
Automated Formal Verification of X Propagation
with Respect to Testability Issues

Mehdi Dehbashi∗‡ Daniel Tille† Ulrike Pfannkuchen† Stephan Eggersglüß∗‡
∗Institute of Computer Science, University of Bremen, Bremen, Germany

‡ Cyber-Physical Systems, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
† Group of Design-For-Test (DFT), Infineon Technologies AG, Munich, Germany

Abstract—X values may be captured by scan flipflops during
the scan test. An X value corrupts the signature generated by
a Multiple-Input Signature Register (MISR). The MISR is used
in the test structures such as Logic Built-In Self-Test (LBIST).
In this paper, we propose an approach to automate formal
verification of X propagation with respect to testability issues.
The propagation of an X value from X sources to scan flipflops is
comprehensively evaluated using formal verification considering
all possible test patterns. The approach is utilized to find root
causes of a corrupted signature generated by MISR and to rectify
the erroneous behavior of a design because of dangerous X
sources.

Keywords—Formal Verification, Testability, Dangerous X
Source, Observation Point

I. INTRODUCTION

During the scan test, X values may propagate from X
sources to observation points (scan flipflops). An X value may
propagate from the output of a black box, a non-scan flipflop,
a latch or other sources. Non-scan flipflops and latches are
utilized in the design in order to reduce the area overhead and
to decrease the power consumption of the IC. If the value of
non-scan elements is not corretly initialized in the test setup,
an X value may propagate to scan flipflops during the scan test.
Also an X value may propagate from the output of a black box
during the scan test, if the black box is not correctly isolated
from the rest of the circuit. An X source which propagates
an X value to scan flipflops during the scan test is called a
dangerous X source.

An X value must be prevented to propagate to scan flipflops.
Otherwise, the signature generated by MISR is corrupted and
cannot be used to detect faults in LBIST structures. An X
value also has negative effect on the compression rate and the
test coverage in Embedded Deterministic Test (EDT) structures
[1]. In this case, when there is an X value in the response data,
an X masking method is used to prevent a captured X value
to appear in the compacted response. However, X masking
decreases the quality of test patterns to detect more faults,
i.e., the number of test patterns increases.

Three-valued logic (01X) has been used to abstract a circuit
for efficient model checking in [2]. The work in [3] uses a
heuristic approach based on three-valued logic to find high
quality counterexamples in order to debug logic bugs. X

The work of S. Eggersglüß has been supported by the Institutional Strategy
of the University of Bremen, funded by the German Excellence Initiative.

propagation is utilized in [4] to generate diagnostic traces in
order to increase the diagnosis accuracy of design debugging.
The work in [5] utilizes X propagation in order to determine
cases of verification scenarios and, consequently, to improve
the coverage in simulation-based verification.

In this paper, we propose an automated approach to formally
verify X propagation to improve testability of digital circuits.
At RTL, dangerous X sources are found and the design is
improved preventing an X value to originate and to propagate
to observation points. However, the scan structures are not
available at RTL. Therefore, the exact verification cannot be
performed at RTL to determine dangerous X sources with
respect to testability issues. At gate-level, formal verification
of X propagation is automated in order to determine dangerous
X sources. We automate formal verification by automatically
generation of suitable constraints and assertions for a given
list of X sources and observation points (Section III-A and
Section IV-A).

Using formal verification, the behavior of an X source
is comprehensively evaluated with respect to all possible
test patterns. An X value propagated from a dangerous X
source corrupts the signature generated by MISR. Using our
approach, root causes of a corrupted signature are found and
are localized. This information is utilized by the designer to
debug and to isolate the circuit from dangerous X sources. By
this, the debugging process which typically has a large share
in the design process can be significantly accelerated.

The remainder of this paper is organized as follows. In
Section II, the overall design flow is explained. We describe
X sources and a process to improve a design preventing X
propagation at RTL in Section III. Section IV deals with
dangerous X sources for scan test and isolation of dangerous
X sources at gate-level. In this section, our approach to
automate formal verification of X propagation is explained.
Our approach to improve the efficiency of formal verification
is demonstrated in Section V. Section VI presents experimental
results on benchmark circuits. The last section concludes the
work.

II. DESIGN FLOW

The VLSI system design methodology starts with a system
design team writing the specification of the system as a text.
Then, the system model is implemented and the concepts and
the algorithms at the system level are verified [6]. The common

languages to describe the system model of a hardware are C,
C++, and SystemC.

