
Transaction-Based Online Debug for NoC-Based
Multiprocessor SoCs

Mehdi Dehbashi∗
∗Institute of Computer Science, University of Bremen

28359 Bremen, Germany
Email: dehbashi@informatik.uni-bremen.de

Görschwin Fey∗†
†Institute of Space Systems, German Aerospace Center

28359 Bremen, Germany
Email: goerschwin.fey@dlr.de

Abstract—As complexity and size of Systems-on-Chip (SoC)
grow, debugging becomes a bottleneck for designing IC products.
In this paper, we present an approach for online debug of NoC-
based multiprocessor SoCs. Our approach utilizes monitors and
filters implemented in hardware. Monitors and filters observe
and filter transactions at run-time. They are connected to a
Debug Unit (DU). Transaction-based programmable Finite State
Machines (FSMs) in the DU check assertions online to validate
the correct relation of transactions at run-time. The experimental
results show efficiency and performance of our approach.

Keywords—transaction-based online debug, system-on-chip
(SoC), network-on-chip (NoC)

I. INTRODUCTION

Modern high-performance Systems-on-Chip (SoC) include
many IP cores such as processors and memories. Network-
on-Chips (NoC) have been proposed as a scalable interconnect
solution to integrate large multiprocessor SoCs [1] [2]. Having
a large SoC with complex communication among its cores,
achieving complete verification coverage at pre-silicon stage
is almost impossible. Therefore in addition to electrical bugs,
some design bugs may also appear in the final prototype of
an SoC.

The idea of transaction-based communication-centric debug
is introduced in [3] to debug complex SoCs which interact
through concurrent interconnects such as NoC. The transac-
tions are observed using monitors [4] and the debug control
unit can control the execution of the SoC (stopping, single
stepping, etc). In [5], transactions are stored at run-time in
a trace buffer using on-chip circuits. After an SoC run, the
content of the trace buffer is read and analyzed offline with
software. The analysis software tries to find certain patterns
[6] in the extracted transactions that are defined by their
Transaction Debug Pattern Specification Language (TDPSL).
Because of limited size of a trace buffer, getting an execution
trace of the transactions related to the time of bug activa-
tion is a challenging problem. To overcome this problem,
the content of the trace buffer is utilized to backtrace the
transactions along their execution paths [7]. The backtracing
is performed in transaction-level states using Bounded Model
Checking (BMC). However, backtracing needs formal pre-
image computations which can blow up for large and complex
designs [8]. To address this problem, we need to have online
detection to stop the SoC close to the time of bug activation
at the transaction level.

In this paper, we present a transaction-based debug in-
frastructure which can be used not only for online debug
and online system recovery but also for interactive debug in
which an external debug platform programs the FSMs and the
filters according to the considered assertions at each round
of debugging. Our hardware infrastructure contains monitors,
filters, and a debug network including Debug Units (DU).
Filters and DUs are programmed according to the transaction-
based assertions defined by TDPSL. Transactions are moni-
tored only at master interconnects. Slaves send information

This work has been supported in part by the University of Bremen’s
Graduate School SyDe, funded by the German Excellence Initiative and in
part by the German Research Foundation (DFG, grant no. FE 797/6-1).

to masters. This redundant information is used to observe
the elements of transactions online. No modification of the
internal components of the NoC is required. At run-time the
programmable FSMs in the DUs investigate the assertions
online and detect an error. Upon detection of an error, the
DU recovers the SoC by informing the masters which have
participated in the observed error. Then, the corresponding
masters start the recovery process at run-time. Also we identify
the requirements which a debug infrastructure has to fulfill in
order to perform transaction-based online debug.

The main contributions of this paper are as follows:
- Introducing a debugging infrastructure to transaction-

based online debug of NoC-based SoCs without modi-
fying the internal components of the corresponding NoC
(non-intrusive to the NoC).

- Analyzing and finding transaction-based debug patterns
at-speed using debug units including programmable fil-
ters and FSMs.

- Presenting an ordering mechanism in the routers of the
debug network to order the transactions online.

- Online system recovery without stopping and interrupt-
ing the NoC.

