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Abstract—Simulation-based verification is still the state-of-the-
art when checking the correctness of complex Systems-on-Chips.
In particular, constraint-based simulation is popular, since here
dedicated stimuli are generated which trigger certain corner-
case behavior. However, to the best of our knowledge, only
heuristic methods have been introduced so far. In this paper,
we propose an approach that determines a minimal set of
stimuli for the desired set of scenarios to be simulated. For
this purpose, we are making use of solving techniques from
Boolean satisfiability. Experimental evaluations demonstrate that
the proposed approach can be applied to generate very compact
stimuli sets. Furthermore, the proposed approach can be used to
evaluate the quality of results obtained by heuristic methods.

Keywords-Constraint-based Simulation; Simulation-based Ver-
ification; Coverage

I. INTRODUCTION

Verification continues to be a major bottleneck in the current
design flow for embedded systems. In particular, functional
verification, i.e. ensuring the functional correctness of a de-
sign, still dominates the overall costs in the development of
modern complex Systems-on-Chips (SoCs).

Different approaches have thereby been developed to im-
prove functional verification. Formal methods, for instance
property checking (see e.g. [9], [4]) and completeness check-
ing (see e.g. [8], [12], [7]), exploit the design’s behavior ex-
haustively. However, they suffer inevitably from high compu-
tational costs. Consequently, the much faster simulation-based
verification (see e.g. [3]) is still the dominating verification
method in industry.

Here, a number of stimuli is either determined randomly
considering the global functionality of a Design Under Ver-
ification (DUV) or directed to verify certain behaviors, e.g.
corner cases. Afterwards, the stimuli are applied to the DUV,
and their responses are checked, i.e. compared to the expected
results.

In order to evaluate the verification quality, coverage metrics
have been introduced (see e.g. [10], [17]). They abstract certain
functionality of the DUV (e.g. in terms of scenarios) which
is supposed to be checked.

With them, coverage analysis methods can efficiently eval-
uate whether the DUV has sufficiently been checked or
not (see e.g. [14], [15], [1], [2]). In the former case, the
simulation-based verification process terminates. Otherwise,
further dedicated stimuli are generated aiming for covering the
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insufficiently considered cases. Commonly, the determination
of such stimuli is performed using constraint-based stimuli
generation (see e.g. [21], [16], [18]). Considering the insuffi-
ciently triggered cases only, constraints for stimuli generation
are formulated and, subsequently, solved by a constraint solver.
By this, stimuli result that directly trigger scenarios which have
not sufficiently been covered yet.

Overall, this practice is a coverage-driven verification pro-
cess. The successful adoption of this methodology continues
encouraging new research in this field. One trend intends to
improve constraint-based stimuli generation by boosting the
ability of constraint-stimuli generation (see e.g. [13], [20],
[19], [6]). In [13], [20], constraints are automatically generated
either (1) for improving controllability of internal signals and
thereby achieving a high coverage [13] or (2) for reduc-
ing the time-consuming and error-prone manual constraint
composition process [20]. In contrast, other work focus on
manipulating existing constraints either to obtain a compact
set of stimuli (see e.g. [19]) or to increase the efficiency of
the respective solving process (see e.g. [6], [18]).

However, to the best of our knowledge exact constraint-
based stimuli generation, i.e. the determination of a minimal
number of stimuli satisfying the coverage requirement, has not
been considered so far. This is done in the paper at hand. For
this purpose, we propose:

o An iterative work-flow: First, it is tried to sufficiently
cover the DUV with one stimulus only. If no such
stimulus exists, the number of stimuli to be generated
is increased by 1. This is iterated until a set of stimuli
satisfying the coverage requirement can be determined.

o A dedicated SAT-based generation: In order to determine
the desired stimuli or to prove that the coverage require-
ments cannot be satisfied with the currently considered
number of stimuli, we encode the respective problem as
an instance of Boolean satisfiability. Then, off-the-shelf
solvers are applied to solve the problem

Experimental evaluations show the applicability of the pro-
posed approach. On the one hand side, it is shown that very
compact sets of stimuli can be generated. On the other hand,
the proposed approach allows for an evaluation of the results
obtained by heuristic methods.



II. PROBLEM FORMULATION

This section formally introduces the problem addressed in
this paper.

