
Verifying SystemC using an Intermediate Verification
Language and Symbolic Simulation∗

Hoang M. Le1 Daniel Große2 Vladimir Herdt1 Rolf Drechsler1,3

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2solvertec GmbH, 28359 Bremen, Germany

3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{hle, vherdt, drechsle}@informatik.uni-bremen.de grosse@solvertec.de

ABSTRACT
Formal verification of SystemC is challenging. Before deal-
ing with symbolic inputs and the concurrency semantics,
a front-end is required to translate the design to a formal
model. The lack of such front-ends has hampered the devel-
opment of efficient back-ends so far.

In this paper, we propose an isolated approach by using
an Intermediate Verification Language (IVL). This enables
a SystemC-to-IVL translator (frond-end) and an IVL veri-
fier (back-end) to be developed independently. We present
a compact but general IVL that together with an extensive
benchmark set will facilitate future research.

Furthermore, we propose an efficient symbolic simulator
integrating Partial Order Reduction. Experimental compar-
ison with existing approaches has shown its potential.

1. INTRODUCTION
The system modeling language SystemC [16, 12] is being

widely adopted to create golden models in the Electronic
System Level (ESL) design and verification flow [2]. The
golden models are developed using a behavioral/algorithmic
style in combination with abstract communication based on
Transaction Level Modeling (TLM) [16]. Ensuring the cor-
rectness of these models is of major importance since unde-
tected errors become very expensive in later design steps. To
verify the abstract SystemC models, the straight-forward ap-
proach is simulation offered already by the free event-driven
simulation kernel shipped with the SystemC class library [1].
Substantial improvements have been proposed by support-
ing the validation of (TLM) assertions, see e.g. [4, 8, 9, 23].
To further enhance simulation coverage, methods based on
Partial Order Reduction (POR) have been proposed [19, 3].
They allow to explore all possible scheduling sequences of
SystemC processes for a given data input. However, rep-
resentative inputs are still needed. Therefore, formal ap-

∗This work was supported in part the German Federal Min-
istry of Education and Research (BMBF) within the project
SANITAS under contract no. 16M3088 and by the German
Research Foundation (DFG) within the Reinhart Koselleck
project DR 287/23-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2701-9/13/05 ...$15.00.

proaches for SystemC TLM have been devised. But due to
the object-oriented nature of SystemC and its sophisticated
synchronous and asynchronous simulation semantics, formal
verification is very challenging [25].

We review existing formal approaches in detail in Sec-
tion 2. With some exceptions1, they use freely available
SystemC parsers and thus are hampered by their limitations
as detailed in [20]. At the same time most of the existing
approaches translate the SystemC design into a formal rep-
resentation. These representations are similar in their ex-
pressiveness which motivates the first major contribution of
this paper: the Intermediate Verification Language (IVL).
The properties of IVL and the resulting advantages include:

• Compact, intuitive and readable language: IVL has
been designed in such a way that both manual and
automatic transformations from SystemC are possible.

• Independent development of front-end and back-end:
IVL enables to focus on the problem that the user
wants to address.

• Open language and support: IVL is open and a free
parser is provided. Moreover, all freely available bench-
marks used by existing formal verification approaches
for SystemC have been transformed into an extensive
IVL benchmark set. This accelerates research in par-
ticular with respect to new formal approaches.

Based on IVL the second contribution of this paper is an
efficient symbolic simulator. The novelty of our simulator is
to combine and adapt two efficient verification techniques –
POR [11, 10] and symbolic execution [5] – under the simu-
lation semantics of SystemC. While POR prunes redundant
process scheduling sequences, symbolic execution efficiently
explores all conditional execution paths of each individual
process in conjunction with symbolic inputs. Subsequently,
the simulator covers all possible inputs and scheduling se-
quences of the design exhaustively. It supports both static
and dynamic POR and is configurable with respect to the
search algorithm for state traversal. For the first time we
provide a full experimental comparison of all available state-
of-the-art formal approaches. This comparison also demon-
strates clearly the potential of our proposed approach.

