementation. The major drawback
here is the isolation of design and verification. The design
might have been implemented in a way that makes it very
challenging to verify (e.g. it is hard to formulate properties
and/or to check them efficiently). Moreover, ambiguities and
misinterpretations of the specification are detected rather late.

On the other hand, a lot of efforts have been made recently
in verification of SystemC ESL designs: [5] has introduced a
high-level property language for SystemC based on the Prop-
erty Specification Language (PSL) [6]. Simulation-based [7],
[8], [9], [10] and formal verification techniques [11], [12], [13]
have been proposed. Debugging methods [14], [15], functional
coverage [16], [17], and mutation-based coverage [18], [19],
[10] have been also investigated.

To overcome the deficiencies of the current practice we
propose a novel methodology to develop a correct SystemC
golden model from the top-level specification. The proposed
methodology is driven by the requirements and the scenarios in
the natural language specification with design and verification
going hand in hand. An early formalization of requirements
and scenarios produces a set of properties and a testbench (a
set of testcases) together with a SystemC code skeleton that
will be successively extended to a full ESL model. The
availability of properties and testbench beforehand enables
verification-driven development of the model, i.e. the model
is checked for correctness after some small changes using the
mentioned ESL verification approaches.

The proposed methodology provides the following advan-
tages:

• Early identification of ambiguities and inaccuracies in the
specification (before implementation).

• Early bug detection and therefore the subsequent debug-
ging process is simpler.

• Increased confidence of the model correctness since each
modification can be immediately verified.

• More efficient verification because the code skeleton is
created in sync with the formalized requirements.

We illustrate the methodology and the advantages for a
concrete example, i.e. the development of a vending machine.
As a result we obtained a correct golden model for the vending
machine fully compliant with the specification which has been
refined during the development process.

The remainder of this paper is structured as follows: In
Section II related work is discussed. Then, Section III presents



the proposed methodology. A case study demonstrating our ap-
proach is described in Section IV. Finally, Section V concludes
the paper.

II. RELATED WORK

The basic idea of integrating design and verification has
been studied in the software domain. Test-driven software
development (TDD) [20] is a software development approach
where tests are written before the production code is created.
Initially, the tests should fail. Then, the programmer writes
production code to make the tests pass. Afterwards, the code
is refactored until all defined tests pass again. TDD falls
into the category of agile software development and step-wise
improves the implementation.

An alternative software development approach is Design-
by-Contract (DbC) [21]. In DbC the software developer de-
fines formal interface specifications using pre-conditions, post-
conditions and invariants forming the contracts. In this way,
DbC is a process in the software design phase where the
requirements are mapped into the software as contracts. There
are many languages which natively support DbC (e.g. Eiffel
and D) and various tools that enable DbC for standard lan-
guages.

A combination of TDD and DbC is Specification-Driven
Development (SDD) proposed in [22]. In SDD it is not
necessary to choose between the two approaches a priori.
Instead, they are used together. For example, contracts can
help when formulating tests and can act as test amplifier.

In Property-Driven software Development (PDD) [23] the
specification, tests and executable model of the software are
built together. PDD is an iterative process guided by user sto-
ries and use cases. After all tests succeed system properties are
generalized and checked using simulation or model checking.

In summary, the briefly described software development
approaches help to improve the software quality. However,
they target the software development process and not ESL
design.

For the automatic generation of behavior models in soft-
ware development, formalized scenarios (e.g. UML sequence
diagrams in [24]) and formalized requirements (e.g. Object
Constraint Language pre- and postconditions in [24], Fluent
Linear Temporal Logic properties in [25]) have been used.

In [26], formal specification is utilized to improve the
development process of software drivers and hardware devices.
Based on the English specification, three models for software,
hardware and HW/SW interface, respectively, are developed
in a C-based specification language. However, the focus of
the paper is on the added value of these models in the
development process. The process to create them starting from
the specification is not elaborated.

On the pure hardware side in the PROSYD project [27]
a property-based design flow has been developed. It includes
requirement definition, design, implementation, and verifica-
tion and is built on PSL. However, the focus of the approach
is clearly on hardware and only lower levels of abstraction,
i.e. RTL, are considered.

III. METHODOLOGY

The proposed methodology is introduced in this section.
The overall flow is depicted in Fig. 1. As can be seen, the
flow starts with the top-level specification written in natural
language. This document has served as the communication
mechanism between the stakeholders and has been agreed
upon by all. The specification consists of requirements and
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Fig. 1. Overall Design Flow

scenarios. The general behavior of the system to be developed
is captured by the requirements, while the scenarios describe
the observable behavior in concrete cases (i.e. given inputs
and expected outputs). Actually, the requirements alone can
fully describe the behavior but they are generally harder to
grasp and communicate. The scenarios complement them in
this aspect.

