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Abstract. The Quantum Multiple-valued Decision Diagram (QMDD) data-

structure has been introduced as a means for an efficient representation and

manipulation of transformation matrices realized by quantum or reversible logic
circuits. A particular challenge is the handling of arbitrary complex numbers

as they frequently occur in quantum functionality. These numbers are repre-

sented through edge weights which, however, represent a severe obstacle with
respect to canonicity, modifiability, and applicability of QMDDs. Previously in-

troduced approaches did not provide a satisfactory solution to these obstacles.
In this paper, we propose an improved factorization scheme for complex num-

bers that ensures a canonical representation while, at the same time, allows for

local changes. We demonstrate how the proposed solution can be exploited to
improve the data-structure itself (e.g. through variable re-ordering enabled by

the advanced modifiability) and how applications such as equivalence checking

benefit from that.

1 Introduction

Exploiting quantum mechanical phenomena such as superposition and entanglement,
quantum computation [1] offers the promise of efficient computing for problems that
are of exponential difficulty for classical computing paradigms. For this purpose, infor-
mation is stored in terms of qubits, i.e. a superposition of the Boolean states 0 and 1.
This enables one to solve many important problems (e.g. database search, factorization,
graph problems) significantly faster than with classical approaches (see e.g. [2–4]). The
states of the qubits are modified by quantum operations which can be represented by
unitary matrices that may include complex numbers.

Hence, an efficient and compact data-structure for the representation and manip-
ulation of the respective quantum functionality is important for many design tasks in
this area. Accordingly, a variety of decision diagram types have been introduced such
as the X-decomposition Quantum Decision Diagram (XQDD) [5], the Quantum In-
formation Decision Diagram (QuIDD) [6], and the Quantum Multiple-valued Decision
Diagram (QMDD) [7]. In this work, we focus on QMDDs which already have success-
fully been used in applications such as equivalence checking [8], property checking [9],
or synthesis [10]. However, in these applications the focus was often on the representa-
tion of different quantum realizations for reversible Boolean functions. Although pure
quantum functionality has also been represented using QMDDs, some crucial aspects
have not been addressed yet.



In particular, the handling of arbitrary complex numbers – a core characteristic
of quantum functionality – is unsatisfactory. So far, these numbers are represented
through edge weights corresponding to common scalar factors to be applied to all
entries of a certain sub-matrix. But, as entries in sub-matrices can be factorized in
numerous fashions, several representations of a particular quantum circuit are possible.
This has a large influence with respect to canonicity, modifiability, or applicability of
QMDDs (this is discussed later in detail in Section 3).

In this work, we investigate this problem of factorization and, eventually, propose
a solution allowing for an efficient and modifiable representation of general quantum
functionality in the QMDD data-structure. To this end, we review existing factorization
efforts by normalization of edge weights and identify their drawbacks. In addition, we
prove that QMDD representations of a fixed matrix have the same invariant structure
of vertices and connecting edges for a wide range of normalization schemes. However,
weights of corresponding edges may differ by some non-zero factor for different schemes.
These observations lead to an extension to the QMDD data-structure by so called
vertex weights that, independently from the considered quantum functionality, allow
for a canonical representation as well as an efficient manipulation. By this, central
problems of previous QMDD realizations are solved.

The remainder of this paper is structured as follows. In order to keep the paper
self-contained, Section 2 briefly reviews the basics on the QMDD data-structure. Af-
terwards, the problem with respect to the representation of quantum functionality is
discussed and investigated in Section 3. The solution derived from these observations,
i.e. the use of vertex weights, is proposed in Section 4. The use of the proposed solu-
tion for adjacent variable interchange is demonstrated in Section 5 and evaluated in
Section 6. Section 7 concludes the paper.

2 Preliminaries

Quantum systems are composed of qubits. Analogously to classical bits, a qubit can be
in one of the computational basis states |0〉 and |1〉, but also in a so called superposition
α|0〉 + β|1〉 for complex-valued α, β with |α|2 + |β|2 = 1. The number of basis states
of a qubit is called its radix. Usually, we use radix two but also qubits with more than
two basis states (qudits) have been considered [11].