The rest of this paper is organized as follows. In Section 2
we review related work mainly on formal verification of Sys-
temC. Section 3 gives a brief introduction to SystemC. Then,
in Section 4 the IVL is introduced. The symbolic simulator
is presented in Section 5. Section 6 gives the experimental
results. Finally, the paper is concluded in Section 7.

1The parser is either undocumented or a proprietary tool.

2. RELATED WORK
A handful of formal verification approaches for SystemC

TLM have been proposed. Early efforts, for example [21,
17, 24], have very limited scalability or do not model the
SystemC simulation semantics thoroughly [18]. Among the
more recent approaches, the following four are the most
promising and currently represent the state-of-the-art.

STATE, first proposed in [15], translates SystemC designs
to timed automata. With STATE it is not possible to verify
properties on SystemC designs directly. Instead, they have
to be formulated on the automata and can then be checked
using the UPPAAL model checker.

SCIVER [13] translates SystemC designs into sequential
C models first. Temporal properties using an extension of
PSL [22] can be formulated and integrated into the C model
during generation. Then, C model checkers can be applied
to check for assertion violations. High-level induction on
the generated C model has been proposed to achieve com-
pleteness and efficiency. However, no dedicated techniques
to prune redundant scheduling sequences are provided.

KRATOS [7] translates SystemC designs into threaded C
models. Then, the ESST algorithm is employed, which com-
bines an explicit scheduler and symbolic lazy abstraction.
POR techniques are also integrated into the explicit sched-
uler. For property specification, simple C assertions are sup-
ported. The main performance bottleneck of KRATOS is
the potentially slow abstraction refinements.

SDSS [6] formalizes the semantics of SystemC designs in
terms of Kripke structures. Then, BMC and induction can
be applied in a similar manner as SCIVER. The main differ-
ence is that the scheduler is not involved in the encoding of
SDSS. It is rather explicitly executed to generate an SMT
formula that covers the whole state space. Still, no dedi-
cated techniques to handle equivalent scheduling sequences
are supported. SDSS allows simple properties reasoning
about variable values at the beginning of each evaluation
phase.

With respect to our proposed IVL, the threaded C pro-
grams used by KRATOS are the most close representation.
However, KRATOS just employs this representation as a
means to enable explicit process scheduling in its model
checking algorithm. It is not designed as an IVL and thus
for example it is not documented whether the full language
or which subset of C can be used. KRATOS itself appears
to support only a very small fraction of C. The parser of
KRATOS for this representation is also not available. Fur-
thermore, the SystemC-related constructs cannot be cleanly
separated, e.g. processes and channel updates are identified
by function name prefixes, events are declared as enum val-
ues, etc. The new SystemC constructs for process control
such as suspend and resume (cf. SystemC 2.3) are also not
supported.

3. BACKGROUND ON SYSTEMC
In the following only the essential aspects of SystemC are

described. SystemC has been implemented as a C++ class
library, which includes an event-driven simulation kernel.
The structure of the system is described with ports and mod-
ules, whereas the behavior is described in processes which
are triggered by events and communicate through channels.
A process gains the runnable status when one or more events
of its sensitivity list have been notified. The simulation
kernel selects one of the runnable processes and gives this
process the control. The execution of a process is non-
preemptive, i.e. the kernel receives the control back if the
process has finished its execution or suspends itself by call-

ing wait(). SystemC provides three types of processes with
SC THREAD being the most general type, i.e. the other
two can be modeled by using SC THREAD. For event-based
synchronization, SystemC offers many variants of wait() and
notify() such as wait(time), wait(event), event.notify(delay),
event.notify(), etc.