The experimental results show the efficiency of our ap-
proach using different assertion patterns defined by TDPSL
such as race, deadlock, and livelock. An NoC-based SoC using
a mesh network is setup in the Nirgam NoC simulator [9] to
evaluate our approach. Also we show the effectiveness of the
proposed online recovery in the experimental results.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminary information on transactions and
TDPSL. Our debug method including hardware and software
parts is explained in Section III. The debug patterns and their
corresponding FSMs are explained in Section IV. This section
also presents experimental results on an NoC-based SoC. The
last section concludes the work.

II. PRELIMINARIES

A. Transaction
In this section we shortly explain the transaction elements

from [10] and [5]. Each transaction includes a request and a
response. Masters request and slaves respond. Each transaction
has four basic elements: Start of Request (SoRq), End of Re-
quest (EoRq), Start of Response (SoRp), and End of Response
(EoRp). In TLM, SoRq corresponds to putting the request in
the channel by the master. EoRq is getting the request by the
slave. SoRp corresponds to putting the response in the channel
by the slave. EoRp is getting the response from the channel by
the master. Also there are two additional elements which are
called: Request Error (ErrRq) and Response Error (ErrRp).
These elements handle error conditions and correspond to any
kind of error that causes a request or a response to fail.

B. Transaction Debug Pattern Specification Language
(TDPSL)

TPDSL has three layers: Boolean layer, temporal layer, and
verification layer [5]. The Boolean layer includes trans_exp



CDU

LDU LDU

To NoC

MI MI MI MI

Timer Timer Timer Timer

Monitor

Filter Filter Filter Filter

Monitor Monitor Monitor

Order

Filter

FSM

L R

NoC

Err Handler Synch.

Filter

L R

T

Order

Filter

FSM

(a)

Master1

NoC

Master2

Slave1 Slave2

Filter Filter

DU

DRI DRI

Monitor Monitor

R R R

R RR

NINI

NINI NI

(b) (c) (d)

Fig. 1. (a) Debug Infrastructure, (b) Tree-Based Debug Infrastructure, (c) LDU Structure, (d) CDU Structure

which represents the basic elements of transactions. The
trans_exp format is as follows:

trans_type (master, slave, type, address, tag)
Field trans_type can be any transaction element mentioned

in Section II-A as well as the Start of Transaction (SoTr) and
the End of Transaction (EoTr) which are similar to SoRq and
EoRp respectively. Fields master and slave specify the ID of
master and slave. Field type can be Rd or Wr. Field address
indicates the slave address symbolically as SAME, SEQ, and
OTHER. Field tag indicates the transaction number and is
only used for buses that allow non-blocking requests and out-
of-order responses [5]. In our paper, we show a transaction
without considering the field tag.

The motivation to use symbols for the address field is to
abstract and to compress the address bits. In this case, only
the compact address information is stored or sent via network
for debugging. The symbols can be defined with respect to the
application and the granularity of debugging. SAME specifies
that in the current transaction, slave address is same as the
address in the previous transaction for this slave. SEQ specifies
that in the current transaction, slave address has one word
difference with the previous address for this slave. OTHER
specifies that in the current transaction, the slave address in
neither SAME nor SEQ.

For example transaction EoTr (m1, s2, Rd, −) represents
the end of a read transaction from master m1 to slave s2 with
any address. The symbol ” − ” indicates that we leave the
corresponding field as don’t care.

The properties in terms of transaction sequences are defined
at the temporal layer. Different operators are utilized at this
layer such as concatenation operator (;), fusion operator (:), or
operator (|), and operator (&), and repetition operators [5]. In
the verification layer, the assert statement is defined. Also a
filter can be defined which specifies a filter over the execution
path for the evaluation of the assertion statement.

Following is an example of a simple assertion in TDPSL:
assert never

EoTr (m2, s1, Wr, −); SoTr (m1, s1, Rd, −)

This assertion specifies that start of a read transaction from
master m1 to slave s1 must never be directly after the end of
a write transaction from master m2 to slave s1.