Quantum circuits are commonly represented by their complex-valued, unitary trans-
formation matrix. A special case are permutation matrices which represent reversible
circuits. The transformation matrix of an n-qubit circuit has dimension rn×rn where r
is the radix. These matrices grow exponentially in size, thus standard representations
as tables of complex numbers are restricted to circuits with a small number of qubits.

To represent and manipulate larger circuits, we need more elaborate representations
that take advantage of the specific properties of transformation matrices:

– Quantum gates often only operate on a small subset of qubits of a quantum system.
The transformation matrix for the whole system, which is the Kronecker product
of the smaller gate matrix and identity matrices, contains the same pattern (gate
matrix) several times. Thus, similar structures occur which offers the opportunity
for compression.

– Transformation matrices, especially gate matrices, are often sparsely populated,
i.e. they contain many zero entries. Therefore, blocks of zero can be marked and
treated separately.



Taking this into account, we observe that an rn× rn matrix can be partitioned into r2

sub-matrices of dimension rn−1 × rn−1 as

M =

26664
M0 M1 · · · Mr−1

Mr Mr+1 · · · M2r−1

...
...

. . .
...

M(r−1)r M(r−1)r+1 · · · Mr2−1

37775 .

This partitioning can be repeated until we reach the level of single matrix entries. Now,
the fundamental idea is to create a vertex for each of these matrices with unidirectional
edges pointing to the vertices of the respective sub-matrices. More precisely:

Definition 1. A Quantum Multiple-valued Decision Diagram (QMDD) is a directed
acyclic graph with the following properties:

– There is a single terminal vertex representing the complex number 1 without any
outgoing edge.

– Non-terminal vertices are labelled by an r2-valued selection variable and have r2

outgoing edges designated e0, e1, . . . , er2−1.

– There is a single root vertex which has a single incoming edge (the root edge) that
itself has no source vertex.

– Every edge (including the root edge) has an associated complex-valued weight and
edges with a weight of 0 ( 0-edges) point to the terminal vertex.

– The selection variables are ordered, assume with no loss of generality x0 ≺ x1 ≺
· · · ≺ xn−1. On each path from the root vertex to the terminal vertex the variables
appear in this order while each variable appears at most once.

– There are no redundant vertices, i.e. no non-terminal vertex has r2 identical out-
going edges (destinations and weights).

– Non-terminal vertices are unique, i.e. no two non-terminal vertices labelled by
the same selection variable have the same set of outgoing edges (destinations and
weights).

– Non-terminal vertices are normalized (see details in the following section).

Each assignment to the selection variables corresponds to choosing the respective sub-
matrices in the partitioning process and, therefore, to some matrix entry. Thus, for
any entry of the rn × rn matrix the QMDD can be evaluated in at most n steps by
multiplying the weights on the path from the root vertex to the terminal vertex that
is determined by the respective assignment.

Example 1. Fig. 1 shows QMDD representations of a 2-qubit quantum circuit. Out-
going edges point to the vertices representing the top left, top right, bottom left, and
bottom right sub-matrix from left to right. For example, the highlighted matrix en-
try −i in Fig. 1a corresponds to the paths highlighted in bold in Fig. 1b and Fig. 1c.
Its value can be determined by multiplying the edge weights on these paths.

For simplicity we omit edge weights equal to 1 in illustrations of QMDDs and
indicate 0-edges, i.e. edges that point to the terminal vertex with weight 0, by stubs.
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Fig. 1. Matrix and QMDD representations of a 2-qubit quantum circuit.

3 Normalization of Edge Weights in QMDDs
The main difference between QMDDs and decision diagrams for conventional logic are
the complex-valued edge weights. They represent common scalar factors to be applied
to all entries in a sub-matrix represented by the vertex to which the respective edge
is pointing to. Hence, the precise value of a particular matrix entry is determined by
multiplying the weights of all edges in the corresponding path from the root vertex to
the terminal.

Using weighted edges allows for the representation of structurally equivalent sub-
matrices whose entries differ only by a scalar factor with a single vertex. For example,
the matrix in Fig. 1a includes two structurally equivalent sub-matrices (highlighted in
gray) which differ by a common scalar factor only. But instead of representing each sub-
matrix separately (as illustrated in Fig. 1b), weighted edges allow for a representation
with a shared vertex (as illustrated in Fig. 1c).