After validating the specification of an IC, the functions of
the specification are implemented by Hardware Description
Languages (HDL) such as Verilog and VHDL. The hardware
functions are implemented at Register Transfer Level (RTL)
using HDLs.

At RTL, the design is verified to find X sources. X values
originate in a design because of a bug in the implementation,
incompleteness of the implementation, uninitialized memory
elements or black boxes. X sources at RTL are discussed in
Section III in detail. X sources can be found by formal-based
or simulation-based verification. Using the formal verification,
the behavior of a design for all possible input stimuli can be
evaluated and verified. However, the scalability of the formal
verification is limited. For large SoCs, the simulation-based
verification can be used to evaluate the behavior of the design
under a specified set of input stimuli. In this work, we focus
on the formal verification to determine dangerous X sources.
After determining dangerous X sources, the RTL design has
to be improved to prevent X propagation. In Section III-B,
solutions to prevent X propagation at RTL are discussed.

After verifying the design at RTL, logic synthesis is per-
formed. Logic synthesis converts a design into a gate-level
circuit. At gate-level, also Design-For-Test (DFT) structures
such as scan chains and LBIST are inserted in the design. New
X sources may also appear at gate-level as the exact behavior
of signals and delay information are available only at this level.
Also, an inconsistency created by the synthesis tool may create
an X source at gate-level. The exact formal verification of X
propagation with respect to testability issues can be performed
at gate level because scan flipflops are available at this level.
In Section IV-B, we present an automated process to evaluate
whether X sources are dangerous at gate level. The formal
verification of X propagation is automated considering the
effect of X propagation to scan flipflops. We also introduce an
automated approach to improve the efficiency of the formal
verification of X propagation in Section V.

The transistor level design is created by a place-and-route
process for chip manufacturing. Then, the design is fabricated
on silicon as a chip. The process to validate a fabricated chip
is called post-silicon validation. The post-silicon validation
process starts by applying test patterns to the IC or by running
a test program, such as end-user applications or functional
tests, on the IC [7] [8]. The test patterns are applied to the IC
using DFT structures such as LBIST. A signature is generated
for responses using a MISR in LBIST. When there is no X
value in the response, the correct generated signature is utilized
to detect physical faults in the IC.

III. X-SOURCES AT RTL

We categorize X sources at RTL as follows:
1) Uninitialized memory elements and signals
2) Bug in the implementation
3) Incompleteness of the implementation
4) Black boxes

Cadence IFV
Pass/Fail/

Explored

X Sources

Observation Points

Design

XS

OP

Fig. 1. Formal verification of X propagation at RTL

5) Registers with chip-specific values

The first category includes uninitialized memory elements
such as flipflops, latches, registers and memory modules.
Also, an X value may originate because of a bug in the
implementation for example division by zero, index violation
or function not returning a value [9]. Incompleteness of the
implementation is another cause to originate an X value.
One common example for this category of X sources is an
incomplete case statement [9] [10]. As the value of output
ports of a black box is unknown, these output ports originate
X values. A black box can be an analog module which
is not considered in the digital test process. Registers with
chip-specific values contain information of each individual
fabricated chip. After fabricating ICs, these registers contain
different values in different chips. Therefore, registers with
chip-specific values are another source of X values which
may cause generating different signatures in different chips
by MISR. These registers may also have different values in
different runs of a same chip (e.g. adjust values).

Formal-based and simulation-based verification can be uti-
lized to detect X sources. As an initial step, a design can
be analyzed to detect possible X sources [9]. X sources of
categories 1, 4 and 5 are easily detectable. However, X sources
of category 2 and category 3 are more difficult to be detected
because these categories are potential X sources. In this case,
a reachability analysis is required to prove that these X states
are reachable.

If the set of possible X sources is large, the designer’s
information is utilized to find out which X source is a real
X source. For example, some uninitialized memory elements
detected at module level are initialized when the module is
used in a system and in a real testbench.

