
Synchronized Debugging across Different
Abstraction Levels in System Design?

Rolf Drechsler1,2, Daniel Große1, Hoang M. Le1, and André Sülflow1

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

Abstract. The development of complex systems such as today’s System-
on-Chips (SoCs) under tight time-to-market constraints is an extremely
challenging task. To cope with the rapidly increasing complexity, the level
of abstraction has been raised beyond RTL to the so-called Electronic
System Level (ESL). In typical ESL design flows, the design is started
from the textual specification. Then the golden model is built using ab-
stract ESL languages such as SystemC. This model is used by several
teams focusing on different aspects, like performance analysis and early
software development. At the same time the refinement process starts
and IP components are integrated. Finally, an RTL model is built for
the hardware part of the system. However, in practice the design process
is not an ideal incremental top-down design process. Therefore, bugs can
be found during the different refinement steps. Hence, it is important to
have the respective models in sync. In this paper we consider debugging
approaches at different levels of abstractions and show how to relate the
debugging results across the abstraction levels. Following this methodol-
ogy, the productivity of the whole design process is accelerated because
each team always works on the latest correct design.

1 Introduction

Although embedded systems have witnessed a reduction of their development
time and life time in the past decades, their complexity has been increasing
steadily. As a result, the development of embedded systems moves from design
to verification, i.e. more time is spent on checking whether the developed design
is correct or not. In fact, according to a recent study [1], from 2007 to 2010,
there has been a 4% increase of designers compared to an alarming 58% increase
of verification engineers.

To face the respective verification challenges, significant effort has been put
into clever verification methodologies and new flows have been investigated. A
major milestone for the development and verification of embedded systems has

? This work was supported in part by the Federal Ministry of Economics and Technol-
ogy (BMWi), Germany, within the EXIST Transfer of Research project SolVerTec.
For more details see www.solvertec.de.

www.solvertec.de

become the so-called Electronic System Level (ESL) design which is state-of-the-
art today [2]. Here, the idea is to start designing a complex system at a high
level of abstraction – typically using an algorithm specification of the design. At
this level, the functionality of the system is realized and evaluated in an abstract
fashion ignoring e.g. which parts might become hardware or software later.

The next level of abstraction is based on Transaction Level Modeling
(TLM) [3]. As modeling language typically SystemC [4,5,6] is used which offers
the TLM-2.0 standard [7]. A TLM model consists of modules communicating
over channels, i.e. data is transferred in terms of transactions. Within TLM,
different levels of timing accuracy are available such as untimed, loosely-timed,
approximately-timed, and cycle-accurate. The respective levels allow e.g. for
early software development, performance evaluation, as well as HW/SW parti-
tioning and, thus, enable a further refinement of the system.

Finally, the hardware part of the TLM model is refined to the Register Trans-
fer Level (RTL), i.e. a description based on precise hardware building blocks
which can subsequently be mapped to the physical level. Here, the resulting
chip is eventually prepared for manufacturing.

However, in practice the design process is not an ideal incremental top-down
design process. Models at different abstraction levels are being used in parallel
by several teams focusing on different aspects. Therefore, in the design process,
bugs can be found during the different refinement steps. Furthermore, the same
bug can exist simultaneously at several abstraction levels due to refinements of
a buggy model. Hence, it is important to have the respective models in sync and
to minimize the debugging effort.

In this work, we introduce the concept of synchronized debugging. Once a
bug has been detected at an abstraction level, the subsequent debugging process
tries to find and fix the bug not only in the respective model, but also at the
other abstraction levels. We assume that for a detected bug, a counter-example
(or a failing testcase) is available. Synchronized debugging also requires that
during the refinement steps, the correspondence between the original and the
refined elements is kept. The process starts with applying specialized debugging
approaches for the abstraction level where the bug has been found. Once the
bug is localized and fixed in the respective model, it is continued with other
abstraction levels. First, the counter-example is translated for each of these ab-
straction levels. Then, the validity of the refined (or abstracted) counter-example
is checked to confirm whether the same bug also exists at that abstraction level.
If so, the debugging result at the abstraction level where the bug has been found
can be reused. Based on the established correspondence, the bug can be lo-
calized and fixed for the considered abstraction level without using specialized
approaches. Thus, following the outlined methodology, models at different levels
of abstraction are kept in sync and multiple separated debugging processes are
not necessary.