However, as entries in the respective matrices can be factorized in numerous fash-
ions, normalization of edge weights plays a significant role. More precisely:

– The representation of structurally equal matrices by the same vertex is only possi-
ble if a decomposition into a scalar factor and a normal form is available. In order
to determine that, factorization has to be conducted using a normalization scheme.

– Data-structures like QMDDs benefit from providing a possibly canonical represen-
tation to be exploited e.g. in equivalence checking [8]. In QMDDs, canonicity is
achieved with respect to an applied variable ordering but also depends on how the
edge weights (scalar factors) have been determined.

– In many applications, e.g. synthesis, the determination of the smallest or largest
magnitude (or even greatest common factors) of matrix entries is of interest. Here,
normalization can be exploited as it allows for an upwards propagation of the
desired values.

Unfortunately, ensuring and maintaining a normalized representation is subject to
severe obstacles. In the past, proper normalization rules and corresponding schemes
have been proposed. However, they either do not ensure a canonical representation or
suffer from the fact that local modifications in the QMDD structure (caused e.g. through
re-ordering of vertices as commonly applied in optimization approaches like sifting)
possibly destroy the normalized representation.

In this section, we review existing and propose new normalization rules and illus-
trate the obstacles with them. Afterwards, we discuss the application of these vertex-
based rules within generic normalization schemes for entire QMDDs. We focus on
canonicity as the primary requirement. Here, we prove that QMDD representations
of the same matrix that follow (possibly different) normalization schemes always have
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Fig. 2. Normalizing a vertex using Normalization Rule 1.

the same invariant structure of vertices and edges, and only differ in the weights of
corresponding edges by some non-zero factor. These observations lead to an extension
to the QMDD data-structure by so called vertex weights that maintain the normalized
structure after local modifications by only using local re-normalizations.

3.1 Normalization Rules

With the introduction of the QMDD data-structure in [7], various rules for the normal-
ization of edge weights have been proposed. In the following, we define normalization
rules as follows:

Definition 2. A normalization rule defines a property that the weights of the outgoing
edges of a QMDD vertex must exhibit in order to call the vertex normalized. Normaliz-
ing a vertex means that we divide the weights of all outgoing edges by a normalization
factor such that this leads to a normalized vertex.

The first normalization rule that was used for QMDDs is defined as follows:

Normalization Rule 1 A QMDD vertex is normalized if the first edge with a non-
zero edge weight has weight +1, i.e. for some k (0 ≤ k ≤ r2−1) the edge ek has weight
+1 and all edges ei have weight 0 for i = 0, . . . , k − 1.

Example 2. The application of Rule 1 is illustrated in Fig. 2. Since normalization fac-
tors (here: −i) can easily be propagated to incoming edges when building a QMDD
bottom-up, the common way to ensure normalized vertices according to this rule is to
apply the normalization rule as the QMDD is built.

Normalization Rule 1 enables a canonical representation [7] and, hence, is very
useful for applications like equivalence checking (see e.g. [8]). However, once a QMDD
has been built following this scheme, local modifications on the data-structure often
require a re-normalization of the entire QMDD.

Example 3. Consider the QMDD shown in Fig. 3a which has been built following
Normalization Rule 1. Afterwards, e.g. as part of a re-ordering process, the variables x1

and x2 shall be interchanged. According to the corresponding matrices (see Fig. 3b),
this leads to a QMDD structure as shown in Fig. 3c, i.e. the weight of the leftmost edge
of the x0-vertex changes from 1 to i. Thus, this vertex is not normalized anymore. In the
worst case, changes like this propagate through the entire QMDD structure. As a result,
variable interchanges are no longer local operations and, hence, significantly complicate
established optimization approaches such as variable re-ordering by adjacent variable
interchange as used in sifting [12].

In order to address this problem, an alternative normalization rule has been pro-
posed in [12].
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Fig. 3. Matrix and QMDD representations for interchanged variables.

Normalization Rule 2 A QMDD vertex is normalized if its edges are of the form
that the largest1 weight on any outgoing edge is 1.