After finding X sources, another issue is to determine
whether an X source is dangerous. An X source is dangerous
when an X value originates at that source and propagates and
arrives at observation points. At RTL, observation points can
be for example state elements (memory elements) and primary
outputs. Formal verification approaches are utilized to analyze
X propagation to observation points [9] [11] [12]. For analysis
of X propagation, three-valued logic is used in which each
signal can have the value 0, 1, or X (unknown). This logic
has been used in the field of formal hardware verification
for creating strong counterexamples [13] [14] [3] and faster
verification engines [15] [16] [12].

A. Automated Formal Verification of X Propagation at RTL

Figure 1 shows our approach to formal verification of X
propagation at RTL. In our approach, we utilize Cadence
Incisive Formal Verifier (IFV) [11] as an underlying formal
engine. Our approach automatically verifies X propagation
from X sources to observation points and, consequently, deter-
mines whether X sources are dangerous. As Figure 1 shows,
the list of X sources (XS) and observation points (OP) are
given to the tool. Then constraints are automatically generated
to constrain the value of X sources to X by our approach.
Also assertions are automatically generated to observe the
behavior of observation points. An assertion specifies that an
observation point has to capture no X value. Having constraints
and assertions, formal verification evaluates whether an X
value can propagate from X sources to an observation point.
The result of formal verification is: pass, fail or explored. The
result pass means the formal verification has proven there is
no possibility to propagate an X value from X sources to the
corresponding observation point. In the case of the result fail,
a counterexample is generated. The designer uses the coun-
terexample to correct the design in order to prevent an X value
to originate and to propagate. The result fail indicates some
X sources are dangerous for the corresponding observation
point. When an assertion fails, the active X sources (dangerous
X sources) which have contributed to X propagation to the
corresponding observation point are reported by running the
command "debug assertion_name" in the IFV console [11].
When the state of an assertion is explored (n), it indicates
the tool cannot prove that the corresponding assertion passes
or fails within the specified effort (run-time and memory).
However, the tool proves that there is no counterexample till
the clock cycle n.

B. X-Prevention at RTL

After determining dangerous X sources, they have to be
prevented to propagate an X value to observation points.
Memory elements have to be initialized to prevent dangerous
X sources of category 1 mentioned in Section III. An X
source of category 2 indicates a bug in the implementation.
In this case, a counterexample is generated by the verification
tool. The counterexample shows the erroneous behavior of the
implementation. This counterexample is given to the designer
in order to debug the implementation and to fix the erroneous
behavior.

When an X value propagates to observation points because
of an incomplete section in the implementation (category 3),
the verification tool generates a counterexample (a trace).
The counterexample shows how the incomplete section of
the implementation is activated and how an X value from
the activated section propagates to observation points. This
counterexample is given to the designer in order to complete
the implementation.

In the case of a black box and registers with chip-specific
values as dangerous X sources, they have to be isolated from

Cadence IFV
Pass/Fail/

Explored

X Sources

Observation Points

Tessent Shell

DRC

SFFs

Design Design

Fig. 2. Formal verification of X propagation at gate-level

the rest of the circuit in the test mode1. Scan test signals are
required at RTL to isolate dangerous X sources. In summary,
the solutions for X prevention at RTL are as follows:

1) Initializing memory elements
2) Fixing the X-related bug
3) Completing the implementation
4) Isolating dangerous X sources

IV. X-SOURCES AT GATE-LEVEL

In addition to remaining X sources from RTL, new X
sources may appear at gate-level as delay information and
exact behavior of signals are available at this level. At gate
level we consider X sources in the scan test mode. An X value
at gate-level may originate because of the following reasons
[17]:

1) A violation on a wired gate
2) A violation on a bus gate
3) A violation on a tri-state gate or a switch gate
4) A violation on a transparent latch
5) A violation on a ROM or RAM gate
6) Tie-X non-scan flipflops and latches
7) Init-X non-scan flipflops and latches
8) Primary inputs which are not used as scan pattern input
If some wires are directly connected to each other, a wired

gate is constituted. In this case, if the wires are derived by
different values, an X value originates. In the case of a bus
gate, if more than one of the bus-connected tri-state drivers
or switches turn on simultaneously or all drivers turn off
simultaneously (Z state), an X value originates [17]. If a tri-
state driver gate or a switch gate does not connect to a bus
gate, this Z state behaves as an X [17]. Also violations on input
ports of a transparent latch and ROM/RAM may originate an X
value. Tie-X non-scan flipflops and latches have always an X
value. One example for this class of X sources is registers with
chip-specific values which have different values in different
ICs. Init-X non-scan flipflops and latches are state elements
which are uninitialized at the start of scan test. External inputs
and bidirectional pins which are not used as scan pattern input
can also be X sources. For more details we refer the reader to
[17].