In general, it is infeasible to exhaustively simulate a DUV
with all its possible input assignments. Therefore, simulation-
based verification is applied in order to explicitly cover certain
corner-case functionalities of the DUV. For this purpose, user-
defined scenarios are formulated for which dedicated stimuli
shall be generated. Such a scenario is defined as follows:

Definition 1. A scenario S; (0 < ¢ < n) is a Boolean
function over variables from the set of DUV signals. For
the specification of a scenario, a constraint is formulated
by using the typical HDL operators such as e.g. logic AND,
logic OR, arithmetic operators, and relational operators. In
the following, scenario and constraint is used interchangeably.
The set of scenarios is denoted by S = {Sop,...,Sn—1}.

The goal of methods for constraint-based random simulation
is to generate a stimulus which triggers at least one scenario.
For this purpose, a proper constraint is constructed as input
for the respective engines.

Definition 2. A stimulus satisfying at least one scenario can
be derived from a solution to the following constraint:
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Example 1. Consider a program counter (PC), where the
inputs reset and load define the renewal strategy on the
current program address pc. Possible scenarios are for in-
stance Sy = ((reset = 0)A(load = 0)) (the pc is incremented
by 1) and Sy = ((reset = 0) A (load = 1)) (the pc is renewed
with an arbitrary value according to the address input of
the program counter). Then, the stimulus {pc = 0x00FF,
reset = 0, load = 0} triggers a scenario (here Sy),
while {pc = 0200F' F, reset = 1, load = 0} does not.

The amount of stimuli triggering a scenario is important.
So we define:

Definition 3. Given the DUV and a set S of scenarios. For
each scenario S; € S, the coverage status cg, denotes the
total amount of stimuli which have triggered the scenario S;.

In simulation-based verification, stimuli are generated (and
their responses are checked) so that all scenarios S are
sufficiently covered. The term “sufficiently” is thereby user-
defined via a threshold value such as:

Definition 4. For each scenario S; (0 < i < n), a thresh-
old tg, is defined by the verification engineer. A scenario
is considered "sufficiently” covered iff S; is triggered by at
least tg, different stimuli, i.e. iff cg, > 1g,.

The simulation-based verification terminates, when a suffi-
cient set of stimuli has been generated.

Definition 5. A set of stimuli is considered sufficient iff it
contains stimuli sufficiently covering all scenarios, i.e. each
scenario S; is triggered by at least tg, different stimuli. In the
following, sufficient sets of stimuli are denoted by Sg,z.

Due to various methods used for the stimuli generation, the
size of the sufficient stimuli S, may vary significantly.

Example 2. Consider the DUV composed of a PC and an
ALU, where scenarios Sy and S1 for the PC are defined similar
to the one of Example 1. For the ALU, a scenario So = (op =
add) forcing an ALU addition is introduced (the op is the
select input to define the operation to be performed on the
data inputs of the ALU). Finally, assume that each scenario is
supposed to be triggered at least 10 times, i.e. /\?:O(tsi = 10).
A naive approach would individually generate stimuli for each
scenario eventually leading to a total of 30 stimuli. However,
since an ALU addition (op = add) may be followed by an PC
incrementation (load = 0), in fact, significant less stimuli are
required in order to satisfy the coverage criteria.

In general, a sufficient stimuli set of minimal size is inter-
esting. The term “minimal” is thereby formalized as follows:

Definition 6. Given a verification task and a sufficient
set Ssug of stimuli. The set Sg,g of stimuli is called
minimal, iff no other sufficient set Sy, . of stimuli with
|Ssugr] > S5,z exists.

A minimal set of sufficient stimuli provides a lower-bound
to the amount of stimuli that have to be applied to a DUV.
Commonly, in order to achieve such minimal stimuli set, one
stimulus must trigger multiple scenarios at the same time.
This fact is important since bugs often occur when multiple
behaviors of the DUV occur simultaneously [1]. Furthermore,
a minimal set of stimuli is compact and, thus, suitable to form
a regression suit which can be run periodically or after major
changes to the DUV.

However, determining such a minimal S,z often is not
trivial. Several methods that can reduce the size of a Sz
have been published in the past. In [20], a set of constraints
was generated for multiple coverage holes. As a consequence,
the resulting stimuli could affect multiple coverage holes
simultaneously. However, no mechanism was used there to
guarantee that the resulting stimuli set is minimal. In [19], a
parallel simulation for multiple scenarios has been exploited.
However, this has been conducted in a heuristic manner so
that also here minimality was not guaranteed. Motivated by
this, we address the following research question in this paper:

How can we efficiently determine a minimal set of
stimuli Sy, so that each scenario S; is triggered
by at least tg, different stimuli.