This normalization indeed enables local operations since local maxima, i.e. matrix
elements with the largest magnitude appearing in the respective sub-matrix, are prop-
agated upwards to the root edge weight. Since these maxima do not change during a
local variable reordering, the resulting structure of the QMDD is not affected by this
and normalization is preserved. In contrast, this scheme destroys the canonicity of the
representation as illustrated in the next example.

Example 4. Consider again the QMDDs shown in Fig. 1. Inspection shows that both
are properly normalized according to Rule 2. However, although both QMDDs represent
the same functionality and follow the same variable ordering and normalization scheme,
their structure is not equivalent. That is, the proposed normalization does not lead to
unique representations.

As another alternative, we propose the following normalization rule:

Normalization Rule 3 A QMDD vertex is normalized if the edges are of the form
that (1) no edge has a magnitude larger than 1 and (2) the first edge exhibiting this
largest magnitude has exactly weight +1.

Example 5. In most cases, Rule 3 coincides with Rule 2. E.g., in Fig. 1 the only vertex
that is normalized according to Rule 2, but does not obey to Rule 3 is the x2-vertex
on the right of Fig. 1b, where we have edge weight i “before” +1.

Rule 3 again enables a canonical representation of QMDDs as it provides a unique
tie breaking mechanism in case of several edge weights having the same (largest) magni-
tude. But as for Rule 1, swapping adjacent variables is not a local operation in general.
This can be seen from Example 3 where the QMDDs are the same when Rule 3 is used
instead of Rule 1.

The benefit of Rule 3 is that it still ensures canonicity when using the smallest non-
zero magnitude. Moreover, it then realizes an upward propagation of smallest absolute
values and, hence, enables a fast determination of how “far” a matrix is “away” from
being a Boolean permutation matrix by just looking at the root edge weight.

1 We refer to [13] for a more detailed consideration on the magnitude-based order of complex
numbers that is meant here.



3.2 Normalization Schemes

As discussed above, several normalization rules for QMDDs exist. Now, we consider
their generic application in the normalization process for an entire QMDD. For each
vertex in a QMDD, these rules basically compute a normalization factor which has to
be applied to the represented (sub-)matrix. More precisely:

Definition 3. Let Mat(C) := {M ∈ Cm×n| m,n ∈ IN} be the set of complex-valued
matrices. A map N : Mat(C)→ C is called a normalization scheme if it satisfies

N(αM) = αN(M) for all M ∈ Mat(C), α ∈ C (1)

N(M) = 0⇔ all entries in M are zero. (2)

Using the normalization scheme N, a QMDD vertex representing a matrix M will
be normalized by dividing all outgoing edge weights by its normalization factor N(M)

and will afterwards represent the matrix M
′
N := M

N(M)
.

Remark 1. Note that property (1) guarantees that structurally equal matrices (which
only differ by a scalar factor α 6= 0) are compressed to a shared vertex, i.e.

(αM)
′
N =

αM

N(αM)
=

αM

αN(M)
=

M

N(M)
= M

′
N,

while (2) is just another way of saying that all 0-edges must point to the terminal vertex.
Thus, normalization schemes lead to unique QMDD representations. Conversely, any
normalization rule that ensures canonicity, e.g. Rules 1 and 3, can be extended to a
normalization scheme. Note that a vertex is normalized if, and only if, it represents a
matrix with normalization factor 1, i.e.

N(M
′
N) = N

„
M

N(M)

«
=

1

N(M)
N(M) = 1.

A generic normalization scheme as defined in Definition 3 is not limited to rules
that take into account only local information about edge weights. It may rather rely
on arbitrary knowledge about the represented matrix. Thus, one could assume that
significantly different QMDD structures result for the same matrix. However, as the
following theorem shows, QMDDs representing the same matrix and following (possibly
different) normalization schemes indeed exhibit an isomorphic structure of vertices and
edges.

Theorem 1. Consider a QMDD that uniquely represents a complex-valued matrix us-
ing a normalization scheme. Any QMDD that represents the same matrix using a dif-
ferent normalization scheme has the same structure of vertices and edges, while the
weights of corresponding edges may differ by some non-zero factor.