III. DEBUG METHOD

Transaction level online debug aims at improving the ob-
servability and the controllability of the system. Whenever
transactions conform to certain debug patterns, an error is
detected. In this case, the Debug Unit (DU) sends the debug
packets to the SoC nodes in order to control the network and
to recover from the error state.

We have some requirements to enable transaction-based
online debugging:

1) Our debug infrastructure has to be able to collect the
elements of each transaction at run-time.

2) We have to be able to order the transactions online.
3) We need to assert debug patterns, i.e., the relation of

transactions, at run-time.
If a debug infrastructure fulfills the three mentioned require-

ments, it can be used for transaction-based online debug.
In the following, we explain our debug infrastructure fulfill-

ing the above mentioned requirements. To collect all elements
of each transaction in a system based on NoC (first require-
ment), we need distributed monitors and Debug Redundant
Information (DRI). Monitors and DRI are explained and
discussed in Section III-A and Section III-B, respectively.

The transaction ordering mechanism in the Debug Units
(DU) is responsible to order transactions (Section III-D)
fulfilling the second requirement. A DU is the main part
of the debug infrastructure which searches for certain debug
patterns in the received transactions. We use a tree-based
debug network structure in which all monitors have a short
distance to DUs. In the debug network, the transactions are
ordered using DUs. The ordered transactions are transferred
on each link of the debug network from bottom to top such
that the ordered transactions can be utilized in each level of
the debug network for hierarchical and assertion-based debug.

FSMs in DUs are utilized to investigate transaction-based
assertions at run-time to fulfill the third requirement (Section
III-E). The filters in DUs and in monitors help FSMs by
dropping unrelated transactions (Section III-E).

Figure 1(a) shows the hardware infrastructure of our ap-
proach for an SoC including four IPs, 2 masters and 2 slaves.
The debug infrastructure has the following parts: monitors,
filters, DU, and DRI. The internal structure of a DU has also
three main parts: transaction ordering, filter, and FSM. Each
IP in Figure 1(a) is connected via a Network Interface (NI) to
the NoC.

Figure 1(b) shows the tree-based debug infrastructure. The
lowest level of the infrastructure includes monitors and filters.
Monitors are connected to Master Interconnects (MI) to ob-
serve the transactions. A Central Debug Unit (CDU) is only at
the top level. The other levels have Local Debug Units (LDU).
LDU and CDU structures are explained in Section III-C.

A. Monitor

Monitors extract the basic elements of a transaction as men-
tioned in Section II-B. They observe master interconnects to
enable transaction-based debug [3]. In a packet-based protocol
in an NoC, we can immediately extract the elements master,
slave, and type by observing the master interconnects. But to
extract the element address as SAME, SEQ, and OTHER,
which is a comparison of the slave address in the current



Pattern Detection

Send Recovery 

Packet to Erroneous 

Masters

Restart FSM

Send Restart-FSM 

Packet to LDUs

Error

Continue

Fig. 2. CDU procedure to recover the SoC

transaction and the previous transaction for the corresponding
slave, we need some DRI. The next section explains the DRI.

A monitor in our infrastructure observes a master intercon-
nect and signals a matching transaction expression explained
in Section II-B as an output.

Each monitor includes also a timer. The timer is used
to attach a timestamp to each observed transaction. The
timestamp attached to a packet is utilized at DUs to order
the transactions arriving from the left and right input links of
DUs. As the transactions are consumed online using FSMs,
large timestamps are not required. Timestamps only need to
distinguish the order of transactions arriving at DUs.

In an SoC with asynchronous IPs, the CDU sends syn-
chronization packets to monitors. The timers in monitors are
synchronized according to the synchronization packets. As
only the CDU sends the packets from the top level to the
bottom level in the tree-based debug network, the delay of syn-
chronization packets arriving at monitors are predetermined.
In this case, the time in monitors is synchronized with the
time in the CDU by incrementing the CDU time included in
the synchronization packet with the delay of synchronization
packet.