In the next section, solutions to this problem are proposed.
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III. GENERAL IDEA AND MAIN FLOW

Given a DUV, a set S of scenarios, and a threshold value ¢g,
for each scenario, the determination of a minimal S,z is
formulated as a sequence of decision problems. The respective
decision problems ask whether there is a set of ¢ stimuli which
sufficiently triggers all scenarios of the considered DUV. When
this decision problem turns out to be satisfiable, a sufficient set
of ¢ stimuli can be derived. Otherwise, it has been proven that
no Sy, with c stimuli exists. The general idea of our approach
is to solve this kind of decision problems until a satisfying
solution has been obtained. Minimality is thereby ensured by
starting with ¢ = 1 and iteratively incrementing ¢ by one
whenever the decision problems turns out to be unsatisfiable.
The respective decision problems are solved using solvers for
Boolean satisfiability.

Based on these ideas, the overall method is formulated as
an iterative approach as shown in Fig. 1. The inputs are the
DUV, a set S of scenarios, and a set T of corresponding
thresholds. The flow starts with encoding the problem as an
instance of the satisfiability problem with a fix number ¢ of
stimuli. Afterwards, the resulting instance is solved using off-
the-shelf solvers. When the instance is satisfiable, ¢ stimuli
composing a minimal S,,p are extracted and the approach
terminates. Otherwise, c is incremented by one and the last
steps are repeated.

In order to realize this approach, the respective problem
needs to be encoded with respect to the dedicated solving
engines, i.e. the applied SAT solvers in this case. Therefore,
the problem is formulated as a conjunction of the following
constraints: the proposed stimuli number ¢, the constraint of
the DUV, the constraint of all scenarios S, the constraint of
the threshold tg, for each scenario, and, finally, the constraint
which enforces all S to be sufficiently triggered. In the next
section, the details on the encoding are presented.

IV. ENDCODING AND IMPLEMENTATION

For clarity, how to determine a minimal stimuli set covering
each scenario .S; at least one time, i.e. tg, = 1, is first de-
scribed. Afterwards, extensions are introduced so that arbitrary
threshold values, i.e. ts, > 1 can be supported.

A. Minimal Stimuli Set with tg, =1

As mentioned earlier, a sequence of decision problems is
formulated and solved based on SAT techniques. For this
purpose, an instance is created for each of the decision
problems. In order to describe the respective encoding of the
instance smoothly, the applied vectors of variables are defined
first.

Definition 7. Let ¢ € N with ¢ > 0 which corresponds to the
currently considered number of stimuli. Then, given the DUV
with m primary inputs, k states (FFs), as well as n scenarios

(m,k,n € N), we define:

1) DUV = (DUV°,DUV!,... . DUV represents a
vector of DUV copies, i.e. DUV denotes the first
copy, DUV denotes the second one, etc. Apparently, all
copies are functionally identical but allow for different
assignments of their respective signals.

2) qur each copy DUV with 0 < d < ¢, the vector
xt = (xd,... 2% ) denotes the primary inputs of the
currently considered DUV-copy. Similarly, the FFs of

the copy are denoted by v* = (rd,...,rl _|). Overall,

T = (F,...wc_f) and 7 = (r°,...,r°"") represent
the primary inputs and the FFs of the c different Dlﬂ/
copies, respectively. Since the value assignments on

and 1 together build up a stimulus on DUV, the
assignments on {T, T } compose a stimuli set.

3) For each copy DUV, s* = (S4,...,89 ) defines
one copy of all scenarios. Thereby, 3 = (s",..., F )
represents c copies of them. Similarly, the copies of each
scenario S; are functionally identical, but independent
with each other because of the renamed signals in all
copies of S;.

