
Scalable Fault Localization for
SystemC TLM Designs

Hoang M. Le1 Daniel Große1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—SystemC and Transaction Level Modeling (TLM)
have become the de-facto standard for Electronic System Level
(ESL) design. For the costly task of verification at ESL, simu-
lation is the most widely used and scalable approach. Besides
the Design Under Test (DUT), the TLM verification environment
typically consists of stimuli generators and checkers where the
latter are responsible for detecting errors. However, in case of
an error, the subsequent debugging process is still very time-
consuming.

In this paper, we present a scalable fault localization ap-
proach for SystemC TLM designs. The approach targets the
described standard TLM verification environment and can be
easily integrated into one. Our approach is inspired by software
diagnosis techniques. We extend the concept of execution profiles
of software programs, also known as program spectra, to handle
the TLM simulation. The whole simulation consists of several
runs; each run corresponds to the request-DUT-response path.
During simulation our approach individually collects spectra for
each run. Then, based on analyzing the differences of passed and
failed runs we determine possible fault locations.

We demonstrate the quality of our approach by several exper-
iments including TLM-2.0 designs. As shown in the experiments,
the fault locations are identified accurately and very fast.

I. INTRODUCTION

The move from implementation-driven design at RTL to
higher levels of abstraction represents a paradigm shift in the
development of electronic systems. This shift has been put into
practice as Electronic System Level (ESL) design. The main
advantages of ESL are to enable greater complexity, virtual
prototyping, faster architectural exploration and the reduction
of costs through higher productivity.

An important foundation in the ESL arena has become
reality with the Transaction Level Modeling (TLM) standard
TLM-2.0 which has been originally developed for, and now
included in the system modeling language SystemC [1], [2].
The core of TLM is a clear separation of computation and
communication where for communication standardized inter-
faces are provided. They abstract implementation details like
protocols using function calls. In this context, a transaction
models the data exchange of a payload between an initiator and
a target. By this, TLM enables efficient virtual prototyping,
model interoperabilty and IP re-use.

However, due to the steadily increasing complexity the
effort spent for verification dominates the design effort. Ac-
cording to a recent verification study [3], in the time period
from 2007 to 2010 the number of designers increased by
only 4% whereas in the same time period the number of
verification engineers increased by 58%. Hence, a considerable

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 16M3088 and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1.
978-3-9815370-0-0/DATE13/ c© 2013 EDAA

effort has been and is put into ESL verification methodologies
and approaches, see e.g. [4], [5], [6], [7], [8].

The most widely used and scalable ESL verification ap-
proaches are based on simulation. Besides the Design Under
Test (DUT), the TLM verification environment typically con-
sists of stimuli generators and checkers where the latter are
responsible for detecting the errors. However, in case of an
error, the subsequent debugging process is still very time-
consuming, in particular since it is highly manual. A few
approaches to automate debugging of SystemC designs have
been proposed [9], [10], [11]. These approaches focus on
very specific faults (e.g. faults related to the SystemC process
scheduling), do not determine a fault location, or are limited
in the design size as they rely on formal methods.

In this paper, we present a scalable fault localization ap-
proach for SystemC TLM designs which targets the described
standard TLM verification environment. Our approach is in-
spired by software diagnosis techniques [12], [13]. We extend
the concept of execution profiles of software programs, also
known as program spectra, to support the TLM simulation.
The whole TLM simulation consists of several runs; each
run corresponds to the request-DUT-response path. Using this
concept of a run, our approach individually collects spectra for
each run during the simulation. Then, based on analyzing the
differences of passed and failed runs we determine possible
fault locations. Furthermore, the runs can overlap due to the
concurrency of TLM models. This leads to inaccurate spectra
and affects the fault localization accuracy. Our approach also
addresses this problem and is able to distinguish overlapping
runs while collecting spectra.

In summary, the main contributions of this paper are:
• First scalable fault localization approach for SystemC

TLM designs
• Extension of successful concepts from the software do-

main for TLM simulation
• Very fast and highly accurate TLM fault localization
The remainder of this paper is structured as follows: Sec-

tion II briefly reviews spectrum-based fault localization for
software. The proposed approach is introduced in Section III.
In Section IV the experiments are given and finally the paper
is concluded in Section V.

II. SPECTRUM-BASED FAULT LOCALIZATION

We follow the terminology used in [13]. A software program
is transformational, i.e. it transforms an input to an output in
a single run. A run is declared as passed if no fault has been
detected during the run, or as failed otherwise.