Another approach to synchronize the transactions is using
the relative timestampes. In this approach, the time of each
transaction is calculated in comparison to the time of the
front transaction in the debug network. Then, this relative
timestamp is attached to the corresponding transaction. To use
this approach, some timers are required in LDUs and CDU.

B. Debug Redundant Information (DRI)

DRI is used to extract and to transfer the element address
of a transaction. We can form the element address using
slaves (slave-based approach) or using debug units (DU-based
approach). In the following we discuss these two approaches.

In a slave-based approach, the element address is formed
in the slaves and is sent as redundant information to masters
through the NoC. Because the element address is a compar-
ison of the address of the current transaction with the address
of the previous transaction for the corresponding slave, this
comparison can be simply done in each slave.

The slave should send two bits redundant information to
masters. These two bits specify the symbols SAME, SEQ, and
OTHER. We can also use more symbols for the slave address
to have more accurate data depending on the applications
running on the SoC.

The DRI section in each slave in Figure 1(a) compares
the slave address of the current transaction with the slave
address of the previous transaction in the corresponding slave.
Then the DRI section selects a symbol (SAME, SEQ, or
OTHER) and adds this symbol in the response packet as two
redundant bits. On the master side these two bits are read
by monitors to constitute a complete transaction expression.
These two redundant bits are used only in monitors. The
master applications should ignore these two redundant bits.

In this case, we can have the address information for the
corresponding slave only in the EoTr. The element address

Wait for Recovery 

Packet

Release 

Resources

Wait for a 

Random Time

Proceed again

Error

Continue

Fig. 3. An example for master recovery thread in the case of a software
deadlock

is not available in SoTr. To have this information, we should
wait to receive an EoTr by the corresponding slave.

The second approach to form the element address uses de-
bug units, i.e., DU-based approach. In this approach, the slave
addresses are observed by monitors and sent to the DUs. In the
DU, there is one address register for each slave. The address
registers keep the address of the previous transaction for each
slave independently. When a new transaction is performed, the
content of the address register related to the corresponding
slave is compared to the new transaction address. Then the
symbols SAME, SEQ, and OTHER are derived and the address
register is updated to keep the slave address in the latest
transaction for the corresponding slave.

In the DU-based approach, the element address is available
for both SoTr and EoTr. The DU-based approach needs more
memory in the debug units storing slave addresses. Also it
needs more bandwidth for the debug network to transfer slave
addresses to DUs. The advantage of this approach is being
non-intrusive to the SoC.

C. Debug Unit (DU)
A debug unit can be an LDU or a CDU. A CDU is used

at the top level in the tree-based debug network (Figure 1(b)).
An LDU is used in other levels of the debug network. The
structure of an LDU is suitable to build a tree-based network.
An LDU has three ports (Figure 1(c)): top port T, left port
L, and right port R. The right and left ports transfer the data
observed by monitors to the top level. Also the synchronization
packets sent by the CDU are transferred from the top port to
the left and right ports reaching timers. The CDU controls the
traffic of the packets sent from the top level to the leaves in
the debug network. In this case, we use only one buffer in
each LDU to transfer synchronization packets.

The packets arriving at the inputs of the right and left ports
are stored in the right and left FIFOs. Then the transaction
ordering selects a transaction packet such that the transactions
are ordered based on their timestamps. The filter does not
allow a transaction to be forwarded if the transaction is not
related to the considered assertions. The related transactions
regarding the considered assertions are used in the FSM to
investigate the assertions. If an assertion fails, an error message
is sent to the CDU.

The CDU is used at the top level of the debug network.
The CDU has two additional tasks: synchronizing the timers
and handling error cases (Figure 1(d)). Synchronization is
performed by part Synch in Figure 1(d). When there is an
error, the error handler in the CDU manages the network by
sending some debug packets to other nodes in the SoC. The
CDU is connected to the NoC communicating with other nodes
in the network. In this case, the CDU can send the error state
to all nodes or some special nodes in the network in order to
collect more accurate debug information or to recover the SoC
from the error state.