In the next section, we demonstrate the ideas by means of an example at two
representative abstraction levels.

1 void calculate(calc payload& p) {
2 p.calc status = CALC OKAY;
3 switch (p.op) {
4 case NOP : break;
5 case ADD : acc = p.number1 + p.number2; break;
6 case SUB : acc = p.number1 − p.number2; break;
7 case MULT : acc = p.number1 ∗ p.number2; break;
8 case ACC ADD :
9 ...

10 default :
11 // unknown op −> error response
12 p.calc status = CALC ERROR;
13 }
14 if (p.calc status == CALC OKAY) {
15 if (acc >= MAX VAL || acc < MIN VAL) {
16 p.calc status = CALC ERROR;
17 acc out of range = true;
18 } else {
19 p.result = acc;
20 }
21 }
22 }

Fig. 1. Function calculate

2 Example

In the example (see also [8]), the development of a calculator is considered at
two abstraction levels: the behavioral level and the register transfer level. The
calculator shall be able to perform calculation (i.e. addition, subtraction, mul-
tiplication, etc.) with two given numbers. The calculator shall also be able to
store the last calculated result and perform calculation with this number and
another given number. A given number shall be an integer with up to 3 digits.
If the result of a calculation has more than 3 digits, the calculator shall report
an error.

2.1 Behavioral Level

First, a system description following a TLM modeling style is created. The data
transported to and from the calculator is modeled as a payload containing the
requested operator, two given numbers, and also the status and the result of
the calculation. The functionality of the calculator shall be fully captured in a
function calculate which receives a payload, performs the requested calculation,
and writes back the result into the payload. The implementation of calculate is
depicted in Fig. 1.

1 always @(alu result, error)
2 begin
3 old result = alu result;
4 status = 1;
5 if ((old result[32] == 1 && old result > MIN VALUE)
6 || (old result[32] == 0 && old result >= MAX VALUE))
7 begin
8 status = 0;
9 end

10
11 if (error)
12 begin
13 old result = 0;
14 status = 0;
15 end
16 end

Fig. 2. Part of the RTL model containing the bug

The SystemC implementation has passed all testcases and thus has been
released for further development steps. However, the testcases have missed the
bug on Line 15 (>= MAX V AL should be instead > MAX V AL). This bug
causes the calculator to report an error if the calculated result is MAX V AL
(999). Since this corner case has not been considered during testing, the bug
propagates to the next abstraction level RTL.

2.2 Register Transfer Level

The RTL model is created in a refinement process starting with the behavioral
SystemC model. First, the payload is refined to inputs and outputs of the overall
design: both numbers and the operator become inputs, while the result and the
calculation status become outputs. The function calculate of the SystemC model
is refined to two additional modules: the module CALCULATE to perform the
actual calculation, and the module SELECT that stores the last calculated result
and delivers it to CALCULATE when an accumulative operation is chosen. Two
existing IP components from the M1 Core [9] have been integrated into the
module CALCULATE: an Arithmetic Logic Unit (ALU) – for the addition and
subtraction – and a multiplier. Some parts of the algorithmic behavior can be
translated one-to-one, for example, the range check, and thus the described bug
is still present. This can be observed in Fig. 2 where Line 6 contains the same
erroneous comparison.

The overall structure of the RTL design is depicted in Fig. 3. As can be
seen, the two number inputs, the operator input, the result output, and the
calculation status are denoted as a, b, op, results, and status, respectively. In
each calculation, the inputs are checked first in the unit CHK1 whether they are
within the valid range. Then, they are forwarded to the CALCULATE module.

C
H
K1

SELECT

CALCULATE

ALU MUL

C
H
K2

a

b

op result

status

Fig. 3. RTL model overview

The CALCULATE module calculates the result using either the ALU or the
multiplier depending on the value of the input op. This result is then checked
again in unit CHK2.