Proof (Sketch). Assume there are matrices that lead to different QMDD structures for
different normalization schemes. From these we can choose a matrix of minimal size.
Clearly, this matrix cannot be a single complex number, so without loss of generality
we may consider the regular structure of r2 sub-matrices. Since these are smaller and
the matrix was chosen minimal, their QMDD structure must be the same for any
normalization scheme. Now, when creating the top vertex of a QMDD, edges to these
sub-structures are used and applying different normalization schemes may result in
different (non-zero) edge weights, but does not change the structure of the vertex. This
is a contradiction to our assumption and proves the theorem. ut



This is an important result. While it was already known that QMDD represen-
tations are canonical for certain normalization rules, Theorem 1 now tells that even
regardless of the normalization scheme, the QMDD structure is an invariant of a ma-
trix. This can be exploited in order to provide a normalization approach that not only
guarantees this invariant canonical QMDD structure (as Rule 1 and Rule 3), but addi-
tionally also allows for certain local operations (as possible in Rule 2). For this purpose,
the QMDD data-structure needs to be slightly extended as described next.

4 Introducing Vertex Weights
So far, we discussed (1) that local changes of edge weights might require to rework
a large part of the QMDD in order to restore the normalization (as illustrated in
Example 3) and (2) that regardless of the normalization scheme the structure of a
QMDD is invariant and can already be established using simple normalization rules
such as Rule 1 or Rule 3. Now, these observations are exploited in order to propose a
slightly revised QMDD data-structure which is capable of both, representing matrices
in a canonical fashion and enabling local operations.

The basic idea is to store weight changes (as they result from local modifications)
within the vertices instead of propagating them to incoming edges. Therefore, we sug-
gest to extend the QMDD definition as follows:

Definition 4. Each non-terminal QMDD vertex is enriched with a complex-valued
vertex weight (v-weight) τ 6= 0. A vertex weight τ 6= 1 is called effective.

Remark 2. Vertex weights represent scalar factors to be applied to all entries in the
sub-matrix represented by the respective vertex. Hence, to determine the value of a par-
ticular matrix entry they have to be included when computing the product of the edge
weights on the respective path. Besides this v-weight interpretation, also the standard
interpretation can be used to evaluate QMDDs, i.e., ignoring vertex weights. Thus, a
QMDD vertex can represent two different matrices depending on which interpretation
we use.

Having this extended structure, local operations become possible as illustrated in
the following example.

Example 6. Consider a standard QMDD (without effective vertex weights) that is nor-
malized according to a normalization scheme which operates on the standard inter-
pretation of a vertex and ignores vertex weights (denoted by Nstd in the following).
At the beginning, v-weight and standard interpretation match since all vertex weights
are ineffective (Fig. 4a). Then, local modifications are applied (Fig. 4b). This can be
a variable interchange, but anything that preserves structural equivalence is allowed.
More precisely, we require that afterwards the same matrices are structurally equal as
before. We will see later that variable interchanges indeed have this property. For now,
we note that destroying structural equivalence will definitely require modifications on
referencing vertices. Hence, in current implementations which do not store referencing
(incoming) edges of a vertex this property is a necessary condition for local operations.
As a by-product, this requirement ensures that we do not get vertices representing the
same matrix in standard interpretation, but contain different weights.

Finally, the respective vertices are normalized according to Nstd. But instead of
propagating the normalization factor to all referencing edges, now this is stored locally
in the vertex weight (see Fig. 4c).



xjτ = 1

Nstd(Ma) = 1

Ma = Mv−weight
a

(a) Initial form

xkτ = 1

Nstd(Mb) = α

Nadjusted(Mb) := 1

(b) Modifications

xkτ = α

Nstd(Mc) = 1

Mv−weight
c = Mb

(c) With vertex weight

Fig. 4. Using vertex weights to restore normalization (Nstd). M{a,b,c} or Mv−weight denotes
the matrix represented by the particular vertex in standard or v-weight interpretation, respec-

tively.