Figure 2 shows the CDU procedure to recover the SoC from
an error. At the step of pattern detection, the CDU checks the
debug patterns at run-time. If the CDU detects an error, the



second step is started. In this step, the CDU sends a recovery
packet to the masters which have contributed to the observed
error. A recovery packet contains an error type and additional
information helping the masters to start a recovery process. In
the third step, the CDU restarts its own FSM. Then, the CDU
sends a restart packet to the LDUs restarting the LDU-FSMs.
Afterwards, the procedure continues with the step of pattern
detection.

Figure 3 shows an example for a master recovery process
in the case of a software deadlock. In this case, when a master
receives a recovery packet from the CDU with the error type
deadlock, the master releases the locked resources. Then the
master waits for a random time and proceeds its main function
again. With this procedure, the system is recovered online from
the error state without stopping and interrupting the NoC.

DUs include FSMs to investigate transaction-based asser-
tions at run-time. To check an assertion in an efficient way,
we need to program both LDU-FSMs and CDU-FSM. Dis-
tributed online assertion checking can be performed through
programming the FSMs in different levels.

D. Transaction Ordering
When there is more transaction traffic on one link than

another link in the debug network, some early-generated
transactions are accumulated and buffered in the FIFO of
the corresponding DU. This case may also occur when the
bandwidth of the debug network is less than the bandwidth of
the NoC. When there are some transactions in the FIFO of the
left link which have been generated earlier than the transaction
available in the FIFO of the right link, the transaction of the
right link has to wait until the transactions with smaller times-
tamps on the other link have been transferred. By comparing
the timestamp of a packet in the left FIFO and the right FIFO,
the packets are ordered based on their generation time.

The length of the timestamp depends on the worst case
delay of the debug network. A timestamp should only be able
to distinguish the packets based on the time in which they
have been generated or sampled. In Figure 1(c) and Figure
1(d), the part Order in DU compares the timestamps of a
packet in the right and the left FIFOs and selects a packet
which has a smaller timestamp.

The size of the left and right FIFOs may influence the
accuracy of the debug pattern detection because if the FIFO
becomes full, some transactions are lost. In this work, we
assume that the size of the FIFOs is sufficient to process the
transactions.

E. Filter and Debug FSM
A filter is located in monitors and DUs. A filter is used to

filter unrelated transactions in a trace. In this way, the debug
unit receives only the related transactions for the assertion
statements. Filtering can be done over all parameters of a
transaction expression, i.e., trans_type, master, slave, type,
and address. The filter is programmable according to the main
assertion statements.

Debug FSMs are programmable FSMs which are utilized in
debug units to investigate the assertions online. Debug FSMs
include local FSMs and global FSMs verifying local assertions
and global assertions. Debug units can be programmed to
implement distributed FSMs validating online assertions in
different levels. To do this, first the transaction-based as-
sertions should be analyzed based on their locality in the
corresponding SoC. We need to know which task is running
on which IP. Accordingly, the filters should be programmed
and the assertions should be distributed among debug units
(LDUs and CDU).

IV. IMPLEMENTATION

For the experiments we setup a 3x3 mesh network in
the Nirgam NoC simulator [9]. Nirgam is a cycle-accurate
simulator which is implemented in SystemC language. We
have simulated the system for one million cycles. During the
run-time of the SoC, our debug infrastructure asserts the debug
FSMs which are mentioned in the next sections. We have
implemented dining philosophers [5] and a random application
[7] as example applications. In the random application, each
master waits for a random time. Then the master selects a
random list of slaves as resources. If the master can lock all
the required resources, the processing is started. Afterwards,
the resources are released and the procedure is repeated. If the
master cannot lock all the required resources, the master waits
for a random time and tries again [7].

In our experimental setup, the SoC has four masters
(philosophers) and four slaves (chopsticks) which are divided
into two groups communicating in parallel. Each group has
two masters and two slaves (first group: m1, s1, m2, s2.
second group: m3, s3, m4, s4). Four monitors are used to
observe the master interconnects. Also two LDUs and one
CDU constitute the debug network. In the following sections,
we discuss debug patterns for race, deadlock, and livelock as
an example.