The simulation semantics of SystemC can be summarized
as follows [16]: First, the system is elaborated, i.e. instantia-
tion of modules and binding of channels and ports is carried
out. Then, there are the following steps to process:

1. Initialization: Processes are made runnable.

2. Evaluation: A runnable process is executed or resumes
its execution. In case of immediate notification, a wait-
ing process becomes runnable immediately. This step
is repeated until no more processes are runnable.

3. Update: Updates of channels are performed. These up-
dates have been requested during the evaluation phase.

4. Delta notification: If there are delta notifications, the
waiting processes are made runnable, and then the
simulation is continued with the Evaluation step.

5. Timed notification: If there are timed notifications,
the simulation time is advanced to the earliest one, the
waiting processes are made runnable, and the simula-
tion is continued with the Evaluation step. Otherwise
the simulation is stopped.

In the next section, we define the IVL based on this sim-
ulation semantics.

4. INTERMEDIATE VERIFICATION LAN-
GUAGE

The IVL is the stepping stone between a front-end and
a back-end. Ideally, it should be compact and easily man-
ageable but at the same time powerful enough to allow the
translation of SystemC designs. Our view is that a back-
end should focus purely on the behavior of the considered
SystemC design. This behavior is fully captured by the Sys-
temC processes under the simulation semantics of the Sys-
temC kernel. Therefore, a front-end should first perform
the elaboration phase, i.e. determine the binding of ports
and channels. Then it should extract and map the design
behavior to the IVL, whose elements are detailed in the fol-
lowing.

Based on the simulation semantics described above, we
identify the three basic components of the SystemC ker-
nel: SC THREAD, sc event and channel update. These are
adopted to be kernel primitives of the IVL: thread, event and
update, respectively. Associated to them are the following
primitive functions:

• suspend and resume to suspend and resume a thread,
respectively;

• wait and notify to wait for and notify an event (the no-
tification can be either immediate or delayed depend-
ing on the function arguments);

• request update to request an update to be performed
during the update phase.

These primitives form the backbone of the kernel. Other
SystemC constructs such as sc signal, sc mutex, static sen-
sitivity, etc. can be modeled using this backbone.

1 SC_MODULE(Module) {
2 sc_core :: sc_event e;
3 uint x, a, b;
4
5 SC_CTOR(Module)
6 : x(rand()), a(0)
7 , b(0) {
8 SC_THREAD(A);
9 SC_THREAD(B);

10 SC_THREAD(C);
11 }
12
13 void A() {
14 if (x % 2)
15 a = 1;
16 else
17 a = 0;
18 }

19
20 void B() {
21 e.wait();
22 b = x / 2;
23 }
24
25 void C() {
26 e.notify ();
27 }
28 };
29
30 int sc_main () {
31 Module m("top");
32 sc_start ();
33 assert (2 * m.b + m.a

== m.x);
34 return 0;
35 }

Figure 1: A SystemC example

The behavior of a thread or an update is defined by a func-
tion. Functions which are neither threads nor updates can
also be declared. Every function possesses a body which is a
list of statements. We allow only assignments, (conditional)
goto statements and function calls. Every structural control
statement (if-then-else, while-do, switch-case, etc.) can be
mapped to conditional goto statements (this task should also
be performed by the front-end). Therefore, the representa-
tion of a function body as a list of statements is general and
at the same time much more manageable for a back-end.

As data primitives the IVL supports Boolean and integer
data types of C++ together with all arithmetic and logic op-
erators. Furthermore, arrays and pointers of primitive types
are also supported. Additionally, bit-vectors of finite width
can be declared. This enables the modeling of SystemC data
types such as sc int or sc uint in the IVL.

For verification purpose, the IVL provides assert and as-
sume. More expressive temporal properties can be trans-
lated to FSMs and embedded into an IVL description by a
front-end. Symbolic values of primitive types are also sup-
ported.