Program spectra present execution profiles of software
programs, i.e. a set of data collected during the execution.
Many different forms of program spectra exist, such as block



hit, path hit, etc. Here we only focus on the so-called block
hit spectra, which is also used in our approach. A block hit
spectrum contains for each code block of a program a flag
indicating whether the block has been visited in the considered
run. For examples of code blocks please see the rightmost part
of Fig. 1.

Based on the collected spectra of the passed and failed runs,
a suspiciousness value for each code block can be calculated.
This value corresponds to the the likelihood that the block
contains the fault. In the experimental study of [13] several
formulas for suspiciousness have been evaluated. Overall, the
best results have been achieved with Ochiai formula:

Suspiciousness(b) = Failed(b)√
TotalFailed×(Failed(b)+Passed(b))

In the formula, b is a code block, Failed(b) (Passed(b))
presents the number of failed (passed) runs that executed b,
whereas TotalFailed is the total number of failed runs. In the
next section our TLM fault localization approach is introduced
which also uses the Ochiai formula.

III. SCALABLE FAULT LOCALIZATION FOR SYSTEMC
TLM

This section presents our fault localization approach in
detail. First, the concept is introduced and demonstrated on
a concrete SystemC TLM example. Then, the algorithm is
given including the support for TLM-2.0 models.

A. Concept
Foremost, the terminology and definitions described in

Section II cannot be used directly for SystemC TLM.
The most substantial difference between a software program

and a SystemC TLM design (which is a high-level abstraction
of a hardware/software system) is that a TLM design is not
transformational. That means it does not calculate an output
from a given input in a single run and then stops. Instead,
a TLM design repeatedly performs the following cycle: re-
ceive requests from the environment, update its internal states
and produce responses. Therefore, the terminology must be
adapted for SystemC TLM models. This includes the notion
of passed and failed runs in the context of SystemC TLM.

Now, consider todays standard simulation-based TLM ver-
ification environment. Besides the DUT, the environment also
includes a stimuli generator and a checker.1 The generator con-
tinuously produces constrained random and/or directed stimuli,
converts them to transaction objects and delivers these to the
DUT. The checker serves as the error detection mechanism.
It monitors the internal states as well as the responses of
the DUT while processing the transaction objects and checks
whether these monitored values satisfy the DUT specification.
Based on this observation, a run can be naturally defined as
the propagation of a transaction object from the generator to
the checker through the DUT. The predicate passed and failed
is defined based on the corresponding result reported by the
checker for the run.

Furthermore, we need to define when and how the (block
hit) spectrum of each run is collected during runtime. The
straight-forward solution for the first part is to start (stop)
recording block hits when a transaction object is delivered to
the DUT (the checker). However, this solution is problematic
in many cases because of possible overlapping runs, i.e. a new

1This is a somewhat simplified view, but does not affect the generality.

transaction object is delivered before the processing of current
transaction objects finishes. This leads to inaccurate spectra
and affects the accuracy of fault localization. This problem
will be demonstrated by an example in the following section.
The ideal solution requires to accurately identify the start and
the end of each run as well as all of its suspensions and re-
sumptions. We denote the accuracy grade of this identification
step as recording resolution. In the following we refer to the
resolution used by the straight-forward and ideal solution as
the basic and perfect resolution, respectively. In general, better
recording resolution will lead to more accurate fault locations.

With respect to how to collect the spectra of runs, the basic
idea is to instrument the DUT adding two types of function
calls. Each function call of the first type is inserted at each
point identified in the recording resolution. These function
calls update a data structure of currently active runs (i.e. not
ended or suspended). Each function call of the second type is
inserted at the beginning of each code block. These function
calls update the block hit spectra of the currently active runs.

B. Example

The example in this section shows the importance of the
recording resolution. In Fig. 1 parts of a simplified but com-
plete TLM verification environment are shown. For simplicity,
we use an untimed FIFO-based TLM model here. TLM-2.0
models are used in the experiments. The DUT repeatedly
receives a transaction object (payload) with three integers x, y,
and z, calculates the median of these (and some other values),
then write the results back into the corresponding fields of the
payload. Here we focus only on the submodule med module
which calculates the median (function calculate med). The
calculation of module1 and module2 is performed in the
functions calculate1 and calculate2 (not shown), respectively.
Every payload is generated and delivered to the DUT by the
module stimgen (see Line 7-8 in Fig. 1). After the requested
values have been calculated, the corresponding payload is sent
to the module checker to check for correctness. As depicted
in Fig. 1 the modules are connected using four instances of
tlm fifo of size 3. Each module also has a main SC THREAD
containing a loop that gets a payload from the incoming FIFO,
processes and puts it into the outgoing FIFO.