The crucial point is that the resulting QMDD structure is isomorphic to the canon-
ical invariant structure of the equivalent standard representation, i.e. without effective
vertex weights. To justify that, note that a QMDD vertex with an effective weight
(Fig. 4c) can be transformed to a vertex that is equivalent in v-weight interpretation
but has a weight of 1. For this purpose, we simply apply the effective weight to all
outgoing edges of the considered vertex. This basically undoes the normalization and
leads back to the vertices as in Fig. 4b. The resulting QMDD – now without effective
vertex weights – has the same structure as before but is no longer normalized according
to Nstd. However, it can be viewed as normalized according to a normalization scheme
Nadjusted with “adjusted” normalization factors, i.e. Nadjusted(M̃v) = 1 for all vertices
v where M̃v denotes the standard interpretation of the vertex after the transformation
(see Fig. 4b). Hence, this QMDD representation of the matrix has the canonical struc-
ture which is consequently also present in the QMDD with effective vertex weights.

Overall, the proposed extension maintains canonical representations even after local
modifications as they are used by optimization techniques such as sifting.

At the same time, a transformation back to trivial vertex weights is always possible.
The only problem here is that we might need to replace some vertices with almost
identical copies, but without an effective weight (see e.g. the x2-vertices in Fig. 5).

This can be overcome by building an intermediate QMDD that is not functionally
equivalent in v-weight interpretation, but represents the correct matrix in standard
interpretation, i.e. when ignoring vertex weights. This intermediate QMDD can be
obtained as follows:

Algorithm: “Build intermediate QMDD” for an edge e pointing to vertex v with
weight w:

1. If v is the terminal vertex, return e unchanged.
2. Perform “Build intermediate QMDD” on all outgoing edges of v.
3. Create a vertex r (with τr = 1) from the edges resulting from Step 2, normalize it

and store the normalization factor π.
4. If r is identical to an already existing vertex (up to the vertex weight), the result

is an edge pointing to that vertex with edge weight w · π · τv.
Else, the result is an edge pointing to r with the same edge weight.

Remark 3. Note that this algorithm can also be used to switch between different nor-
malization rules if we start with a QMDD in one normalization and use the other
normalization in step 3 of the algorithm.
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Fig. 5. Computing equivalent QMDDs without effective vertex weights.

We illustrate the algorithm by the following example:

Example 7. The QMDD in Fig. 5a has a few effective vertex weights indicated by (·)τ .
In order to transform it to the equivalent representation without effective vertex weights,
we compute the intermediate QMDD (highlighted in gray in Fig. 5b) which shares the
x2-vertices with the still valid initial QMDD representation. Figure 5d shows for the
left x1-vertex how our algorithm first pulls vertex weights from the child vertices to the
respective outgoing edges before the new vertex is normalized and the normalization
factor (i) and vertex weight (−1) are applied to the referencing edge.

The final QMDD (Fig. 5c) is obtained from the intermediate QMDD (Fig. 5b) by
setting all vertex weights to 1.

5 Using Vertex Weights for Variable Interchange
As discussed above, normalization can be a severe obstacle when performing modifica-
tions on QMDDs such as adjacent variable interchanges. However, using the concept of
vertex weights, this problem is solved, i.e. a local modification such as a variable inter-
change can be performed without ramifications to other parts of the QMDD structure.
The particular way of employing vertex weights is demonstrated in this section.

We use an interchange scheme which is similarly applied in other decision diagram
types, e.g. Binary Decision Diagrams (BDDs) [14]: Consider a BDD where two adjacent
variables x1 and x2 shall be interchanged. Then, each x1-vertex is replaced by an x2-
vertex which shall represent the same Boolean function in order to make the swap a
local operation. This is done by interchanging the labels of the vertices and permuting
the sub-trees representing the respective cofactors [14]. Analogously, for QMDDs each
x1-vertex is replaced by an x2-vertex which shall represent the same functionality. By
doing so, an interchange of variables x1 and x2 for a given matrix leads to a permutation
of sub-matrices as illustrated in Fig. 6a, i.e. the swapping of certain columns and rows.
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Fig. 6. Sketch of the adapted variable interchange procedure for binary QMDDs.

This accordingly needs to be conducted in the QMDD structure [12, 13] in which each
of the affected sub-matrices is represented by a vertex as well as weighted edges and
vertices.