SystemC Example.
Figure 1 shows a simple SystemC example. The main pur-

pose of the example is to demonstrate some elements of the
IVL. The design has one module and three SC THREADs
A, B and C. Thread A sets variable a to 0, if x is divisible by
2, and to 1 otherwise (Line 14-17). Variable x is initialized
with a random integer value on Line 6 (i.e. it models an in-
put). Thread B waits for the notification of event e and sets
b = x / 2 subsequently (Line 21-22). Thread C performs an
immediate notification of event e (Line 26). If thread B is
not already waiting for it, the notification is lost. After the
simulation the value of variable a and b should be x % 2 and
x / 2, respectively. Thus the assertion (2∗b+a == x) is ex-
pected to hold (Line 33). Nevertheless, there exist counter-
examples, for example the scheduling sequence CAB leads
to a violation of the assertion. The reason is that b has not
been set correctly due to the lost notification.

IVL Example.
Figure 2 depicts the same example in IVL. As can be seen

the SystemC module is ”unpacked”, i.e. variables, functions,
and threads of the module are now global declarations. The
calls to wait and notify are directly mapped to statements
of the same name. The if-then-else block of thread A is
converted to a combination of conditional and unconditional
goto statements (Line 7-12). Variable x is initialized with
a symbolic integer value (Line 2) and can have any value in

1 event e
2 uint x = ?<uint >
3 uint a = 0
4 uint b = 0
5
6 thread A begin
7 if x % 2 goto elseif
8 a = 0
9 goto endif

10 elseif:
11 a = 1
12 endif:
13 end
14

15 thread B begin
16 wait e
17 b = x / 2
18 end
19
20 thread C begin
21 notify e
22 end
23
24 main begin
25 start
26 assert 2 * b + a == x
27 end

Figure 2: The example in IVL

the range of unsigned int. The statement start on Line 25
starts the simulation.

In short, the IVL is kept minimal but expressive enough
for the purpose of formal verification. It covers all bench-
marks used by existing formal verification approaches for
SystemC. It would only take little effort to adapt these ap-
proaches to support this IVL as their input language. That
would lead to the availability of a checker suite for SystemC
once a capable front-end is fully developed. A grammar and
a parser for the IVL are provided at our website2.

In the next section, we present a new efficient verifier com-
bining symbolic execution and POR. We also refer to an IVL
description as a SystemC design since both define the same
behavior.

5. SYMBOLIC SIMULATION
In this section we present a symbolic simulator for the

SystemC IVL. The simulator can discover assertion viola-
tions and other types of errors such as division by zero or
memory access violation. Our approach enables exhaustive
exploration of the state space by providing support for sym-
bolic values and taking all possible scheduling sequences into
consideration. As a pre-processing step, all non-primitive
function calls are inlined.

Figure 3 shows the complete search tree (i.e. state space)
for the example from last section. As can be seen, even this
very simple design has a total of 14 possible execution paths.
Only six of them violate the assertion (paths that end with
a filled box). The circles and boxes correspond to execution
states of the design. An execution state is split at a � node
in case of a conditional goto statement (explained later in
Section 5.1)

Execution State.
An execution state contains values of all variables, states

of all threads, a pending event notification list, a pending
update list, a path condition and a Boolean flag indicating
whether this is a split state. The state of a thread consists
of a status (either runnable, blocked or terminated) and a
statement pointer (SP) that determines the next statement
to be executed. The path condition describes the constraint
on the variables, which must be satisfied to reach this exe-
cution state from the initial one. Also note that variables
have in general no concrete values, their values are rather
expressions of symbolic and concrete values. Take the ini-
tial execution state in Figure 3 (the uppermost node) as an
example: The variable x is initialized as a symbolic value,
while a and b have the initial value of zero. Each thread A,
B or C is runnable and has a SP pointing to the first state-
ment of the thread body (Line 7, 16 and 21 in Figure 2,

2www.systemc-verification.org/sissi

A

B
C

C

B C

B

B

B

B

C

C

B

B

BB

A

A

A

A

A

B B

BCC

C

B B

Figure 3: Search tree for the example

respectively). There are no pending event notifications, no
pending updates and yet no path condition. Now, the exe-
cution of thread B will change its state to blocked, add e to
the pending notification list, and update its SP to Line 17.
All other values remains unchanged.