Now we focus on the spectra collected during simulation.
For the sake of simplicity, we only consider the code blocks
of the function calculate med which contains a bug (Line 51
should be p.med = p.x;). The body of this function has been
used in [12] to demonstrate fault localization for software
programs. The blocks are numbered as shown in Fig. 1. An
excerpt of the simplified trace of a simulation with the first
nine random payloads is shown in Fig. 2.

From the trace, the order of execution of the runs (identified
by the payload number) as well as the hit blocks during the
simulation can be observed. The trace also shows clearly that
the runs overlap as the start (end) of each run is indicated by
the corresponding text ”DUT receives (finishes) payload #i”.
Before we discuss the spectra we describe for this example
which fragments of the trace belong to run #1 for the two
resolutions: In Fig. 2 we have marked the fragments of run
#1 for the basic resolution using a ”normal” line, whereas we
have marked the fragments of run #1 for the perfect resolution
using a dotted line.

Coming to the spectra, we summarize the results in Table I.



stimgen

main() 3

module1

main() 3

med module

main() 3

module2

main() 3

checker

main()

= thread = port = interface s = FIFO of size s

1 class stimgen : public sc module {
2 sc port< tlm fifo put if<payload> > out;
3 ...
4 void main() {
5 ...
6 while (true) {
7 generate payload(p);
8 out−>put(p);
9 }

10 }
11 };
12 class moduleX : public sc module { // X = 1, 2
13 ...
14 void main() {
15 while (true) {
16 in−>get(p);
17 calculateX(p);
18 out−>put(p);
19 }
20 }
21 };

22 class checker : public sc module {
23 ...
24 void main() {
25 while (true) {
26 in−>get(p);
27 bool result = check(p);
28 report result(p, result);
29 }
30 }
31 };
32 class med module : public sc module {
33 sc port< tlm fifo get if<payload> > in;
34 sc port< tlm fifo put if<payload> > out;
35 ...
36 void main() {
37 while (true) {
38 in−>get(p);
39 calculate med(p);
40 out−>put(p);
41 }
42 }

43 };
44 void med module::calculate med(payload& p) {
45 p.med = p.z;
46 if (p.y < p.z) { /∗ block 1 ∗/
47 if (p.x < p.y)
48 { /∗ block 3 ∗/ p.med = p.y; }
49 else { /∗ block 4 ∗/
50 if (p.x < p.z)
51 { /∗ block 5 ∗/ p.med = p.y; // bug }
52 }
53 }
54 else { /∗ block 2 ∗/
55 if (p.x > p.y)
56 { /∗ block 6 ∗/ p.med = p.y; }
57 else { /∗ block 7 ∗/
58 if (p.x > p.z)
59 { /∗ block 8 ∗/ p.med = p.x; }
60 }
61 }
62 }

Fig. 1. SystemC TLM example

1 DUT receives payload #1 (22, 5, 41)
2 DUT receives payload #2 (5, 31, 11)
3 DUT receives payload #3 (16, 1, 38)
4 calculate med payload #1
5 HIT BLOCK 1 4 5
6 calculate med payload #2
7 HIT BLOCK 2 7
8 calculate med payload #3
9 HIT BLOCK 1 4 5

10 DUT receives payload #4 (26, 19, 3)
11 DUT receives payload #5 (30, 29, 10)
12 DUT receives payload #6 (3, 3, 14)

13 DUT finishes payload #1
14 DUT finishes payload #2
15 DUT finishes payload #3
16 calculate med payload #4
17 HIT BLOCK 2 6
18 calculate med payload #5
19 HIT BLOCK 2 6
20 calculate med payload #6
21 HIT BLOCK 1 4 5
22 Result of payload #1: FAILED
23 Result of payload #2: PASSED
24 ...

Fig. 2. Simplified simulation trace

The left half of the table shows the spectra and the suspicious-
ness of each code block calculated under the basic resolution.
In the rows each block is listed and an ”x” denotes that the
block has been hit in the respective run. The final row shows
whether the respective run passed or failed. Column S gives
the suspiciousness calculated using the Ochiai formula. As
can be seen, using the basic resolution would mean that for
example the spectra of the first three runs are identical (blocks
1, 2, 4, 5 and 7 were hit; compare also above mentioned
marking in Fig. 2). Thus, the hit of the faulty block 5 is
mistakenly covered in the spectra of the passed runs. Overall,
as can be seen, the faulty block does not have the highest
suspiciousness.