The first step of our methodology is the formalization of
the specification. This step is divided further in two substeps:

1) First, the requirements are translated into a set of high-
level properties in PSL. The behavior described by
the requirements is formalized as sequences of abstract
operations controlled by conditions concerning abstract
data. The defined operations and data should also be
found in the design, otherwise the properties cannot be
checked. Thus, this formalization step also produces a
code skeleton in SystemC containing these elements.
Furthermore, the formalization requires to carefully
think about the natural language description, and thus
also helps resolving ambiguities and inaccuracies in the
requirements. Once detected, these deficiencies should
be fixed before the formalization is continued.

2) Then, the scenarios are translated into SystemC testcases
based on the existing code skeleton. The translation
also helps resolving ambiguities and inaccuracies in the
scenarios. Given inputs and their expected outputs are
linked together with the defined operations and data.
Inconsistencies between the scenarios and the require-
ments and missing requirements can be identified as
well - then the translation of a scenario is not possible,
because for instance some needed data has not been
defined yet in the code skeleton. In such a situation the
requirements need to be updated and the first substep
has to be repeated.

After the formalization has been done, we have a set of
PSL properties, a testbench (a set of SystemC testcases), and a
SystemC code skeleton. At the beginning of the development
step, the code skeleton can already be checked against the
properties and the testbench, but the results are negative. The
development is driven by the verification results: the code



TABLE I
FORMALIZATION OF REQUIREMENTS

REQ Textual description
Termi Formalizationi

PSL Property

REQ1 The user can choose any item that is available.
Availability of an item X Integer data quantity[X], a positive value means X is available
Choose an item X Operation choose(X), returns ”true” if successful, ”false” otherwise

Property PSL1: default clock = choose:exit;
always ((quantity[choose:1] > 0)−>choose:0)

REQ2 An item will only be released, if at least the price of the item has been paid.
The amount of money already paid Integer data paid amount
Price of an item X Integer data price[X]
Release an item X Operation release item(X)

Property PSL2: default clock = release item:entry;
always (paid amount >= price[release item:1])

REQ3 As soon as the user pays the exact price of the chosen item, the item will be released.
The chosen item Integer data chosen item
Pay an amount Z Operation pay(Z)

Property PSL3: default clock = ∗:exit; //sample at the end of any operation
always ((pay:exit && paid amount == price[chosen item])
−>next (release item:exit && release item:1 == chosen item))

REQ4 The vending machine can only release an item which is available
Property PSL4: default clock = release item:entry;

always (quantity[release item:1] > 0)
REQ... ...

skeleton is incrementally extended to a full model so that
more and more properties and testcases become successfully
evaluated. Ideally, in each development step, the developer
chooses either an unsatisfied property or a failed testcase, and
subsequently extends the code skeleton so that the function-
ality described by the chosen property/testcase is fulfilled.
As mentioned in the introduction, recently proposed ESL
verification approaches for SystemC can be employed in this
process. If a code extension violates a property or a testcase
that passed before, debugging techniques are applied to find
and fix the bug(s). After the property set and the testbench
have been completely satisfied, coverage analysis is employed.
This enables the detection of scenarios that are covered by
neither the property set nor the testcases. If such a scenario
is detected, the specification needs to be extended to capture
it (see dashed arrows on the left and right in Fig. 1). This
incremental change to the specification is then propagated
through the formalization step down to development.

At the end of the development step, a SystemC ESL
model fully compliant with the formalized specification (i.e.
the PSL property set and the SystemC testbench) results.
The compliance with the top-level specification still depends
on the formalization step. Although most ambiguities can
be identified and fixed in this step, no absolute guarantee
can be given. Therefore, it is also very important that the
formalization step and the development step are not solely
performed by one designer/engineer/team.

In the next section we demonstrate the proposed methodol-
ogy for a concrete example.

IV. CASE STUDY

In the case study we consider the development of a vending
machine. First, we briefly describe the property language
used in the formalization. Then, requirements of the vending
machine in English and their formalization as properties are
given. Afterwards, the code skeleton produced by this for-
malization is discussed. Next, we show how testcases can be
developed from the scenarios described in the specification.
Finally, we discuss the verification-driven development of the
vending machine.

A. High-level Properties at ESL
For property specification an extension of PSL [6] is

adopted. This extension [5] has introduced additional prim-
itives – coming from the software world – which are well
suited for ESL property specification. Besides the variables in
the design, the following primitives are used:

• func name:entry - start of a function/operation
• func name:exit - end of a function/operation
• event name:notified - notification of an event
• func name:number - return value in case number = 0

and parameters of a function/operation otherwise
As default temporal resolution for evaluating the temporal

operators we sample at all system events, which is either the
start or the end of any abstract operation or the notification of
any event. It is possible to change the temporal resolution,
e.g. to sample only at notification of a certain event. For
details on the used property checking approach we refer to
our previous work [11].