Every edge depicts a transition between two states and its
label shows which thread has been selected and executed in
this transition. The execution of B mentioned above thus
corresponds to the outgoing edge with label B from the up-
permost node. The differences between dashed and solid
edges are explained later in Section 5.3. In the following we
describe the main components of the simulator: scheduler,
interpreter and employed POR techniques.

5.1 Scheduler
The scheduler manages the set of execution states. It se-

lects an unvisited execution state and explores all interleav-
ings in this state. That means for each runnable thread, the
control is given to the interpreter to execute it. The inter-
preter implements symbolic execution and is responsible for
the handling of symbolic values and the detection of errors
during thread execution (see Section 5.2).

The scheduler receives the control back from the inter-
preter in one of the following two cases:

1. The execution reaches the end of the thread or a wait
statement. This case results from the simulation se-
mantics of SystemC. The current execution state is
marked as visited and a new execution state with the
updated status of the thread is added.

2. The thread execution reaches a conditional goto state-
ment, whose condition is a symbolic expression. Be-
cause the condition can be true or false depending on
the involved symbolic values, the execution state is
marked as visited and then split into two new ones for
both cases. In the true (false) case, the condition (its
negation) is added to the path condition, the split flag
is set such that the thread execution can be continued
later by the interpreter directly after the conditional
goto. Note that, because of this direct continuation
(no other runnable thread is executed), the execution
of the thread is actually not preempted under the Sys-
temC simulation semantics.

If the selected execution state has no runnable threads,
that means the evaluation phase is completed. The sched-
uler performs the other phases (i.e. update, delta and timed
notification). If new runnable threads arise after that, the

exploration is continued, otherwise the end of an execution
path is reached.

Now consider the first solid path from the left in Figure 3.
From the initial execution state, thread B is executed and
then blocked by the wait statement. Afterwards, a new ex-
ecution state is produced and thread C is executed in this
new state. This execution notifies event e and terminates.
This notification makes B runnable again and it is executed
in the next execution state. After the termination of B, A
is executed. When the execution of A reaches the condi-
tional goto, two new execution states are produced because
the condition involves the symbolic value of x. There are
no runnable threads and no pending notifications in both
states, therefore both mark the end of an execution path.

For the state space exploration, the scheduler supports
depth-first search, breath-first search, and iterative deepen-
ing. An interactive mode is also provided to enable the user
to select only one runnable thread to execute from an execu-
tion state. This is useful for example to replay an erroneous
execution path.

5.2 Interpreter
The interpreter implements symbolic execution. It exe-

cutes a thread in an execution state by interpreting the state-
ments of the thread. The execution can either be started or
resumed at the statement determined by the thread SP. As
mentioned in Section 4, there are three types of statements:
assignments, goto, and function calls. For an assignment, the
interpreter simply replaces the value of the left-hand side in
the execution state with the right-hand side expression. In
case of an unconditional goto, the execution continues at the
specified label. Conditional goto is handled as follows: if the
condition involves a symbolic value, the scheduler takes over
as described above, otherwise the condition is evaluated and
the execution continues at either the specified label or the
next statement.

Since we have inlined non-primitive function calls, only
calls to kernel and verification primitive functions are left to
process. They are interpreted according to their semantics
in SystemC as follows.

• wait : The thread execution is blocked and the control
is given back to the scheduler as described above.

• notify : In case of an immediate notification, all wait-
ing threads in the execution state are made runnable.
Otherwise, the pending notification list is updated ac-
cordingly.

• suspend : The status of the to-be-suspended thread is
changed to blocked.

• resume: The status of the to-be-resumed thread is
changed to runnable.

