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Abstract—Automatic Test Pattern Generation (ATPG) based
on Boolean Satisfiability (SAT) is a robust alternative to classical
structural ATPG. Due to the powerful reasoning engines of
modern SAT solvers, SAT-based algorithms typically provide
a high test coverage because of the ability to reliably classify
hard-to-detect faults. However, a drawback of SAT-based ATPG
is the test compaction ability. In this paper, we propose an
enhanced dynamic test compaction approach which leverages the
high implicative power of modern SAT solvers. Fault detection
constraints are encoded into the SAT instance and a formal
optimization procedure is applied to increase the detection ability
of the generated tests. Experiments show that the proposed
approach is able to achieve high compaction – for certain
benchmarks even smaller test sets than the currently best known
results are obtained.

I. INTRODUCTION

The increasing complexity of digital logic in the devel-
opment of modern circuits leads to significantly increasing
test data volume for the post-production test resulting in high
test costs. Hence, the industry undertakes immense efforts to
reduce the amount of test data. Besides the development of
test vector compression schemes, new test pattern reduction
techniques are required to avoid the rising test costs [1].

The classical concept of dynamic test compaction [2] is
used to increase test compaction for structural Automatic Test
Pattern Generation (ATPG). A test cube for an initial fault
is generated. Then, additional faults are targeted taking the
pre-generated test cube or a sensitized path as constraint. By
this, the unspecified values of the test cube are assigned in a
way that other faults can be detected as well. However, each
fault is independently targeted. Several structural techniques
have been introduced in order to achieve high compaction.
These techniques range from static compaction and ordering
techniques [3]–[6] to fault grouping and heuristics [5], [7]–[11]
as well as to post-processing techniques [12], [13].

ATPG based on Boolean satisfiability (SAT) [14]–[16]
has been shown to provide a high fault or test coverage for
large industrial circuits [17] since the powerful learning and
implication techniques of modern SAT solvers are well suited
to generate tests for hard-to-detect faults. Classical structural
ATPG approaches typically have problems to cope with these
kind of faults as shown in [18].

Recently, SAT-based algorithms have been shown to be
well suited to generate high-quality tests targeting for example
small delay defects [19]–[21] where usually a significantly
increased search space has to be considered. However, a seri-
ous drawback of SAT-based ATPG is that the test compaction
abilities are typically not as good as the test compaction
abilities of structural ATPG algorithms, because SAT solvers
act as a black box and provide over-specified solutions. This
is very disadvantageous for test compaction. In fact, many
specified bits can be substituted by don’t cares using post-
processing techniques (e.g. [22], [23]). However, this causes
additional overhead.

Several techniques have been introduced to increase the
test compaction abilities of SAT-based ATPG. The application

of SAT for test compression schemes is treated in [24].
The concept of dynamic compaction was transferred to the
SAT-based ATPG domain in [25]. The SAT-based approach
presented in [26] works in a different manner. A set of faults F
is chosen and the ATPG generates a test detecting all faults
in F if possible. If at least one fault cannot be detected with
one other fault, no test is generated. Therefore, this approach is
very run-time intensive and heavily relies on a heuristic which
determines which faults could possibly be detected together.
The approach presented in [27] proposes a dynamic post-
processing technique which compacts a pre-generated testable
path set using test relaxation techniques for detecting small
delay defects. However, until today, SAT-based methods do not
provide a special treatment which ensures the determination of
a highly compact test set during the solving process.

In this paper, we propose a new basic test formulation
following the ideas presented in [28]. Hereby, the test com-
paction abilities of SAT-based ATPG are enhanced during
the actual test generation. In contrast to previous work, the
aim of this formulation is to generate an initial test for one
fault which is able to detect a large number of other faults
without explicitly targeting them. In order to achieve this,
the SAT-based ATPG formulation is combined with additional
fault detection constraints influenced by fault simulation and
path tracing techniques. These constraints determine if a fault
can be detected and propagated locally. A Pseudo-Boolean
Optimization (PBO) procedure is then applied to the ATPG
formulation which leverages the powerful SAT solving engine
and improves the local fault detection ability of the test.

By this, the generated test is typically able to detect a
larger number of faults without targeting any of them explicitly.
Experiments show that the proposed ATPG formulation is able
to overcome the drawback, i.e. the poor compaction ability.
The test set size generated by SAT-based ATPG can signifi-
cantly be reduced by integrating the proposed formulation into
a dynamic test compaction flow. For certain benchmarks, the
proposed method even provides a smaller test set than the best
known results available in literature – without special post-
processing or fault grouping techniques.