B. Requirements
Generally, for the formalization of a requirement we need

to break down the requirement into individual terms and
formalize these first. The individual formal elements are then
combined to create properties. Table I presents the textual
description, the terms, their formalization and the final PSL
property for an excerpt of the initial requirements. In the
following we exemplarily describe the process in more detail
for three requirements.

REQ2: An item will only be released, if at least the price
of the item has been paid.

For the formalization of the first part, we need to define the
term ”to release an item”. This term describes clearly an action
and thus is defined as an abstract operation release item.
For the second part, two terms need to be formalized: ”the
price of an item” and ”the amount that has been paid”.
Both terms should apparently be defined as abstract integer
data: price[X] for an item X and paid amount, respectively.
Now, the requirement can be formulated as the property
PSL2 shown in Table I, which reads as follows: everytime
an item should be released (release item:entry), the paid



amount should be at least the price of the item to be released
(price[release item:1], the item to be released corresponds to
the first argument of the function release item).

REQ3: As soon as the user pays the exact price of the
chosen item, the item will be released.

This requirement looks very similar to REQ2, but there is a
substantial difference: REQ3 describes a temporal sequence of
actions, while REQ2 only specifies the condition to release an
item. The action ”to release an item” has been defined already.
The second action ”to pay” is now formalized as an abstract
operation pay. As the term ”exact price of an item” has also
been defined, we only need to define ”the chosen item” to
complete the formalization of REQ3. This term is defined
as abstract integer data chosen item, respectively. Now, the
requirement can be formulated as the property PSL3 shown in
Table I. which reads as follows: after the user has paid some
amount (pay:exit) and if the paid amount has become equal to
the price of the chosen item, the next operation of the vending
machine is to release this item (this corresponds to the term
”as soon as” in the requirement).

REQ4: The vending machine can only release an item which
is available.

As can be seen, both terms needed to formalize this re-
quirement are already defined: ”to release an item” and ”an
item is available” (item X is available if the value of the
abstract data quantity[X] is positive, see REQ1 in Table I).
The requirement is translated to the property PSL4 in a similar
manner to REQ2.

C. Code Skeleton

The formalization of the requirements produces the code
skeleton depicted in Fig. 2. This step has not been automated in
the case study. As can be seen from Fig. 2, the defined abstract
operations are contained in a sc interface (see Line 1-7). The
vending machine extends this sc interface and thus should im-
plement all operations. Furthermore, all defined abstract data
can be seen in the definition of the struct vending machine
(see Line 9-13). The code skeleton lays the basis for the next
step where we consider the scenarios as given in the top-level
specification.

D. Scenarios

This section describes how the scenarios of the vend-
ing machine specification are translated into testcases. As
mentioned before, the translation is also based on the code
skeleton described in the previous section. In the following
we exemplarily give the description of some scenarios and
their translation.

Before that, we define the common structure for all testcases
captured by the abstract testcase shown in Fig. 3. As can
be seen this testcase has a sc port connected to a vending
machine instance, and a SC THREAD main() which first
executes setup() to setup the availability and the price of the
items and then the virtual method test. This virtual method
is to be defined for each scenario individually. Note that the
vending machine interface (see Fig. 2) does not provide a
mechanism for the setup. Thus, we need to extend the interface
by a method setup item, which set the quantity and price for
each item accordingly. Note that this method is only needed
to setup the testcase so it does not correspond to a missing
requirement. Now, we describe two scenarios.

1 class vending machine if : public sc interface {
2 public:
3 virtual bool choose(unsigned) = 0;
4 virtual void release item(unsigned) = 0;
5 virtual void pay(unsigned) = 0;
6 ...
7 };
8 struct vending machine : public sc module, public

vending machine if {
9 unsigned quantity[MAX ITEM];

10 unsigned price[MAX ITEM];
11 unsigned paid amount;
12 unsigned chosen item;
13 bool change available;
14 vending machine(sc module name name)
15 : sc module(name) { // to be implemented }
16 // to be implemented
17 };

Fig. 2. Code skeleton produced by formalization of requirements

1 struct testcase : public sc module {
2 sc port<vending machine if> cm port;
3 SC HAS PROCESS(testcase);
4 testcase(sc module name name)
5 : sc module(name) { SC THREAD(main); }
6
7 void setup() {
8 // setup quantity and price
9 cm port−>setup item(5, 3, 90); // item 5, quantity 3, price

0.90 EURO
10 cm port−>setup item(6, 0, 50);
11 cm port−>setup item(12, 1, 120);
12 cm port−>setup item(14, 2, 80);
13 cm port−>setup item(16, 4, 100);
14 }
15 virtual void test() = 0;
16 void main() { setup(); test(); }
17 };

Fig. 3. Abstract testcase

SCE1: An user approaches the vending machine. The ma-
chine is ready. The user chooses item number 12. The user
pays exactly the price of this item. The machine releases a
piece of item 12. Afterwards it is ready for the next purchase.

