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Abstract—Reversible circuits are an attractive computa-
tion alternative as they build the basis for many emerging
technologies such as quantum computation or low power
design. Since first physical realizations of reversible circuits
have already been presented in the past, how to efficiently
test such circuits became a current research topic. Con-
sequently, several approaches for Automatic Test Pattern
Generation (ATPG) have been presented in the past.

However, the order in which the respective faults are
targeted has a significant effect on the resulting test size.
While determining good fault orderings has intensely been
considered for the test of conventional circuits, according
strategies for reversible circuits have not been evaluated
yet. This is done in this paper. To this end, a fault ordering
scheme is presented that explicitely exploits the reversibil-
ity of the underlying circuits. Experimental results show
that the proposed scheme leads to improvements of up to
65% in the size of the testset.

I. INTRODUCTION

Reversible circuits represent an emerging technology
based on a computation paradigm which significantly
differs from conventional circuits. In fact, they allow
bijective operations only, i.e. n-input n-output functions
that map each possible input vector to a unique output
vector. Reversible computation enables several promis-
ing applications and, indeed, superiors conventional
computation paradigms in many domains including but
not limited to quantum computation or low power design
(see e.g. [1], [2], [3D).

In comparison to conventional circuit design, new
concepts and paradigms have to be considered. For
example, fanout and feedback are not directly allowed.
This makes the design of reversible circuits different
and requires alternative solutions. To this end, different
approaches ranging from synthesis (see e.g. [4], [5], [6],
[7], [8]), optimization (see e.g. [9], [10]), verification
(see e.g. [11], [12], [13]), and debugging (see e.g. [14])
have been introduced. An overview of that is e.g. pro-
vided in [15].

Even if all this still is basic research, first physical
realizations have already been presented (see e.g. [16],
[17]). Motivated by this, also issues concerning testing of
these new circuits are getting addressed by researchers.
In this work, we particularly consider Automatic Test
Pattern Generation (ATPG).

In ATPG, a set of test pattern is generated which is
capable of detecting all possible faults in a given circuit
assuming a certain fault model. A major goal is thereby
to keep the size of the testset as small as possible. First
approaches follow thereby a greedy and branch-and-
bound scheme [18] or applied ILP formulations [19].
ATPG approaches that can handle large circuits make
use of formals methods like Boolean satisfiability [20]
or Pseudo Boolean Optimization [21].

However, the order in which faults are targeted by the
respective ATPG engines significantly affects the size of
the resulting testset. This has already been investigated
for conventional ATPG. As a consequence, several fault
ordering strategies have been developed for this domain
in which e.g. faults are classified by their “hardness” of
detection (see e.g. [22], [23], [24], [25]). Test patterns
obtained for faults considered to be “hard” to detect very
likely also detect many of the faults considered to be
“easy” to detect. Hence, “harder” faults are targeted first
during ATPG.

In this paper, a corresponding scheme is proposed for
ATPG of reversible circuits. Instead of simply adopting
conventional fault ordering techniques, we are directly
making use of the underlying reversibility of the con-
sidered circuits. In fact, reversible circuits allow for an
easy calculation of the number of test patterns available
to detect a fault. This number provides a perfect metric
to denote the “hardness” of a fault by which the faults
can accordingly be ordered. Experimental results show
that applying the proposed metric reduces the size of
the testsets by up to 65% in comparison to the currently
applied ordering schemes.
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In the remainder of this paper, the contribution is
presented as follows. The next section introduces the
basics on reversible circuits. A brief review on test of
reversible circuits is provided in Section III. Afterwards,
the effect of fault ordering is discussed in Section IV
before the proposed fault ordering scheme is presented
in Section V. Finally, experimental results are provided
in Section VI, while Section VII concludes the paper.