The remainder of this paper is structured as follows: The
next section briefly reviews the basics on SAT, PBO, and SAT-
based ATPG. Section III motivates and sketches the idea of
fault detection constraints proposed in this work. Afterwards,
details on the proposed CNF formulation are provided in Sec-
tion IV while its integration in the ATPG flow is described in
Section V. Results obtained by an experimental evaluation are
reported in Section VI. The paper is concluded in Section VII.

II. PRELIMINARIES

In order to keep this work self-contained, this section
briefly reviews the basics on the applied solving engines as
well as on SAT-based ATPG.

A. SAT and PBO

Solvers for Boolean satisfiability (SAT) and Pseudo-
Boolean Optimization (PBO) are core technologies utilized in



this work for the purpose of ATPG. Both problems are defined
as follows:

Definition 1: The Boolean satisfiability problem deter-
mines an assignment to the variables of a Boolean function
Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or proves that
no such assignment exists. The function Φ is thereby given in
Conjunctive Normal Form (CNF). A CNF Φ is a conjunction
of clauses. A clause ω is a disjunction of literals and a literal x
is a Boolean variable in its positive (x) or negative form (x).

Definition 2: The pseudo-Boolean optimization problem
determines a satisfying solution for a pseudo-Boolean func-
tion Ψ : {0, 1}n → {0, 1} which – at the same time –
minimizes an objective function F . The pseudo-Boolean func-
tion Ψ is thereby a conjunction of constraints defined by∑n

i=1 ciẋi ≥ cn, where c1 . . . , cn ∈ Z and ẋi either is a pos-
itive or a negative literal. The objective function F is defined
by F(x1, . . . , xn) =

∑n
i=1 miẋi with m1, . . . ,mn ∈ Z.

Example 1: Let Φ = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then, x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment
solving the SAT problem.

Accordingly, let Ψ = (2x1 +3x2 +x3 ≥ 3)(2x1 +x2 ≥ 2)
and F = x1 + x2 + x3. Then, x1 = 1, x2 = 0, and x3 = 0 is
a solution to the PBO problem satisfying Ψ and, at the same
time, minimizing F .

Both, SAT and PBO, are well investigated problems. In
the past, efficient solving algorithms (so called SAT solvers or
PBO solvers, respectively) have been proposed (see e.g. [29],
[30]). Instead of simply traversing the complete space of
assignments, intelligent decision heuristics, powerful learning
schemes, and efficient implication methods are thereby applied.
In case of PBO, it is also common to translate the respective
instance into a sequence of SAT instances in order to efficiently
determine a solution [31]. In the following, we apply these
techniques as black boxes delivering the solution for the
proposed ATPG problem formulations.

B. SAT-based ATPG

In contrast to classical structural ATPG which works di-
rectly on the gate-level netlist, SAT-based algorithms work
on a Boolean formula in CNF as defined above. Due to the
powerful implication and learning techniques, SAT solvers
are well suited to solve hard problem instances. In order to
leverage the powerful solving techniques for ATPG, the ATPG
problem has to be formulated in CNF [14].

For this purpose, each connection x of a circuit is assigned
a Boolean variable x. The functionality of each gate g is
transformed into a set of clauses Φg . The CNF ΦC of the
circuit C is then constructed by a conjunction of the CNF of
each single gate of C, i.e.

ΦC = Φg1 · . . . · Φgk .

In order to generate a test for a fault f , i.e. stuck-at-0 (s-a-
0) or stuck-at-1 (s-a-1), the circuit CNF ΦC is augmented
by additional constraints Φf

F for fault detection and fault
propagation with respect to the specific fault f . That is, the
following CNF formulation results:

Φf
Test = ΦC · Φf

F

The CNF Φf
F typically includes the complete output cone of

the fault site, the faulty gate itself, and D-chain constraints to
propagate the fault to an observation point [15]. The solution
space of Φf

Test includes all possible tests which detects f . The
SAT solver provides one satisfying assignment which can be
transformed into a test or proves that no such assignment
exists.
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Fig. 1. Exemplary circuit

III. MOTIVATION AND GENERAL IDEA

In this section, we sketch the general idea of enriching
the CNF formulation with additional Fault Detection Con-
straints (FDC) in order to improve the compaction of the
resulting test set. To this end, our idea is motivated first by
a discussion of the current state-of-the-art.