The perfect resolution additionally includes for each run
two suspension and resumption points, respectively. A run is
suspended when the associated payload is sent to the next
module (from module1 to med module and from med module
to module2, therefore two suspensions) and then resumed
when this module receives the payload. Therefore, a block
hit is only collected in the spectrum of a run if the hit takes
place during the processing of the associated payload. More
precisely, this means the spectrum of the run #k is only
updated when calculate med is called to process payload #k.
As shown in the right half of Table I, the spectra are accurate
and thus the faulty block is correctly identified.

C. Algorithm

In this section we present the fault localization algo-
rithm for SystemC TLM designs. Thereby, we focus on the

three most widely used modeling styles: untimed FIFO-based
(e.g. our example), TLM-2.0 loosely-timed (LT), and TLM-2.0
approximately-timed (AT). First, we introduce the auxiliary
C++ functions to support the recording of spectra:
• start run(id) and end run(id): indicate the start/resump-

tion and the end/suspension of a run identified by id,
respectively and inserts id into the set of active runs.

• record hit(X) adds block X to the spectra of active runs.
• record result(id, result) assigns the result reported by the

checker (passed or failed) to the run identified by id. It
also updates the number of passed/failed runs for each
block, as well as the total number of passed/failed runs.
Those numbers are needed to apply the Ochiai formula.

As can be seen, these functions require for each run an
identifier id. For designs where transaction objects are always
passed by reference such as the generic payload of TLM-
2.0 models, these objects can be directly used to identify the
associated runs. In case that transaction objects are passed
by value (for example in many untimed FIFO-based designs),
each transaction object is required to have a unique id. The
fault localization algorithm consists of the following steps:

1) Instrument the DUT at the recording points (i.e. start,
end, suspension, resumption of runs) by inserting calls
to start run and end run at appropriate code positions.
This step depends mostly on the underlying modeling
style of the DUT as detailed below.

2) Instrument the DUT to insert calls to record result in the
checker. If the checker is automatically generated, this
can be easily integrated into the generation. Otherwise,
it takes a minimum effort to manually insert those calls.

3) Instrument the DUT to number all code blocks and insert
a call to record hit at the beginning of every block. This
instrumentation step can be fully automated.

4) Compile and simulate the instrumented DUT until com-
pletion or interruption.

5) Calculate the suspiciousness of all blocks and report the
list sorted in descending order of suspiciousness.

The instrumentation can be done as follows for the three
above mentioned modeling styles:



TABLE I
SPECTRA AND SUSPICIOUSNESS IN TWO DIFFERENT RESOLUTIONS

Runs in Basic Resolution Runs in Perfect Resolution
#1 #2 #3 #4 #5 #6 #7 #8 #9 S #1 #2 #3 #4 #5 #6 #7 #8 #9 S

Block 1 x x x x x x x x x 0.577 x x x x x x 0.707
Block 2 x x x x x x 0.471 x x x 0
Block 3 0 0
Block 4 x x x x x x x x x 0.577 x x x x x x 0.707
Block 5 x x x x x x x x x 0.577 x x x x 0.866
Block 6 x x x 0 x x 0
Block 7 x x x 0.667 x 0
Block 8 0 0
Passed/Failed F P F P P P P P F F P F P P P P P F

x = block hit
TABLE II

RESULTS FOR TLM-2.0 DESIGNS

Design LOC Block Passed Failed Rank
lt ab 1 1508 118 120 8 1
lt ab 2 1508 118 102 24 1
lt ab 3 1508 118 64 64 1-4
lt db 1 1508 118 98 30 1
lt db 2 1508 118 90 38 4
at mixed ab 1 2536 220 124 4 1
at mixed ab 2 2536 220 92 36 1
at mixed ab 3 2536 220 80 48 5
at mixed db 1 2536 220 96 32 1
at mixed db 2 2536 220 76 52 1
at mixed pb 2536 220 38 2 1-2
dma example ab 882 106 582 18 1
dma example db 882 106 562 38 1

• Untimed FIFO-based: In this modeling style, each FIFO
is being polled in a loop. The loop body first gets a trans-
action object from the incoming FIFO, then processes this
object and finally puts it into the outgoing FIFO. Thus,
we insert start run after each call of the FIFO interface
get and end run before each call of put.