As can be seen, this scenario requires the vending machine
to be ready for purchase at the beginning and the end of
the scenario. This cannot be formulated on the code skele-
ton yet, since currently the vending machine has no status.
Furthermore, it is clearly a functional requirement that that
the vending machine should be ready again after a purchase.
Thus, the formulation of this scenario has detected this missing
requirement. After the requirements have been extended, a
data field indicating the current status of the vending machine
is added to the code skeleton. A function is ready() is also
added to allow the testcase to query this status. To check if
the machine has released a piece of item 12, we also need to
define the function get released item(). Overall, the scenario
SCE1 can then be formulated as the following testcase:

1 struct testcase1 : public testcase {
2 void test() {
3 assert(cm port−>is ready());
4 cm port−>choose(12);
5 wait(10, SC NS);
6 cm port−>pay(120);
7 wait(10, SC NS);
8 assert(cm port−>get released item() == 12);
9 assert(cm port−>is ready());

10 }
11 };

Note that the wait() statements are not part of SCE1, but
needed for the SystemC simulation. Now, the second scenario
is described.

SCE2: An user approaches the vending machine. The ma-
chine is ready. The user chooses item number 14. The user



throws in a 2 EURO coin. The machine releases a piece of
item 14 and 1.20 EURO change. Afterwards it is ready for the
next purchase.

This scenario is very similar to the last one SCE1, except
that the user pays more than the price of the wanted item. To
check the returned amount, we need to add the corresponding
function to the vending machine implementation. The testcase
is shown in the following code:

1 struct testcase2 : public testcase {
2 void test() {
3 assert(cm port−>is ready());
4 cm port−>choose(14);
5 wait(10, SC NS);
6 cm port−>pay(200);
7 wait(10, SC NS);
8 assert(cm port−>get released item() == 14);
9 assert(cm port−>get returned amount() == 120);

10 assert(cm port−>is ready());
11 }
12 };

E. Verification-driven Development
The vending machine has been extended from the initial

code skeleton to a full ESL SystemC design. The testbench
has been successfully simulated on this design (i.e. all testcases
have passed). The defined properties have been verified very
fast using the approach in [11]. One of the main reasons for the
efficiency of the verification can be explained as follows. Due
to the early formalization, the properties have been formulated
without restrictions posed by an existing implementation.
Thus, the properties could be kept very simple. As can be
seen in Table I, all properties belong to the simple subset of
PSL, which is known to be much easier to verify [6]. The
properties that have been formulated later for the detected
missing requirements also belong to this class.

In the following we discuss one of the bugs encountered
during the development process in more detail. After the
defined operations choose, pay, and release item have been
implemented, we checked the property set on the partial
model and discovered a violation of the property PSL4. The
violating sequence provided by the approach in [11] is as
follows: the user chooses an item and pays its price, the
vending machine releases the last available piece of this item,
then the user pays the exact price once again, finally the
vending machine releases one more piece of the item. The
last action is clearly not possible because the last piece has
been already released. This bug reveals an inaccuracy in the
specification: the requirement specifying the behavior after a
purchase is missing. Concretely, after the current purchase
is finished, the current chosen item needs to be invalidated
so that the user needs to choose an item again for the next
purchase, and thus the violating sequence is prevented. After
adding this requirement to the specification, we formulated
the corresponding property and extended the model for this
behavior. After that, the newly added property as well as the
property PSL4 became satisfied and the development process
could be continued.

V. CONCLUSIONS

We have presented a novel methodology to create a correct
golden model in SystemC from a given textual specification.
This initial modeling step has received little attention in the
literature so far. In our methodology the two components of
the specification – requirements and scenarios – are formalized
to a set of properties and a testbench, respectively. The
formalization step also produces a SystemC code skeleton, that

is incrementally extended to a full ESL model in a verification-
driven development process.

The proposed methodology has been demonstrated and
shown to be promising for a case study. Clearly, this paper
constitutes a first step towards a full verification-driven ESL
design flow. Key challenges for future research are to improve
the accessibility and the usability of the proposed general
framework by automating its individual steps. This includes
amongst other things automated assistance in the formalization
process by using natural language processing techniques, and
automatic generation of the code skeleton and also parts of
the implementation. For the latter task, current methods such
as [24], [25] can be adapted. For the former task, there also
exist first approaches in related contexts. In [28] for instance
an approach to generate an executable test environment from
textual requirement specifications via UML class diagrams and
the application of the classification tree methodology has been
proposed. For automation of behavior driven development the
integration of natural language processing has been considered
in [29]. For future work, we also plan to use the proposed
methodology for the development of a complex system.
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