A. Motivation

In case a fault f is testable, the currently applied CNF
formulation Φf

Test for SAT-based ATPG always generates a test
detecting f . Since this test might cover further faults f ′ 6= f ,
fault simulation is performed next, i.e. the pattern is simulated
and further faults which are detected by it are removed from
the fault list. By this, test compaction is improved. However,
the amount of additional faults to be detected obviously
strongly depends on the eventually determined test pattern.

Example 2: Consider the circuit shown in Fig. 1 and addi-
tionally assume that SAT-based ATPG is supposed to generate
a test detecting the s-a-0 fault at connection h. If the ATPG
returns the pattern a = 1, b = 1, c = 1, only one further
fault is detected (namely the s-a-0 fault at connection b). If
instead SAT-based ATPG returns the test pattern a = 1, b = 1,
c = 0, three more faults at connection d (s-a-0), f (s-a-0),
and g (s-a-1) are additionally detected.

As described above, the solution space of Φf
Test includes

all possible test patterns. But so far, solving engines do not
distinguish between these possible solutions. Eventually, a test
pattern is determined rather randomly depending on heuristics
and search strategies basically optimized for efficient SAT-
solving rather than compaction. Structural ATPG techniques
are able to group faults and to apply special heuristics based on
the structure of the circuit to increase compaction. This is not
directly possible in SAT-based ATPG, since SAT solvers act as
black-boxes (which is part of the reason for their effectiveness
for hard problems). Until today, SAT-based methods do not
provide a special treatment which ensures the determination
of a compact test set during the solving process.

In this work, we address this issue and propose an alter-
native extended CNF formulation which does not only lead
to the determination of a test pattern detecting one particular
fault, but also enables test pattern generation aiming to detect
as many faults as possible. To this end, we are introducing
fault detection constraints whose idea is outlined next.

B. General Idea

Thus far, the CNF formulation for SAT-based ATPG Φf
Test

considers one fault f only. In order to improve compaction
and inspired by some ideas from [32], a consideration of
further faults f ′ 6= f is proposed. We thereby do not aim
for an inclusion of all constraints for fault detection and fault
propagation for each fault f ′ – this obviously would lead to
a CNF formulation infeasible to solve. Instead, we propose



to focus on simple necessary conditions which can locally be
considered.

More precisely, consider a fault f ′ at a connection x. In
order to detect f ′

• the fault has to be activated, i.e. the value of the
connection x has to be inverse to the fault value, i.e. 0
for s-a-1 and 1 for s-a-0,

• the succeeding gate h has to propagate the fault, i.e. all
other inputs of h have to assume the non-controlling
value, and

• there must be a path further propagating the fault.

Example 3: Consider again the circuit shown in Fig. 1 and
the s-a-0 fault at connection g. In order to detect this fault, g
has to be set to 1 (activating the fault) and connection f has
to be set to 0 (i.e. the non-controlling value of an OR gate).
Furthermore, the fault must be propagated further, i.e. h has
to be s-a-0 testable as well.

All these conditions only argue locally and, hence, can
easily be added to a CNF formulation. By additionally exploit-
ing the objective function F of PBO solvers, the instance can
be re-formulated such that the solving engine shall not only
determine a test pattern for the currently considered fault f ,
but is additionally supposed to satisfy the necessary conditions
for as many further faults f ′ 6= f as possible.

Note that satisfying these conditions does not ensure that
the respective faults f ′ indeed are covered by the corre-
sponding test pattern – reconvergences and fault masking
still might apply which is why fault simulation still needs
to be performed. However, they provide simple and efficient
additional objectives which may guide the solving engine in
determining better test patterns by justifying important values
and eliminating blocked paths. This leads to a significantly
higher compaction as the results later in Section VI confirm.

IV. PROPOSED CNF FORMULATION

In order to realize the proposed idea, we are following the
established SAT-based ATPG flow, i.e. for a given circuit C
and a fault f , a CNF formulation

Φf
Test = ΦC · Φf

F

is created [15]. Besides that, further variables and constraints
are added as follows:

Definition 3: For each connection x of a circuit C, two ad-
ditional variables xf0 and xf1 are introduced. The variable xf0
is supposed to hold the value 0 if at least one necessary
condition for a s-a-0 fault at connection x is not satisfied,
while variable xf1 is supposed to hold the value 0 if this is
the case for the respective s-a-1 fault. In the following, we
call xf0 and xf1 local fault detection variables.