• TLM-2.0 LT: Insert start run before and end run after
each call to the blocking transport interface b transport.

• TLM-2.0 AT: Handle the non-blocking transport inter-
faces nb transport fw and nb transport bw similar to
b transport, and the payload event queues similar to
FIFOs, since they are also being polled in a loop.

As can be seen, the instrumentation of the DUT only
introduces calls to very simple functions. Hence, the overhead
added to the simulation will be very small. In the next section
the experimental evaluation is presented.

IV. EXPERIMENTS

In this section we present the experimental results. All
experiments have been carried out on a 3 GHz AMD Opteron
system with 32 GB RAM running Linux. Since the runtimes
of all experiments were negligible as expected, we only focus
on the accuracy of the fault localization.

We have considered in our experiments three different
designs using both loosely-timed and approximately-timed
modeling styles: lt and at mixed from the official TLM-2.0
distribution and dma example from the ARM AMBA-PV
extensions to TLM-2.0.

We have injected bugs into the designs and then applied our
approach to locate these bugs. The majority of bugs manipulate
either the address or the data of some transaction objects
so that the corresponding runs can be classified as failed.
These bugs are categorized as ab and db, respectively. The
corresponding bug category is appended to the name of the
design as shown in Table II which presents a summary of
the results. For at mixed we have also introduced a bug that
violates the base protocol (hence denoted as pb).

The first column of Table II gives the name of the design.
The next columns present the lines of code (LOC) and the
number of blocks of the design, the number of passed runs and
failed runs during the simulation. Finally the rank of the faulty
block in the final list sorted by suspiciousness is given in the
last column. If several blocks have the same suspiciousness,
we show the rank of the first and the last block with this
suspiciousness (e.g. 1-4 means that the first four blocks in
the sorted list have the highest suspiciousness). As can be
observed from Table II, in most cases the block containing
the injected bug has been accurately localized (i.e. Rank = 1).

The main limitation of the approach is the granularity of the
determined fault locations. These are code blocks that might
include the fault. If a highly suspicious block is large (i.e. it
contains many statements), it is still time-consuming to find
the faulty statement.

V. CONCLUSIONS

In this paper we have presented the first scalable fault lo-
calization approach for SystemC TLM. Inspired by spectrum-
based fault localization approaches – developed for software
programs – we have extended the concept of program spectra
to support the TLM simulation. Collecting accurate spectra
requires to identify and distinguish possibly overlapping runs
in the TLM simulation such that the transactions resulting from
different DUT requests can be unambiguously associated to
each respective request.

Overall, a very fast and accurate fault localization has been
achieved. We successfully demonstrated the quality of our
approach for several TLM-2.0 design examples.

REFERENCES

[1] Accellera Systems Initiative. (2012) SystemC 2.3 (includes TLM). [Online].
Available: http://www.accellera.org

[2] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2011.
[3] Wilson Research Group and Mentor Graphics, “2010-2011 Functional Verification

Study,” 2011.
[4] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Implementation of a

transaction level assertion framework in SystemC,” in DATE, 2007, pp. 894–899.
[5] L. Ferro and L. Pierre, “ISIS: Runtime verification of TLM platforms,” in FDL,

2009, pp. 1–6.
[6] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level

properties of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–
122.

[7] B. Bailey, F. Balarin, M. McNamara, G. Mosenson, M. Stellfox, and Y. Watanabe,
TLM-Driven Design and Verification Methodology. Lulu Enterprises Inc., 2010.

[8] H. M. Le, D. Große, and R. Drechsler, “Towards analyzing functional coverage
in SystemC TLM property checking,” in HLDVT, 2010, pp. 67–74.

[9] F. Rogin, C. Genz, R. Drechsler, and S. Rülke, “An integrated SystemC debugging
environment,” in FDL, 2007, pp. 140–145.

[10] F. Rogin, R. Drechsler, and S. Rülke, “Automatic debugging of system-on-a-chip
designs,” in IEEE International SOC Conference, 2009, pp. 333–336.

[11] H. M. Le, D. Große, and R. Drechsler, “Automatic TLM fault localization for
SystemC,” IEEE Trans. on CAD, vol. 31, no. 8, pp. 1249–1262, Aug. 2012.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in ASE, 2005, pp. 273–282.

[13] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and Software,
vol. 82, no. 11, pp. 1780 – 1792, 2009.