Based on these definitions we can formulate the following
theorem:

Theorem 1. A scenario S; is considered to be sufficiently
(ts, = 1) covered iff at least one of its copies S;i is triggered
on the corresponding DUV,

With this theorem, the problem to determine a
minimal S,z with tg, = 1 is formalized as: Is there
an assignment to {T, T} such that for all scenarios, at
least one of its copies is triggered and c for both T and T
is minimal?
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Fig. 2: Structure of the Problem Encoding

The general structure for the problem to be converted to
an instance is shown in Fig. 2. Besides the elements for c
copies of the DUV and scenarios .S, all different copies S,?l
of the scenario S; are connected via an OR gate as depicted.
Furthermore, an AND gate constrains all the outputs of the OR
gates. Apparently, the output of the AND gate must be fixed
to 1 such that all scenarios are enforced to be sufficiently
triggered (a 1 at the output of a scenario copy S¢ ensures

that the scenario S; is simulated by the input vectors {x r*}
on DUV?),

Example 3. As an example, a Boolean assignment on s is
shown in Fig. 2. As can be seen, the stimulus {x°,r"} triggers
S§ and SY, ie. So and Sy while SS to SS_, evaluate to 0,
i.e. Sy and S,_1 are not triggered in Copy 0. When the
structure contains only one copy, i.e. ¢ =1, no Ssup can be
determined. The scenarios S9 and SO_, evaluate to 0, which
is invalid since the AND gate requires them to become 1'.
As a consequence, the number ¢ has to be incremented and
thereby, further copies are gradually added in the structure.

Example 4. Consider again Example 3. Further copies 1
to ¢ — 1 have been added. As a consequence, the stimu-
lus {; generated of Copy 1 triggers S, ie So, and
{F 1, le Sh,
and S have already been nggered by {ac —0)} in Copy 0,

the stimuli set {{x r-d} {z*,r }, .o {2, re 7} with
minimal c sufficiently triggers all scenarios.

~} of Copy c—1 triggers S;._ _1. Since Sy

With the structure as shown in Fig. 2, the instance to be
solved can be obtained by directly encoding the elements into
a SAT instance as follows:

IPlease note for the case of one copy there is no OR level.

1) Constraints for ¢ copies of the DUV and the scenarios
following the well known Tseitin transformation.

2) Constraints for the OR gates and the AND gate are
added.

3) Since tg, = 1, no constraint for the threshold is needed.

Finally, the complete instance for each decision problem is:

n—1c—1

/\ DUV A /\ \/ Sé )

i=0 d=0

As mentioned earlier, a minimal Sy, with tg, = 1 can be
obtained by gradually incrementing c. The worst case is ¢ = n,
i.e. each scenario needs a new copy since no scenarios can be
triggered simultaneously.

In the following section, we consider the case with threshold
values greater than one.

B. Minimal Stimuli Sets with tg, > 1

To enable a threshold value greater than one, the problem
instance as introduced in the previous section can be refor-
mulated. Considering the problem instance as presented in
Formula 2, the second term in the formula ensures that each
the scenario is triggered since in at least one of the scenario’s
copies a 1 is required. This is expressed using the OR term.
Now, a simple OR is not sufficient. Instead, we have to sum
up the triggerings for each scenario S; and ensure that the
user-defined threshold value is achieved. This results in the
following new instance:

/\DUVd/\/\i 5S4 >t (3)

Based on this instance, the general procedure for minimal
stimuli generation does not change. However, a satisfying
solution may require a large value for c since potentially many
copies are required to meet the threshold condition of each
scenario. Hence, we propose a different approach. Instead of
“blowing up” the instance, we perform several calls to the
constraint solver while blocking the previous solutions (hence
ensuring new stimuli to be found).

Example 5. Consider again Example 2. Assume that two
stimuli Sgiim1 and Sgiima have been determined. Sgpim1
triggers So and Ss, while Ssiimao triggers Si. To generate
additional stimuli, we block the previous stimuli. As problem
instance we get:

2 1

(/\ \/ Szd) A Sstiml A Sstim2 (4)

1=0 d=0

1
/\ DUV A
d=0

Now, we can call the constraint solver again to determine
additional stimuli meeting higher threshold values.