Then, constraints incorporating the conditions are added to
the instance. Following the general idea, this leads to:

Definition 4: For each connection x of a circuit C which
is the input of a gate with output z, second input y, and
a controlling value cv, the following three constraints are
created:

• The activation constraints ΦActivate check whether the
value of x is the inverse of the fault value, i.e.

x = 1→ xf1 = 0

x = 0→ xf0 = 0.

ΦActivate: a = 1→ af1 = 0
a = 0→ af0 = 0
d = 1→ df1 = 0
d = 0→ df0 = 0
. . .

ΦGate: a = 0 (cv)→ df1 = 0
a = 0 (cv)→ df0 = 0
d = 0 (cv)→ af1 = 0
d = 0 (cv)→ af0 = 0
. . .

ΦPath: ff0 = 0 ∧ ff1 = 0→ af1 = 0
ff0 = 0 ∧ ff1 = 0→ af0 = 0
ff0 = 0 ∧ ff1 = 0→ df1 = 0
ff0 = 0 ∧ ff1 = 0→ df0 = 0
. . .

Opt. function: F = −af1 − af0 − bf1 − . . .

Fig. 2. Application of local fault detection variables

• The gate constraints ΦGate check whether all other in-
puts of the succeeding gate assume the non-controlling
value, i.e.

y = cv→ xf1 = 0

y = cv→ xf0 = 0.

• The path constraints ΦPath check whether a propa-
gating path exists. This is done through the local
fault detection variables zf0 and zf1 of the output
connection z of the currently considered gate, i.e.

zf0 = 0 ∧ zf1 = 0→ xf1 = 0

zf0 = 0 ∧ zf1 = 0→ xf0 = 0

Example 4: The top of Fig. 2 sketches parts of the re-
spective constraints for all connections of the circuit originally
introduced in Fig. 1.

The implications for each connection are transformed into
a CNF (resulting in the CNF ΦFDC) and are added to Φf

Test as
local fault detection constraints.1 Note that these constraints
do not alter the solution space with respect to the tests since
they are unidirectional and are only used to set the respective
values of the local fault detection variables.

Then, these variables are used in order to guide the solving
engine to determine a solution which maximizes the number
of satisfied conditions. This is conducted by formulating an
optimization function F . This function is created including
all fault detection variables whose corresponding faults have
not yet been detected. Given a set of yet undetected faults
F = f1, . . . , fm with xi being the connection of fault fi (1 ≤
i ≤ m), the optimization function F is formulated as follows:

F = (−1) · x1
f1 + . . . + (−1) · xm

fm

By this, all constants which are associated with an activated
fault detection variable are accumulated. Since PBO solvers
typically minimize the result, each fault detection variable is
associated with a negative variable. It would also be possible to
prioritize certain regions by associating higher constant values
to certain faults.

Example 5: The bottom of Fig. 2 sketches the respective
optimization function F for the circuit originally introduced
in Fig. 1.

Applying a PBO solver to Φf
Test · ΦFDC and the given

optimization function F , the solver provides the test with
the maximum of activated fault detection conditions. This test
typically detects a larger number of additional faults as a test
generated with the conventional SAT-based ATPG procedure.

1These constraints are only added to the circuit part relevant to the detection
of f , i.e. the transitive fanin cone of all structural reachable observation points.
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Fig. 3. Proposed SAT-based dynamic compaction flow

V. INTEGRATION INTO A SAT-BASED ATPG FLOW

In order to show the superiority of the proposed CNF
formulation compared to the conventional SAT-based ATPG
with respect to the test compaction abilities, we integrated the
formulation into a dynamic compaction flow. This section de-
scribes the details of the integration as well as the additionally
applied optimizations
A. Dynamic Compaction Flow

The applied dynamic compaction flow is illustrated in
Fig. 3. First, a primary target fault f is chosen. The extended
SAT-based ATPG formulation including fault detection con-
straints is used for test generation. The generated test cube is
expected to detect many other yet undetected faults as well.
Therefore, no test relaxation or other post-processing steps are
performed. After the test cube t has been extracted from the
solution, the additional target fault loop is entered.