1For a register with chip-specific value, not only the output port but also the
input ports of the register have to be isolated. The input ports of a register with
chip-specific value are isolated because the value changes of scan flipflops
during the scan test must not affect the value of registers with chip-specific
values.

EDA test insertion tools analyze a gate-level design to find
violations originating X values [17]. The location of a violation
is called an X source.

A. Automated Formal Verification of X Propagation at Gate-
Level

Having X sources, the next step is to determine which X
source is dangerous. For the test goal, the observation points
are scan flipflops. Therefore, an X source is dangerous, if the
X source propagates an X value to the scan flipflops.

Figure 2 illustrates our automated formal verification ap-
proach at gate-level to determine dangerous X sources. In
Figure 2, scan flipflops (SFFs) are extracted using Tessent
Shell [18] and are considered as observation points. Design
Rule Checks (DRC) of Tessent tool help to extract the initial
list of X sources. DRC D5 [18] reports the list of non-scan
latches/flipflops and their values in the test mode. DRC E5
[18] reports the list of elements which may propagate an X
value in the test mode.

If the list reported by DRCs contains many elements, the
designer’s information is utilized to find out which element of
DRC is a real X source. The DRCs report also uninitialized
elements for the module under test. However, these uninitial-
ized elements of the module are initialized when the module
is used in a system.

Given the list of X sources and observation points, our ap-
proach automatically creates suitable constraints and assertions
for the corresponding X sources and observation points. Then
the formal verification is invoked to investigate whether there
is a possibility to propagate an X value from X sources to
observation points. The X sources which cause an assertion
fails are dangerous X sources.

B. X-Prevention at Gate-Level

After finding dangerous X sources at gate-level, they have
to be prevented to propagate an X value to scan flipflops. X
prevention can be performed by manipulating the gate-level
design or the RTL design. If a gate-level X source is available
at RTL, i.e., there is a mapping between the location of an X
source at gate-level and its location at RTL, and the X source
can be prevented at RTL by manipulating the RTL code, then
the RTL design is improved and is resynthesized to create a
new gate-level netlist. Manipulation of an RTL design is more
desirable as the manipulation is kept for the future updates
and extensions of the hardware core. In this case, the RTL
and gate-level designs can also pass the equivalence checking.
When signals related to a gate-level X source are not available
at RTL, the manipulation has to be performed at gate-level.

Furthermore, some X sources originate because of a timing
violation in signals’ propagation which are available at gate-
level. In this case, changing signals’ timing at gate-level may
prevent an X value to originate. Finding timing violations
and debugging them are performed by Static Timing Analysis
(STA) tools.

If a dangerous X source is detected at gate level and there
is not enough time to manipulate the RTL design because of

Scan-in Scan-out

Scan FFs

X

1

0

scan_mode

value

Fig. 3. An example for isolation of dangerous X sources

the tape-out deadline, the corresponding dangerous X source
can be isolated at gate level. Figure 3 shows an example in
which one X source is isolated during the scan test mode at
gate level. The select line of the multiplexer is connected to
the scan mode signal. The 1-input of the multiplexer is taken
from a pre-determined logic or value. During the test mode,
the output of the multiplexer has a pre-determined value.

In summary, the solutions for the prevention of gate-level
X sources are as follows:

1) RTL manipulation and resynthesis
2) Gate-level manipulation
3) Isolation of dangerous X sources

V. INCREASING THE EFFICIENCY OF THE PROPOSED
FORMAL VERIFICATION

The efficiency and the scalability of formal verification is
limited with respect to the size and the complexity of the
design under verification. For large designs which have a large
number of scan-flipflops, the formal verification cannot be
directly applied to evaluate X propagation to all scan-flipflops.
In this case, not only the number of scan-flipflops but also
the size of the design has to be decreased. To increase the
efficiency of the formal verification for large designs, we use
the following automated process at gate-level:

1) Creating a list of scan-flipflops by traversing the circuit
from X sources until reaching a scan-flipflop

2) Creating connectivity pairs between X sources and the
list of scan flipflops

3) Blackboxing irrelevant modules with respect to the con-
nectivity pairs

4) Creating a new formal instance with respect to the list
of blackboxes

In step 1, the circuit is traversed from each X source
forwards. In this case, stop points are scan flipflops, i.e., if a
scan flipflop is found, the traversing process does not continue
through the corresponding scan-flipflop. Using this step, only
the list of scan-flipflops which may be directly influenced by
X sources are extracted. This step is performed using Tessent
Shell.