II. REVERSIBLE LOGIC

A reversible function is a function f:B"™ — B™ over
inputs X = {x1,...,x,} with two properties: (1) its
number of inputs is equal to its number of outputs (i.e.
n = m) and (2) it maps each input pattern to a unique
output pattern. A reversible circuit is a realization of a
reversible function. Accordingly, reversible circuits also
have n-inputs, n-outputs, and map each input pattern
to a unique output pattern. Because of that, the output
assignment can be obtained from the input assignment
and vice versa. In comparison to conventional circuits,
fanout and feedback are not directly allowed in reversible
circuits [1]. As a result, every reversible circuit G
is composed of a cascade of reversible gates g;, i.e.
G = g192...94. In this work, we consider the most widely
used reversible gate, the Toffoli gate [26]. A Toffoli gate
is defined as follows:

Definition 1: A Toffoli gate over the set of inputs
X ={x1,...,z,} has the form g(C,x;), where C C X
is the set of control lines and x; € X \ C is the rarget
line. A single Toffoli gate g(C, x;) realizes the bijective
function

(X1 ey ) > (X1, ey Ty, Ty D /\ Ty Tpg 1y oeey Tp)e
z.cC

That is, the target line x; is inverted if (1) all control
line variables z. € C' are set to 1 or (2) the set of control
lines is empty, i.e. C' = (). In these cases, the gate is
called activated. All other signals xj, with x5, € X\ {z:}
always pass the gate with their value unaltered.

Example 1: Fig. 1(a) shows an example of a re-
versible circuit which is composed of Toffoli gates. This
circuit has four circuit lines and three Toffoli gates,

(c) Single missing gate fault (SMGF)

Reversible circuit with different faults

i.e. n =4 and d = 3. Control lines are denoted by a e,
while the target line is denoted by an .

ITI. TEST OF REVERSIBLE CIRCUITS

For a given circuit G, the goal of Automatic Test
Pattern Generation (ATPG) is to create a testset Tr,
i.e. a set of stimulus patterns, which detects all faults
provided in a fault list . The fault list F is composed by
all possible faults that may occur in the circuit according
to a given fault model.

A. Fault Models

In this paper, we explicitly consider the fault models
introduced in the following definition:

Definition 2: Let g(C,z¢) be a Toffoli gate of a cir-
cuit G. Then,

1) a Single Missing Control Fault (SMCF) occurs if,
instead of ¢, a gate ¢'(C’, z;) with C' = C\{x;} is
executed (i.e. a gate with a missing control line z;
is executed instead of ¢)'.

2) a Single Missing Gate Fault (SMGF) appears if,
instead of g, no gate is executed (i.e. g completely
disappears).

In order to detect a fault, the respective gates have
to be activated so that the faulty behavior shows up at
the outputs of the circuit. Depending on the considered
fault, this requires certain input assignments [19]. More
precisely:

Definition 3: Let g(C,z;) be a Toffoli gate of a cir-
cuit G.

1) To detect an SMCF in g, all control lines in C
(except the missing one) have to be set to 1, while
the missing control line has to be set to 0. The
assignment of the remaining lines can arbitrarily
be chosen.

2) To detect an SMGF in ¢ (i.e. the disappearance
of g), all control lines in C have to be set to 1,
i.e. g simply has to be activated. The assignment
of the remaining lines can arbitrarily be chosen.

'Note that in the literature (e.g. in [19]), the SMCF model is also
called Partial Missing Gate Fault Model.
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Example 2: Fig. 1 illustrates an SMCF (b) and an
SMGEF (c), respectively, which can occur in the reversible
circuit previously introduced in Fig. 1(a). The respective
assignments needed to detect these faults are also given.

B. General Flow

In general, testing of reversible circuits is easy. Al-
ready for conventional circuits, it has been shown that a
maximized information output implies the highest prob-
ability of fault detection [27]. Since reversible circuits
are information loss-less, the best possible information
output is guaranteed. Only if additional constraints like
constant inputs have additionally to be considered, ATPG
becomes harder (as discussed in [21]). Then, faults might
be classified to be untestable.

Consequently, in order to create a complete testset T
for a given fault list 7, the ATPG flow as depicted
in Fig. 2 is applied: As long as the fault list is not
empty (i.e. faults exist which do not have been classified
yet), a new fault is chosen (Step (a)). Afterwards, it is
tried to generate a test pattern for that fault. To this
end, approaches e.g. based on simulation or Boolean
satisfiability can be applied (see e.g. [21] for details). If
this was successful (i.e. if a valid test pattern has been
obtained), the generated pattern is added to the testset
(Step (c)). Additionally, fault simulation is performed,
i.e. the pattern is simulated and further faults which are

detected by this are removed from the fault list (Step (d)).
In contrast, if no valid test pattern has been found (i.e. if
the fault is untestable), the respective fault is moved from
the fault list to the list of untestable faults (Step (e)). This
list can be used later e.g. to optimize the considered
circuit. If all faults have been classified, the process
terminates (Step (f)). Applying this flow, a complete
testset for all testable faults under a certain fault model
is generated.