• request update: The requested update is added to the
pending update list.

• assert : The conjunction of the path condition and the
negation of the asserted expression is given to an SMT
solver. If a solution can be found, the assertion is
violated, and a counter-example is created from this
solution and reported.

• assume: The given expression is added to the path
condition.

In addition to assertions, the interpreter also checks for
other types of errors such as division by zero or memory
access violation.

5.3 Partial Order Reduction
The above described scheduler explores all possible thread

scheduling sequences explicitly. Many of them can be re-
duced without affecting the verification result by applying
POR techniques.

The basic idea is to divide a thread into several transitions.
A transition is a list of statements that can be executed
without interruption by the interpreter before the control is
given back to the scheduler. A transition begins either at the
start of the thread or after a wait statement. It ends either
at the end of the thread or before another wait statement.
Thus, every time a thread is executed, actually one of its
transitions is being executed. A thread is runnable if one of
its transitions is runnable.

After all transitions are identified, we establish a depen-
dency relation between every pair of them. Intuitively, two
transitions X and Y are dependent if two execution orders
XY and YX lead to different results. We have the following
cases of dependency:

• Both transitions access the same memory location iden-
tified by a variable, a pointer or an array, with at least
one write access;

• A transition notifies an event immediately which the
other transition waits for (e.g. thread B and C from
Figure 2);

• A transition suspends the other transition by calling
suspend.

Based on this dependency relation, the persistent set and
sleep set techniques [11] are employed to identify equiva-
lent thread scheduling sequences. These two techniques are
orthogonal and can be combined to achieve better results.
Basically, for each visited execution state, both techniques
derive a subset of runnable transitions. Future exploration
from this state is restricted to this transition subset.

The dependency relation can be either statically or dy-
namically determined. Dynamic dependency is calculated
during the simulation and thus more precise than static de-
pendency which is often an over-approximation. However, it
produces a much bigger overhead in comparison to static de-
pendency calculation. For a more detailed formal treatment
of static and dynamic POR we refer to [11, 10, 19].

The dashed execution paths in Figure 3 are pruned by us-
ing static POR and must not be traversed. This reduction

can be intuitively explained as follows. Because A is inde-
pendent of B and C, it is unimportant when A is executed,
e.g. CAB, CBA and ACB are equivalent. In contrast, the
order between B and C is important due to their dependency.

5.4 Limitations
Currently, loop detection is not implemented in our sym-

bolic simulator. For models without symbolic inputs, the
symbolic simulation becomes explicit model checking and
thus well-known loop detection algorithms for example in
SPIN can be used. But the general case with symbolic in-
puts is much more interesting and challenging. Therefore,
loop detection is left for future work and consequently our
simulator can only be applied to models that either termi-
nate or contain bugs.

Symbolic execution can run into the path explosion prob-
lem in some cases. For software verification, advanced tech-
niques for path merging and redundant path elimination
have been proposed and implemented in modern tools such
as KLEE [5]. Our simulator does not integrate such tech-
niques yet. Nevertheless, its potential is demonstrated by
the experiments in the next section.

6. EXPERIMENTAL RESULTS
We have implemented the proposed approach in a proto-

type called SISSI (SystemC IVL Symbolic Simulator) using
Python (version 2.7.3rc2). Our implementation also uses
an intermediate SMT layer [14] that allows to switch be-
tween different solvers or also run several solvers in parallel.
However, for the experiments here we just employ Boolec-
tor. Furthermore, we use two variants SISSI-S and SISSI-D
which perform static and dynamic POR, respectively.