In step 2, a file called connectivity pairs is created. Each
connectivity pair contains a source and a destination [19]. In
our case, a source is the output of an X source. A destination

TABLE I
VERIFICATION OF X PROPAGATION TO SCAN FLIPFLOPS

Benchmarks’ Characteristics Verification of X Propagation to SFFs

Name #Gates #S #NS #Constraint_X #Assertion_no_X #Pass #Fail #Explored Max n

Max Time (s) /

Assertion
Max Mem. (MB)

Bench. 1 3462 248 40 1 248 16 0 232 9999 10 (low) 328

Bench. 2 6892 407 186 3 407 32 0 375 124 10 (low) 470

Bench. 3 12912 789 150 3 789 0 166 623 20 60 (mid) 451

 Bench. 4 221671 6775 1632 43 189 2 0 187 21 300 (high) 3495

 TABLE II
VERIFICATION OF X PROPAGATION TO PRIMARY OUTPUTS

Benchmarks’ Characteristics Verification of X Propagation to POs

Name #Gates #S #NS #Constraint_X #Assertion_no_X #Pass #Fail #Explored Max n

Max Time (s) /

Assertion
Max Mem. (MB)

Bench. 1 3462 248 40 1 154 54 15 85 27 10 (low) 328

Bench. 2 6892 407 186 3 439 249 3 187 9999 10 (low) 470

Bench. 3 12912 789 150 3 66 5 4 57 9 60 (mid) 451

is the input of a scan flipflop. In this step, connectivity pairs
are created from all X sources to scan flipflops extracted in
step 1.

Having the file of connectivity pairs, the Cadence tool is uti-
lized to automatically blackbox irrelavent modules according
to the connectivity pairs [19]. In this step, a list of blackboxes
is generated. Using this list, a new formal instance is created
which has a smaller size.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the experimental results for
verification of X propagation at gate level. We use Cadence
IFV [11] as an underlying formal engine.

Table I shows the experiments for verification of X prop-
agation to scan flipflops. Columns 1 through 4 present the
characteristics of the benchmarks. The benchmarks are Infi-
neon hardware cores. Column #S indicates the number of
scan flipflops in the benchmarks. Column #NS indicates the
number of non-scan flipflops and latches in the benchmarks.

For X sources at gate level, constraints are generated to
constrain their values to X for formal verification. Column
#Constraint_X shows the number of generated constraints.
For every scan flipflop, an assertion is generated to specify
that the corresponding scan flipflop has to capture no X value.
Column #Assertion_no_X shows the number of generated
assertions. Then formal verification is called to prove the
assertions. The columns #Pass, #Fail and #Explored
indicate the result of formal verification.

For Bench.1, 16 assertions pass. It implies that for 16
scan flipflops, there is no possibility to be disturbed by X
sources (X constraints). For 232 scan flipflops of Bench.1, the
result of formal verification is explored. In this case, formal
verification cannot prove that the corresponding assertions pass
or fail. However, the formal verification proves that there is
no counterexample till clock cycle n. The maximum reported
n for all explored assertions is written in column Maxn. The
verification time and the maximum memory consumption are
reported in two last columns.

For Bench.3, 166 assertions fail. This initial result is
pessimistic since formal verification investigates all possible
values of primary inputs and registers. To improve the result,
more accurate constraints for primary inputs and registers
should be written to specify the realistic behavior of the
module when the module is used in a system. For example
for module m, the designer knows that primary input p has
always value 0 when the module is used in a real testbench.
Thus a constraint 0 has to be written for primary input p for
formal verification. When the formal instance includes more
accurate information about the behavior of primary inputs and
registers, the verification yields more accurate results.