IV. EFFECT OF FAULT ORDERING

Following the ATPG flow as shown in Fig. 2, the order
in which faults are targeted by the ATPG engine has
a significant effect. This is illustrated by the following
example.

Example 3: Consider the circuit shown in Fig. 3(a)
together with a fault list 7 = {f1,..., fo} composed of
single missing control faults. If the fault f; is targeted
first, a test pattern has to be generated that sets all the
control lines of g; (except the missing one) to 1, while
the missing one has to be set to O (indicated bold in
Fig. 3(b)). This could lead to the pattern 0000 as shown
in Fig. 3(b). A subsequent fault simulation unveils that
this pattern additionally detects the fault f;.

However, if instead of f; the fault fg is targeted first,
significantly more faults could be detected. For example,
this could lead to a test pattern 1010 as shown in Fig. 3(c)
which additionally detects faults fi, f3, f4, and f5, i.e. a
much larger set.

These observations are not new. Similar behavior can
be observed for ATPG of conventional circuits. Moti-
vated by this, several fault ordering strategies have been
developed for this domain (see e.g. [22], [23], [24], [25]).
In general, they are based on the following premise:
Faults are considered first for which a pattern is probably
hard to generate. This is motivated by the fact that test
patterns for “hard” faults very likely also detect many of
the “easy” faults as well. Hence, the total number of test
patterns to be generated can be kept smaller. In order to
classify a fault to be whether “hard” or “easy”, several
schemes have been applied for conventional circuits.
However, to the best of our knowledge, corresponding
schemes for faults in reversible circuit have not yet been
proposed.

V. PROPOSED FAULT ORDERING SCHEME

In this section, we present the fault ordering scheme
proposed in this work. The general idea is similar to the
fault ordering schemes applied for conventional circuits,
i.e. “harder” faults are targeted first. But, the classifi-
cation of a fault f being “hard” or “easy” is different
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and explicitly exploits the reversibility of the underlying
circuit structure. In fact, this classification is based on
the number of possible test patterns that could detect f.
This number can easily be obtained by the number of
control lines in the corresponding gate. More precisely:

Lemma 1: Let f be an assumed SMCF in a
gate g(C,z¢) with n lines in total and |C| control lines.
Then, a total of at most 2"~ 1€! test patterns exist that
could detect f.

Proof: In order to detect an SMCE, all control lines
except the missing one have to be set to 1, while the
missing one itself has to be set to 0. In total, this
makes |C| fix assignments to gate g. The values of all
remaining lines (including the target line) can arbitrarily
be chosen. ]

Lemma 2: Let f be an assumed SMGF in a
gate g(C,z;) with n lines in total and |C| control lines.
Then, a total of at most 2"~ 1€! test patterns exist that
could detect f.

Proof: The same argumentation as for SMCF ap-
plies except that all control lines have to be set to 1.

|

Obviously, a fault for which fewer test patterns exist
s “harder” to detect than faults for which more test
patterns are principally available. This is illustrated in
the following example.

Example 4: Consider again the circuit from Fig. 3(a).
The first fault f; can be detected by all test patterns
setting the inputs of gate g; to —0——, whereby “-” de-
notes an arbitrary assignment. For the remaining faults,
test patterns leading to the following assignments to the
inputs of the respective gates are required:

o For f, the assignment 01—-- to gate go
o For f3 the assignment 10—-- to gate g
o For f, the assignment —0—- to gate g3
o For f5 the assignment —01- to gate g4
o For fg the assignment —10- to gate g4
o For f; the assignment 0-11 to gate gs
o For fg the assignment 1-01 to gate gs
o For fg the assignment 1-10 to gate gs

The assignment of the faults f7, fs, fo of g5 have the
fewest don’t care assignments, i.e. — occurrences. Hence,
these faults should be classified to be in “hardest” fault
class and targeted first. Then, the test patterns generated
for these “hard” faults may detect also the “easy” faults.
In fact, the three test patterns 0100, 1010, and 0011
which detect these “hardest” faults already detect all the
other faults in the considered circuit.