That is, to interchange two adjacent variables x1 and x2 in a QMDD (where x1

precedes x2 in the variable order), we process all vertices that are labelled x1. We
skip all such vertices that do not point to any x2-vertex. For each of the remaining
x1-vertices V with outgoing edges eVi (i = 0, . . . , r2 − 1), from which at least one edge
points to a v2-vertex, we perform the following three steps:

1. Create an r2 × r2 square matrix T = (tij) and set tij to be the jth outgoing edge
of the x2-vertex pointed to by eVi and multiply the weight of tij with the weight of
eVi and the (vertex) weight of the v2-vertex. If the destination of eVi is not labelled
with x2, set tij = eVi instead.

2. From each column j of T create a vertex labelled x1 with outgoing edges ei = tij
and let eVj point to this vertex. Relabel V to x2.

3. Apply the normalization scheme and store the normalization factor of V by mul-
tiplying it to the current vertex weight τV .

Remark 4. We could also deal with an effective vertex weight at x1-level by applying
it to all edges in T , but since normalization would propagate this common factor back
to its origin, we rather keep it and adapt it appropriately after relabelling.

This procedure is illustrated by the following example:

Example 8. Consider Fig. 6 showing a part of a binary QMDD (r = 2) in which both
variables x1 and x2 should be interchanged. First, a matrix containing all sub-trees
representing the sub-matrices m0 until m15 is created according to Step 1 (see Fig. 6b).
Then, these sub-trees are re-arranged in Step 2 eventually leading to the structure
shown in Fig. 6c. Finally, the respective vertices are normalized in Step 3. This is
illustrated in Fig. 6d for the sub-tree m8. First, this sub-tree is relocated (according to



the previous steps). Then, the product of the corresponding edge and vertex weights is
concentrated at the bottom level. The final factorization of this product (highlighted
in gray) is achieved by applying normalization to the new structure.

The interchange procedure operates in the same fashion on each sub-matrix of the
particular partitioning level that corresponds to the interchanged variables. Thus, it
preserves structural equivalence. This allows for the use of effective vertex weights
during the variable reordering process and – as discussed in the previous section –
thereby allows for the determination of essential information about the QMDD struc-
ture without having to perform renormalization after each variable interchange. Hence,
a large variety of objective functions (which we try to minimize by variable reordering)
will give the same result for the intermediate variable orders as if we had transformed
the QMDD to its normalized equivalent without effective vertex weights. We need to
perform this potentially expensive transformation at most once, after we have arrived
at the final variable order and only if there are effective vertex weights left. For this
purpose we can use the algorithm presented in the previous section.

6 Application and Evaluation

The extension of the data-structure as described above has been implemented in C
on top of the original QMDD package presented in [7]. In this section, we discuss
and evaluate the application of the proposed vertex weights. For this purpose, we
consider the task of equivalence checking of quantum circuit functionality. Equivalence
checking is an important design task and aims e.g. for checking whether two circuits
(the initial realization as well as an optimized version) realize the same functionality.
This constitutes a representative application as characteristics like canonicity (for fast
equivalence checking) as well as modifiability of the data-structure (allowing for a
compact representation) are crucial here.

QMDDs have already been used for checking the equivalence of different quantum
realizations of reversible Boolean functions [8]. However, we focus on functionality of
general quantum computation like phase shifting, superposition, and entanglement [1]
which requires various quantum values to be adequately represented in the QMDD. In
this context an extended definition of equivalence is applied:

Definition 5. Unitary transforms M1 and M2 of a quantum system are called equal
up to global phase if M1 = eiθM2 for some real number θ, where eiθ is called the global
phase factor.

Remark 5. Classical equivalence is a special case for eiθ = 1. The reason for using
this extended definition is that for global phase equivalent transforms it can not be
physically distinguished which of the transforms has been applied to a quantum system
since the outcomes have the same measurement statistics [1].

Verifying for global phase equivalence can easily be performed if canonical rep-
resentations of the two functions are available. Canonicity ensures that global phase
equivalent transforms have the same representation up to the weights of the root edges
that differ by the global phase factor. Thus, it is sufficient to check whether (1) the
root edges of the two QMDDs point to the same vertex and (2) the weights of these
edges have the same magnitude. This can be performed in constant time using proper
unique tables.