All experiments have been conducted on an AMD Phenom
3.4 GHz machine with 8 GB RAM running Linux. Time
limit for each run is set to 1200 seconds. Among the four
state-of-the-art approaches mentioned in Section 2, SDSS
and its benchmarks are to the best of our knowledge not
available. We use benchmarks taken from the websites of
KRATOS3, SCIVER4 and STATE5, and develop some new
benchmarks as well. For each benchmark, three equiva-
lent models are needed (in IVL for SISSI, in threaded C
for KRATOS, in SystemC for SCIVER and STATE). The
checked properties are source code assertions which are sup-
ported by all approaches but STATE. Hence, we need to
change the models slightly before giving them to STATE.

Table 1 shows a representative excerpt of the results. The
first column gives the name of the benchmark. The next
columns present for each benchmark the lines of code in IVL,
the verification result (Safe or Unsafe), and the verification
time needed by SISSI-S, SISSI-D, KRATOS, SCIVER and
STATE, respectively. Furthermore, Table 1 is divided by the
dashed line into two halves. The upper half shows results for
benchmarks without symbolic inputs. We believe symbolic
approaches are not the right tool for these models. But since
they have been used in the past for the evaluation of such
approaches, we still include them in the comparison. As
can be seen, SCIVER and KRATOS do not perform well
on these benchmarks. SISSI and STATE resort to explicit
model checking and therefore are much faster in general.

The more important results for benchmarks with symbolic
inputs are presented in the lower half of Table 1. Note that
for these models, STATE explores a much smaller state space

3es.fbk.eu/tools/kratos
4www.systemc-verification.org/sciver
5www.pes.tu-berlin.de/state_project

Table 1: Comparison with state-of-the-art approaches (runtime in seconds)
Benchmark LoC Result SISSI-S SISSI-D KRATOS [7] SCIVER [13] STATE [15]
kundu 54 S 9.25 12.15 1.07 9.70 0.04
transmitter.10 81 U 0.05 0.34 0.07 18.63 0.03
transmitter.50 361 U 0.24 4.70 304.54 time-out 0.22
transmitter.200 1411 U 1.38 106.30 mem-out mem-out 12.80
mem-slave-tlm.4 207 S 0.18 0.20 140.24 13.38 0.03
mem-slave-tlm.5 218 S 0.20 0.23 223.78 20.18 0.04
token-ring-bug.10 94 U 0.05 0.11 0.74 6.31 0.53
token-ring-bug.50 414 U 0.25 2.58 mem-out time-out mem-out
token-ring-bug.200 1614 U 1.88 57.01 mem-out mem-out mem-out
mem-slave-tlm-sym.4 208 S 0.18 0.23 time-out 28.33 50.42
mem-slave-tlm-sym.5 219 S 0.29 0.29 time-out 56.29 62.77
simple-fifo-1c-2p 73 U 0.13 0.10 65.22 1.65 error
simple-fifo-2c-1p 72 U 0.08 0.12 39.26 1.26 error
jpeg 230 U 0.58 0.49 time-out 22.84 error
buffer-ws-p3 51 S 0.25 0.05 2.01 0.48 mem-out
buffer-ws-p4 55 S 2.62 0.06 14.33 3.13 mem-out
buffer-ws-p5 60 S 70.80 0.07 210.82 1.95 mem-out

in comparison to the other methods since its back-end does
not support the full range of C++ int. Still, STATE does
not perform/scale well in the presence of symbolic inputs
and also it does not accept some of the models (indicated as
error). The token-ring-bug and mem-slave-tlm-sym bench-
marks are basically transmitter and mem-slave-tlm, respec-
tively, with symbolic inputs. With the exception of SISSI,
these are notably harder for the model checkers. Overall,
SISSI delivers clearly the best performance by far on bench-
marks with symbolic inputs.

The trade-off between static and dynamic POR discussed
in Section 5.3 can also be observed in the transmitter, token-
ring-bug and buffer-ws benchmarks.