2.3 Synchronized Debugging

After the RTL model has been completely implemented, its correctness has also
to be verified. For this task, a set of RTL properties has been written and formally
checked using WoLFram [10] During this phase, the bug described above has been
detected and also a counter-example has been delivered.

Now, using automated debugging methods for RTL (e.g. [11,12,13]), the bug
at Line 6 in Fig. 2 can be identified among a list of candidates and fixed. Syn-
chronized debugging goes a step further: First, the counter-example at RTL is
abstracted to create a new testcase at the behavioral level. This testcase fails
and thus confirms the existence of the same bug in the behavioral model. Instead
of applying automated debugging approaches for SystemC TLM (e.g. [14,15]),
the debugging result at RTL can be reused. Because the correspondence between
the elements of each respective abstraction level is kept, we know that Line 15 in
Fig. 1 corresponds to Line 6 in Fig. 2. Thus, it is possible to determine Line 15
in Fig. 1 as the location of the bug.

3 Conclusions

In this paper we have introduced the concept of synchronized debugging and
demonstrated its usefulness on a simple example. The main advantage of this
concept is that once a bug has been found, its location and fix can be propagated
across all abstraction levels. Thus, models being used at different levels of ab-
straction are always fixed and kept in sync with minimum debugging effort. The
key enabler for the methodology is the correspondence between the models of
two different abstraction levels. However, in practice, it is not always as simple
as in our example to establish this correspondence during the refinement steps.
Hence, future research will mainly focus on this open question, which is not only
important for synchronized debugging but also for e.g. equivalence checking.

References

1. Wilson Research Group and Mentor Graphics: 2010-2011 Functional Verification
Study (2011)

2. Bailey, B., Martin, G., Piziali, A.: ESL Design and Verification: A Prescription for
Electronic System Level Methodology. Morgan Kaufmann/Elsevier (2007)

3. Ghenassia, F.: Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer (2006)

4. Accellera Systems Initiative: SystemC (2012) Available at www.systemc.org.
5. Black, D.C., Donovan, J.: SystemC: From the Ground Up. Springer-Verlag New

York, Inc. (2005)
6. Große, D., Drechsler, R.: Quality-Driven SystemC Design. Springer (2010)
7. Aynsley, J.: OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL. Open Sys-

temC Initiative (OSCI) (2009)
8. Drechsler, R., Diepenbeck, M., Große, D., Kühne, U., Le, H.M., Seiter, J., Soeken,

M., Wille, R.: Completeness-driven development. In: International Conference on
Graph Transformation. (2012) 38–50

9. Fazzino, F., Watson, A.: M1 core (2012) Available at http://opencores.org/
project,m1 core.

10. Sülflow, A., Kühne, U., Fey, G., Große, D., Drechsler, R.: WoLFram - a word
level framework for formal verification. In: IEEE/IFIP International Symposium
on Rapid System Prototyping. (2009) 11–17

11. Fey, G., Staber, S., Bloem, R., Drechsler, R.: Automatic fault localization for
property checking. IEEE Trans. on CAD 27(6) (2008) 1138–1149

12. Große, D., Fey, G., Drechsler, R.: Enhanced formal verification flow for circuits
integrating debugging and coverage analysis. In R. Ubar, J. Raik, H.T.V., ed.:
Design and Test Technology for Dependable Systems-on-Chip. Information Science
Reference (2011) 119–129

13. Debug!t - Automated Debugging for Chip Design. www.solvertec.de. (2013)
14. Le, H.M., Große, D., Drechsler, R.: Automatic TLM fault localization for SystemC.

IEEE Trans. on CAD 31(8) (August 2012) 1249–1262
15. Le, H.M., Große, D., Drechsler, R.: Scalable fault localization for SystemC TLM

designs. In: Design, Automation and Test in Europe. (2013)

www.solvertec.de

	Synchronized Debugging across Different Abstraction Levels in System Design