When an assertion fails, the active X sources (dan-
gerous X sources) which have caused the correspond-
ing assertion fails are reported by running the command
"debug assertion_name" in the IFV console [11].
Bench.1, Bench.2 and Bench.3 are module-level bench-

marks. Bench.4 is a system-level benchmark which contains
multiple modules. Bench.4 has 6775 scan flipflops. In this
case, formal verification cannot be run for all scan flipflops.
As explained in Section V, only the list of scan flipflops
which may be directly affected by X sources are selected for
verification. Therefore, only 189 assertions are generated for
the corresponding list of scan flipflops.

For module-level benchmarks, we also have to verify X
propagation from X sources to primary outputs. Because an
X value may propagate from an X source to primary outputs
and then to a scan flipflop in another module. Table II shows
the experimental results for X propagation from X sources to
primary outputs. As shown in the table, X values can propagate
to primary outputs.

To debug a failed assertion, the schematic view (Figure
4) and the waveforms (Figure 5) are utilized to observe the
behavior of the counterexample. In the waveform window,
the list of active X sources (dangerous X sources) is also
displayed. In the schematic view, the path of X propagation
is highlighted by red color (Figure 4). The designer uses the
mentioned debug features to better understand how an X value

Fig. 4. Debug of X propagation using schematic view

Fig. 5. Debug of X propagation using waveforms

has propagated and, consequently, to find a way to prevent X
propagation to scan flipflops.

VII. CONCLUSION

In this paper, we presented an automated approach to verify
X propagation at RTL and gate level. X sources have to
be prevented to propagate an X value to scan flipflops in
the scan test mode as they corrupt the signature generated
by MISR in the test structures such as LBIST. Using our
approach, a designer can find root causes of a corrupted
signature generated by MISR because of an X value.

REFERENCES

[1] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsai,
A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide et al., “Embedded
deterministic test for low cost manufacturing test,” in Int’l Test Conf.
IEEE, 2002, pp. 301–310.

[2] O. Grumberg, A. Schuster, and A. Yadgar, “3-valued circuit SAT for STE
with automatic refinement,” in Automated Technology for Verification
and Analysis (ATVA), 2007, pp. 457–473.

[3] A. Sülflow, G. Fey, C. Braunstein, U. Kühne, and R. Drechsler, “In-
creasing the accuracy of SAT-based debugging,” in Design, Automation
and Test in Europe, 2009, pp. 1326–1331.

[4] M. Dehbashi, A. Sülflow, and G. Fey, “Automated design debugging
in a testbench-based verification environment,” Microprocessors and
Microsystems, vol. 37, no. 2, pp. 206–217, 2013.

[5] S. Yang, R. Wille, and R. Drechsler, “Determining cases of scenarios to
improve coverage in simulation-based verication,” in Integrated Circuits
and System Design (SBCCI), 2014.

[6] SystemC, “SystemC version 2.0 user’s guide,” Open SystemC Initiative,
2002.

[7] K.-H. Chang, I. L. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Int’l Conf. on CAD, 2007, pp. 91–98.

[8] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA),”
IEEE Trans. on CAD, vol. 28, no. 10, pp. 1545–1558, 2009.

[9] W. Fischer, “Formal analysis of X propagation,” in OneSpin Solutions
GmbH, White Paper, 2010, pp. 1–8.

[10] M. Turpin and P. V. Engineer, “The dangers of living with an X (bugs
hidden in your verilog),” in Synopsys Users Group Meeting, 2003.

[11] Cadence Incorporation, Formal Analysis, Incisive Formal Verifier User
Manual, 2014.

[12] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler, “WoLFram
– a word level framework for formal verification,” in IEEE/IFIP Int’l
Symposium on Rapid System Prototyping, 2009, pp. 11–17.

[13] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 2988, 2004, pp. 31–45.

[14] A. Groce and D. Kroening, “Making the most of BMC counterexam-
ples,” Electronic Notes in Theoretical Computer Science, vol. 119, no. 2,
pp. 67–81, 2005.

[15] M. N. Velev, “Comparison of schemes for encoding unobservability in
translation to SAT,” in ASP Design Automation Conf., 2005, pp. 1056–
1059.

[16] S. Safarpour, A. Veneris, and R. Drechsler, “Improved SAT-based reach-
ability analysis with observability don’t cares,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 5, pp. 1–25, 2008.

[17] Mentor Graphics Corporation, Tessent Common Resources Manual for
ATPG Products, 2012.

[18] ——, Tessent Shell Reference Manual, 2014.
[19] Cadence Incorporation, Formal Analysis, Verification Apps, 2014.