7. CONCLUSIONS
This paper makes two contributions to the formal verifi-

cation of SystemC TLM. First, we present a compact, intu-
itive and readable Intermediate Verification Language (IVL)
for SystemC that enables the independent development of
front-ends and back-ends. With the availability of the IVL, a
free parser and an extensive benchmark set, research in par-
ticular with respect to new back-ends can be accelerated.
Second, we propose a new efficient symbolic simulator in-
tegrating Partial Order Reduction and symbolic execution.
This combination enables the effective exploration of all pos-
sible inputs and process scheduling sequences. The exper-
imental comparison confirms the potential of our symbolic
simulator. This is also to the best of our knowledge the
most comprehensive comparison of available state-of-the-art
approaches.

8. REFERENCES
[1] Accellera Systems Initiative. SystemC, 2012. Available at

http://www.systemc.org.
[2] B. Bailey, G. Martin, and A. Piziali. ESL Design and

Verification: A Prescription for Electronic System Level
Methodology. Morgan Kaufmann/Elsevier, 2007.

[3] N. Blanc and D. Kroening. Race analysis for SystemC using
model checking. ACM Trans. on Design Automation of
Electronic Systems, 15:21:1–21:32, 2010.

[4] N. Bombieri, F. Fummi, and G. Pravadelli. Incremental ABV
for functional validation of TL-to-RTL design refinement. In
DATE, pages 882–887, 2007.

[5] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209–224, 2008.

[6] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. R. Huang. Symbolic
model checking on SystemC designs. In DAC, pages 327–333,
2012.

[7] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and
M. Roveri. Kratos - a software model checker for SystemC. In
CAV, pages 310–316, 2011.

[8] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull.
Implementation of a transaction level assertion framework in
SystemC. In DATE, pages 894–899, 2007.

[9] L. Ferro and L. Pierre. ISIS: Runtime verification of TLM
platforms. In FDL, pages 1–6, 2009.

[10] C. Flanagan and P. Godefroid. Dynamic partial-order reduction
for model checking software. In POPL, pages 110–121, 2005.

[11] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion
Problem. Springer, 1996.

[12] D. Große and R. Drechsler. Quality-Driven SystemC Design.
Springer, 2010.

[13] D. Große, H. M. Le, and R. Drechsler. Proving transaction and
system-level properties of untimed SystemC TLM designs. In
MEMOCODE, pages 113–122, 2010.

[14] F. Haedicke, S. Frehse, G. Fey, D. Große, and R. Drechsler.
metaSMT: Focus on your application not on solver integration.
In DIFTS, pages 22–29, 2011.

[15] P. Herber, J. Fellmuth, and S. Glesner. Model checking
SystemC designs using timed automata. In CODES+ISSS,
pages 131–136, 2008.

[16] IEEE Std. 1666. IEEE Standard SystemC Language Reference
Manual, 2011.

[17] D. Karlsson, P. Eles, and Z. Peng. Formal verification of
SystemC designs using a petri-net based representation. In
DATE, pages 1228–1233, 2006.

[18] D. Kroening and N. Sharygina. Formal verification of SystemC
by automatic hardware/software partitioning. In
MEMOCODE, pages 101–110, 2005.

[19] S. Kundu, M. Ganai, and R. Gupta. Partial order reduction for
scalable testing of SystemC TLM designs. In DAC, pages
936–941, 2008.

[20] K. Marquet, B. Karkare, and M. Moy. A theoretical and
experimental review of SystemC front-ends. In FDL, pages
124–129, 2010.

[21] M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: an open
tool for the analysis of systems-on-a-chip at the transaction
level. Design Automation for Embedded Systems, pages
73–104, 2006.

[22] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman. A
temporal language for SystemC. In FMCAD, pages 1–9, 2008.

[23] D. Tabakov and M. Y. Vardi. Monitoring temporal SystemC
properties. In MEMOCODE, pages 123–132, 2010.

[24] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi. A
SystemC/TLM semantics in promela and its possible
applications. In SPIN, pages 204–222, 2007.

[25] M. Y. Vardi. Formal techniques for SystemC verification. In
DAC, pages 188–192, 2007.