Note thereby that Lemma 1 and Lemma 2 constitute
upper bounds. In fact, due to additional constraints (like
constant inputs as discussed in [21]), the actual number
of possible test patterns could be less than 2n=1C1 In
the worst case, even no test pattern could be available
(if this fault is untestable). Nevertheless, since both
bounds provide easy to calculate approximations of the
“hardness” of a fault, they represent a plausible criteria
for sorting the fault list.

Motivated by the discussions from above, we suggest
a fault ordering scheme which targets all faults according
to the number of control lines of the gate to which the
fault is associated to. Faults belonging to gates with a
larger number of control lines are thereby targeted first.

Example 5: Considering again the circuit from
Fig. 3(a), the proposed fault ordering scheme would
lead to the following order in which faults are targeted:
First f7 is addressed, followed by fs, fo, f2, f3, f5, fe.
f1, and eventually fy.

As shown by an experimental evaluation, whose re-
sults are reported in the next section, already this simple
scheme leads to a significant compaction of the complete
testset for a given circuit.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the proposed fault ordering
scheme, the ATPG flow shown in Fig. 2 has been imple-
mented in C++ on top of RevKit [28]. For the generation



of a test pattern targeting the currently considered fault
(Step (b) in Fig. 2), SAT-based ATPG as introduced
in [21] has been applied. Then, for a set of benchmark
circuits (taken from RevLib [29] including some of the
largest circuits available so far), complete testsets have
been generated. To this end, two fault ordering schemes
have been applied: (1) the scheme that has been used so
far [21] which simply targets faults according to their
occurrence within the circuit (from left to right) and
(2) the proposed scheme as introduced in Section V. All
these experiments have been carried out on an Intel(R)
Xeon(R) CPU x4 with 32 GB main memory.

The results are summarized in Table I. The first
columns denote thereby the name of the circuit (denoted
by CIRCUIT), the number of gates (denoted by d), the
number of lines (denoted by n), and the number of
constant inputs (denoted by c). The Column AC' denotes
the maximal difference in the number of control lines at
the gates in the respective circuits. Afterwards, the results
are distinguished between the numbers obtained when
the SMCF model is applied and the numbers obtained
when the SMGF is applied. For both cases, the total
number of faults to be tested (denoted by | F]) is provided
together with the size of the resulting testset (denoted
by #TS) and the run-time needed to obtain these results
(in CPU seconds; denoted by TIME) when either the
existing fault ordering scheme (denoted by PREVIOUS)
or the proposed fault ordering scheme (denoted by PRO-
POSED) is applied. The columns denoted by IMPR. list
the improvement (in percent) of the size of the testset
obtained by the proposed scheme in comparison to the
previously applied scheme. The results are sorted in
two parts, based on whether the considered circuits do
not include constant inputs (top part of Table I) or
whether the considered circuits do include with constant
inputs (bottom part of Table I).

First of all, the results show that the different fault
ordering schemes hardly affect the run-time of the ATPG
flow. Sometimes the previously applied scheme is faster,
sometimes the proposed scheme. But in all cases, the
difference is rather minor.

However, with respect to the quality, i.e. the size
of the resulting testsets, significant improvements can
be observed if the proposed scheme is applied. In the
clear majority of cases, the proposed scheme leads to
much more compact testsets than the previously applied
scheme. In the best case, improvements of up to 65%
for SMCF and up to 59% for SMGF can be achieved
— on average improvements of 13.89% and 14.35% are
documented, respectively.

Besides that, the results also clearly confirm the dis-
cussion from Section V: The best improvements can be
achieved for circuits which gates have a large differ-
ence in the number of control lines. For example, the
circuit plusI27mod8192_162 is composed of gates with
only one control lines (including an “easy” fault) and
gates with 13 control lines (including “hard” faults). That
is, the “hardness” of the respective faults is significantly
different for this circuit. Hence, the proposed fault order-
ing scheme has a greater impact leading to a considerably
improved testset.

VII. CONCLUSION
In this paper, we presented a fault ordering scheme for

reversible circuits that explicitly exploits the reversibility
of the considered circuits. In fact, we showed that the
“hardness” of detection of a fault can easily be derived
from the number of control lines in the gate including the
fault. Targeting the fault whose gate have a larger number
of control lines first during ATPG significantly reduces
the size of the testset. In the best case, improvements of
up to 65% can be achieved.
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