In this loop, conventional SAT-based ATPG without fault
detection constraints is performed for additional faults f ′

taking the pre-generated test cube t into account. If f ′ is
testable (with t), a post-processing technique is applied to
increase the portion of don’t cares in the solution. The test
cube t is updated with the necessary values for detecting f ′.

This procedure is repeated for all yet undetected additional
faults. After all faults have been processed, the generated test
cube t is added to the test set and the next primary target fault
is selected until all faults are detected or proven untestable.

However, determining a solution for the proposed CNF
formulation (representing an optimization problem rather than
a decision problem) remains the bottleneck of the proposed
approach. This is because one arbitrary solution of the solution
space is sufficient as a result for the SAT problem. For our
optimization problem, the solving engine has to select the best
solution among all SAT solutions. Therefore, the run time is
expected to grow by applying optimization solvers compared
to conventional SAT-based ATPG. Hence, in addition to the
integration into a main flow as shown in Fig. 3, two further
optimizations are applied as described next.
B. Leveraging Fault Dominance Relations

The solution space of the optimization problem spans over
the variables used in the optimization function F . Hence, the

efficiency of the search can be increased by pruning variables
from F . This is done by leveraging fault dominance relations.

A fault f1 is said to be dominated by a fault f2 if all
tests detecting f1 also detect f2. That means, if a test detects
f2, the fault f1 will also be detected. In a fanout-free region
of the circuit, the fault dominance relations can be used to
collapse the amount of faults to be tested. A test set that detects
all faults on the inputs of that region also detects all faults
inside that region. This is leveraged during the construction of
the optimization function F . Only faults on primary inputs or
fanout branches are considered for the construction of F , since
these faults dominate the faults inside fanout-free regions.2
However, the fault detection conditions for dominated faults
still have to be added to the SAT instance to avoid gaps for
the path constraints.

Example 6: Leveraging the fault dominance relations in
the example circuit shown in Fig. 1 restricts the variables in
the optimization function F to the faults on the primary inputs
a, b, c and the fanout branches d, e:

F = −af1−af0−bf1−bf0−cf1−cf0−df1−df0−ef1−ef0
If we assume that the firstly generated test detects the faults
bf0, df0, ff0 and gf1, these faults can be removed from F in
the next ATPG call:

F = −af1 − af0 − bf1 − cf1 − cf0 − df1 − ef1 − ef0

By this, the optimization function will be reduced over time
which potentially also reduces the run time.

C. Two-Stage Flow

Additionally, a two-stage dynamic compaction flow based
on the following observations is applied in order to achieve a
further improvement:

• The first few test patterns already detect the majority
of faults independently from using fault detection
constraints or conventional SAT-based ATPG.

• Most of the run time is spent for generating test
patterns detecting only few faults.

• If there are many undetected faults, the run time for
the optimization solver is high because of the large
optimization function.

Therefore, the following two-stage flow is proposed:

1) Use conventional SAT-based ATPG until a certain
percentage P of faults is detected.

2) After the percentage of P detected faults has been
reached, the proposed SAT-based ATPG formulation
is used to detect the remaining faults.

Besides saving run time, it is expected that the two-stage
flow is able to achieve a further reduction of tests since it
ensures a certain diversity of assignments, because maximizing
the local fault detection conditions might lead to the same
assignments over and over again.

VI. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
approach. The SAT-based ATPG procedure as introduced
above has been implemented in C++. The solver clasp [30]
was used as PBO/SAT solver.3 The ISCAS’89 and ITC’99
circuits were used as benchmarks for stuck-at test generation.

2Equivalent faults are removed earlier during the creation of the fault list.
3clasp was awarded Best Single-Engine Solver in the Hard Combinatorial

Track in the SAT Challenge 2012 and won or was highly ranked in several
categories of the PB Competition 2012.