Table 1. Size reduction of QMDDs through variable re-ordering

Benchmark Initial Sifting Exact
Size Time (s) Size Time (s) Size Time (s)

Grover-7 187 0.01 36 <0.01 35 0.37
Grover-9 722 0.02 52 0.01 51 29.14
Grover-11 2817 0.15 67 0.02 66 3709
5-qubit-code-9 90 0.01 57 0.01 43 24.73
7-qubit-code-7 44 <0.01 26 <0.01 26 0.35
9-qubit-codeFigN1-9 40 <0.01 22 0.01 22 24.47
9-qubit-codeFigN2-17 1172 0.01 60 0.04 (84) >7200
QFT-3 22 <0.01 9 <0.01 9 <0.01
QFT-4 86 <0.01 24 <0.01 24 0.01
QFT-5 342 <0.01 40 <0.01 40 0.01
QFT-6 1366 <0.01 103 <0.01 103 0.1
QFT-7 5462 0.02 167 0.02 167 1.2

First, we consider the applicability of the previously available QMDD-based ap-
proaches relying on the normalization rules as discussed in Section 3.1:

– QMDDs following the Normalization Rule 1 would allow for a fast check for equiv-
alence as canonicity is ensured. However, the QMDDs would be restricted to the
given initial variable order. Optimizations through variable re-ordering (e.g. using
sifting which heavily relies on variable interchanges) could destroy the canonical,
normalized structure as described in Example 3 or require to rework large parts of
the data-structure many times. This lack of modifiability prevents this approach
from deriving an efficient representation – a serious obstacle particularly for a task
like equivalence checking where a major issue is to maintain a manageable diagram
size while building the circuit representation.

– Normalization Rule 2 is not applicable as it does not guarantee canonicity of the
representation as demonstrated before in Example 4. Here, an equivalence check
would require a complete traversal of the entire data-structure and, hence, becomes
computationally expensive. Moreover, the lack of canonicity can make it hard to
find a good variable order for a compact representation. Once a promising variable
order was found it might not be possible to reproduce the particular diagram (size)
and we might end up with a significantly different representation.

In contrast, the proposed extended data-structure supports both, a canonical rep-
resentation as well as an advanced modifiability. While the canonicity allows for a fast
check for equivalence as described above, the modifiability ensures a compact repre-
sentation of the respective functionality. This is also demonstrated by experimental
results summarized in Table 1. Here, the respective QMDD sizes (i.e. the number of
vertices; denoted by Size) for a selection of benchmark functions is presented if either
(1) the initial variable ordering is applied, (2) if the data-structure has been improved
through a heuristic approach (sifting technique), and (3) if an exact approach is ap-
plied that establishes the optimal variable ordering. As benchmarks, we applied circuits
realizing Grover algorithms (Grover-N ), error correction functionality (k-qubit-code-N,
taken from [15]), and quantum Fourier transforms (QFT-N ) where N denotes the num-
ber of qubits. Note that the quantum Fourier transforms actually do not show shared
vertex compression in the standard variable order and, thus, exhibit the largest possi-

ble number of QMDD vertices ( 4N−1
3

non-terminal vertices) for the respective matrix
size. The run-time (in CPU seconds) is additionally provided in the columns denoted
by Time. All experiments have been conducted on a 2.8 GHz Intel Core i7 machine
with 8 GB of main memory running Linux.



It can be seen that the size of the QMDD significantly depends on the applied
variable ordering. Reductions of up to a factor of 42 (for the Grover-11 circuit) can be
observed. This clearly emphasizes the necessity of a canonical, but also easily modifiable
data-structure. While this has not been achieved for general quantum functionality with
the previously introduced approaches, the proposed solution relying on vertex weights
satisfies these needs.

7 Conclusions

In this paper, we proposed an extension to the QMDD data-structure by so called ver-
tex weights. They provide a method supplemental to edge weights to represent common
factors of sub-matrices composed of complex numbers. Vertex weights ensure a canoni-
cal representation and allow for an advanced modifiability and applicability of QMDDs
– even for complex quantum functionality. An evaluation demonstrated how this can
be exploited to improve the data-structure itself (e.g. through variable re-ordering en-
abled by the advanced modifiability) and how applications such as equivalence checking
benefit from that.
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