Algorithm 1: Minimal Stimuli Generation

Input: DUV, Scenarios S, Thresholds T’
1c=1; Sipy=0; cs, =0 foreach S; C S ;

c—1 n—1c—1
Instance = N\ DUVIA(N V SHA  V Sstim, ;
2 d=0 i=0 d=0 Setim; €Siog
3 result = solving(Instance) ;
4 if result = true then
5 extract ¢ stimuli {Sstimg, - -« Sstime_1 | 3
6 Slog == Slog U {Sstimm ey Sstimc_l} 5

c—1
cs, =cs, + >, S& foreach S; € S ;
d=0

8 if cs, > tg, foreach S; € S then
9 | return

10 else

1 | goto2;

12 else
13 ++c
14 go to 2

Overall, we have devised Algorithm 1 to determine the
stimuli set Sg,g with t5, > 1. The number c is initialized
to 1, and the log files recording the generated stimuli as well
as coverage status for each scenario are initialized in Line 1.
Then, the instance is built and solved (Line 2-3). If the instance
is satisfiable (Line 4), the stimuli are extracted and recorded.
Furthermore, the coverage status is updated (Line 5-7). If
all scenarios are sufficiently covered (Line 8), the algorithm
terminates. Otherwise, a new instance with the blocked stimuli
is created and the process is repeated (Line 11). Here, the
number c is not incremented. New stimuli are still generated
based on the current instance. In case no more stimuli can be
generated with the current value of ¢, c is incremented such
that an additional DUV copy is included (Line 12-13).

The effectiveness of the proposed algorithm is demonstrated
in the experimental evaluation in the next section.

V. EXPERIMENTAL EVALUATION

In this section the experimental evaluation is presented.
The proposed approach has been implemented in C++. As
constraint solver we used Boolector [5]. To illustrate the
applicability of our approach, experimental evaluations for
several benchmarks have been conducted. In the following,
we summarize the results.

As benchmarks, the following DUVs have been considered:

o The RISC processor from [11] has been used. Essentially,
this is a Harvard architecture composed of typical com-
ponents such as a Control Unit (CU), a Program Counter
(PC), an ALU, an external data memory (RAM), and
a stack pointer which represents a special register and
enables standard stack operations on the RAM.

e An alternative CPU with a reduced ALU (denoted by
ALU_reduced) implementing 8 ALU functions.

o A Memory Management Unit (MMU) which is used as an
interface between a CPU and an external memory. This
unit manages the corresponding data transactions between
these components.

For each DUYV, suitable scenarios have been considered,
i.e. several scenarios for the respective components of the
CPU (e.g. 3 scenarios for the PC and 16 scenarios for the
CU, etc.), 8 scenarios for the reduced CPU, and 53 scenarios
for the MMU. The results generated by our approach have
also been compared to the results obtained by previously
introduced approaches, namely the naive and the iterative
stimuli generation scheme as proposed in [19]. Here, the
maximal number of stimuli to be generated has been set
to 1000. All experiments have been conducted using a 64-bit
AMD Athlon Dual Core machine with 4 GB of memory
running Linux.

Results of the evaluations assuming a threshold for each
scenario of tg, = 1 and a threshold of ¢5, = 40 are reported
in Table I and Table II, respectively. The first column denotes
the name of the DUV, while the second column gives the
number of the considered scenarios. The remaining columns
provide both, the number of generated stimuli and the run-time
to generate them (in CPU seconds) for each approach.

The results clearly show the benefits of the proposed
approach. Of course, determining the minimal number of
stimuli is computationally more expensive than a heuristic ap-
proach. However, particularly compared to the naive approach
from [19] the proposed solution gives very good results. In
fact, orders of magnitudes less stimuli are generated in a
reasonable time. Compared to the iterative approach from [19],
the proposed approach allows for rating the effectiveness of
the heuristic: In fact, we were able to show that for many
benchmarks the iterative approach already determines minimal
or close to minimal solutions (cf. PC, Stack, or ALU_reduced).
Considering all benchmarks, the iterative approach never gen-
erates more than twice the number of stimuli than necessary.
Overall, the proposed approach allows (1) for an efficient
stimuli generation and (2) for an analysis how far heuristics
are away from the optimum.

VI. CONCLUSIONS

In this work, we have presented a solution for the deter-
mination of a minimal set of stimuli for simulation-based
verification. For this purpose, we formulated the problem as a
sequence of decision problems which, in turn, are solved using
techniques of Boolean satisfiability. Experimental evaluations
demonstrated the applicability of the proposed solution, i.e. the
approach can be applied to generate a very efficient set
of stimuli or to evaluate the quality of results obtained by
heuristic methods. The methods presented in this paper can
further be adopted targeting on other research questions such
as design learning, parallel simulation, or coverage analysis.
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