Table I presents the experimental results. The upper
part shows results for the ISCAS’89 benchmarks. Column
SAT + DC Post shows the results of the conventional SAT-
based dynamic compaction flow (similar to [25]) extended
by a post-processor to substitute unnecessary care bits by
don’t cares to increase compaction. Column SAT + FDC
gives the results for the proposed SAT-based ATPG formu-
lation incorporating fault detection constraints (as described
in Section V) and column Two-Stage presents the results for
the proposed two-stage flow starting with conventional SAT-
based ATPG and changing to SAT + FDC if the bound P
is reached. Experiments have shown that a good choice for
P is 50. Run time is given in CPU seconds in columns
Time and the number of generated test patterns are shown
in columns Pat. The reduction of the two-stage approach
compared to the conventional SAT-based ATPG approach is
given in column %Red and the average portion of care bits in
the test patterns are shown in column %Bits. A certain amount
of don’t care bits are required for test compression techniques.

Additionally, the test set sizes of structural ATPG ap-
proaches are given for comparison. Column MinPat shows
the best known results of generated test sets in the literature,
i.e. taken from [9], [11], [13], and column [11] presents the
test set sizes of the most recently proposed structural ATPG
approach. These approaches use post-processing techniques
such as redundant vector elimination, multiple target test
generation, and grouping techniques.

Experimental results for ITC’99 benchmarks are given in
the bottom of Table I. To the best of our knowledge, no
compaction results for these circuits are reported in literature.
Therefore, we compared the proposed approach also to the
compaction results of the publicly available structural ATPG
Atalanta in the newest version [33].

The results show that the proposed dynamic compaction
approach is generally even faster than the conventional SAT-
based ATPG approach. This is surprising at a first glance, since
the optimization procedure typically takes more time than the
SAT solving process. However, this run time reduction comes
along with a significant reduction of the pattern count. If more
faults can be detected with an ATPG call, less time-consuming
further ATPG calls are needed. For larger circuits, e.g. b14,
roughly half the run time is needed only. The run time can
further be reduced for some circuits by the proposed two-stage
approach. However, slightly more run time is needed for other
circuits.

At the same time, the pattern count can be significantly
reduced for all circuits by the FDC formulation. Here, the
two-stage approach is generally more effective in producing
smaller test sets. The pattern count is lower for most circuits.
The highest reduction can be achieved for s15850 (54%).

The results also show that the compaction gap between
SAT-based ATPG and structural ATPG can be significantly
reduced without any additional techniques as used in structural
ATPG. The proposed approach produces better results than the
most recent approach for six of the ISCAS’89 benchmarks.
SAT-based ATPG is even able to generate a test set for two
circuits, namely i.e. s382 and s5378, that is smaller than any
set generated by previous approaches. In case of s5378, the
smallest known test set size can be reduced by 10%. Compared
to Atalanta, the proposed approach produces constantly better
results than the structural ATPG.

The experiments have shown that the proposed approach
is able to increase the test compaction abilities of SAT-based
ATPG significantly while, at the same time, reducing the run
time. By this, a serious drawback of SAT-based ATPG is
eliminated.

A disadvantage of SAT-based ATPG remains. The run time
has been constantly higher than, for instance, the approach

in [11] or Atalanta (with the exception b15). However, it can
also be seen that for larger circuits, i.e. b15, structural ATPG
needs more run time to achieve 100% test coverage. This
shows the robustness of SAT-based ATPG.

Most of the run time needed for SAT-based ATPG in
this compaction flow is needed for SAT instance generation,
since for each primary target fault and for each additional
target fault a new SAT instance is created. However, these
SAT instances are typically very similar to each other. Future
work is therefore the development of an incremental SAT
scheme, e.g. similar to the techniques presented in [34], which
reuses parts of previously generated SAT instances and learned
information and is suitable for dynamic compaction.

Furthermore, additional structural compaction techniques
suitable for SAT-based ATPG should be identified and trans-
ferred to the SAT domain.

VII. CONCLUSIONS

A new SAT-based ATPG approach has been presented
which couples additional fault detection constraints with the
conventional SAT-based ATPG formulation. An optimization
solver is applied to maximize local fault detection conditions
in order to generate tests detecting a larger number of faults
without explicitly targeting them. Experiments show the ef-
fectiveness of the proposed SAT-based ATPG formulation and
the impact on the test set size. The proposed SAT formulation
is able to reduce the test set size by up to 54% compared
to conventional SAT-based ATPG and, by this, eliminates a
traditional drawback of SAT-based ATPG. For some bench-
mark circuits, the smallest known test set sizes could be
further reduced by up to 10%. Additionally, the pattern count
reduction goes along with a run time reduction. Future work
is the development of suitable additional compaction and
fault grouping techniques and further run time reduction by
incremental SAT techniques.
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