A. Debug Pattern for Race

A race may occur when one write transaction to the same
place occurs during the previous write. In TDPSL this case is
written as follows:

assert never{
SoTr(m1, s1, Wr,−); SoTr(m2, s1, Wr, SAME);

EoTr(m1, s1, Wr, SAME)

}filter(∗, ∗, ∗)
Filtering is done on the three first parameters of transaction

expressions. Sign ∗ in the filter means only the related transac-
tion types, masters, and slaves should be considered. Therefore
the transactions related to slave s2 are omitted. Also all
transactions related to the second group, i.e. group of master
m3 and master m4, have to be omitted. In our infrastructure,
the filters are programmed such that the transactions related
to slave s2, master m3 and master m4 are filtered online.

As explained in Section III-B, the DRI can be transferred
using the slave-based approach or the DU-based approach.
As in the race assertion we need the element address in
SoTr, therefore we can only use the DU-based approach to
investigate this assertion. In the slave-based approach, we can
have the element address only for EoTr. If we use the slave-
based approach, we need to change the race assertion such that
only EoTrs include the element address. But this case causes
some latency in the detection of the assertion fail.

To increase the verification coverage of the FSM, we need
to have a more comprehensive pattern. In the following, we
write an improved race pattern to cover more race conditions
happening on slave s1:

assert never{
SoTr(m1, s1, Wr,−); SoTr(m2, s1, Wr, SAME);

EoTr(m1, s1, Wr, SAME)

|SoTr(m2, s1, Wr,−); SoTr(m1, s1, Wr, SAME);

EoTr(m2, s1, Wr, SAME)

}filter(∗, ∗, ∗)
In the first part of the assertion, the pattern checks a race

condition in which master m1 starts a race. The second part
of the assertion specifies a race condition in which master m2
starts a race.



TABLE I
NUMBER OF DEBUG PATTERNS DETECTED FOR EACH APPLICTION

Rand. Application Din. Application 

Race Pattern 62 0

Deadlock Pattern 0 1

0 0Livelock Pattern

B. Debug Pattern for Deadlock and Livelock

When some masters are waiting for other masters to release
shared resources, deadlock happens. Here we show the case
of two masters and two slaves as an example. Each slave
has a semaphore which specifies its access permission. When
semaphore is 0, the slave is free. When semaphore is 1, the
slave is locked. Each master should first lock required slaves,
then it can start its process using the corresponding slaves
as resources. To lock a slave, a master has to first read the
semaphore of the corresponding slave. If the semaphore is
0, then the master can write 1 to the semaphore to lock
the corresponding slave. Therefore to lock a slave, a master
needs two transactions, i.e., one read transaction and one write
transaction. If the semaphore is 1, i.e., the slave is already
locked, then the master should wait until the corresponding
slave becomes released (in the application of dining philoso-
phers). Both masters have access to the semaphore of each
slave. Accessing a semaphore is equivalent to accessing the
same address by different masters.

A simple deadlock scenario for two masters and two slaves
is as follows [5]: 1) Master1 locks the first semaphore. 2)
Master2 locks the second semaphore. 3) Master1 waits for the
second semaphore. 4) Master2 waits for the first semaphore. 5)
Steps 3 and 4 are repeated. This deadlock condition is written
in TDPSL as follows [5]:

assert never{
EoTr(m1, s1, Rd,−); EoTr(m1, s1, Wr, SAME);

EoTr(m2, s2, Rd,−); EoTr(m2, s2, Wr, SAME);

{EoTr(m1, s2, Rd, SAME); EoTr(m2, s1, Rd, SAME)

|EoTr(m2, s1, Rd, SAME); EoTr(m1, s2, Rd, SAME)

}[+]

}filter(∗, ∗, ∗)
This assertion is written for applications in which each

master first locks the slave with the same ID. For example
master m1 first locks slave s1. If it is successful, then it
locks slave s2. To implement this assertion by our debug
infrastructure, the filters are programmed such that transactions
SoTr are filtered online as unrelated transactions. Also all
transactions related to the second group, i.e. group of master
m3 and master m4, are filtered.

In the mentioned deadlock assertion, first the lock process
from master m1 is checked, then the lock process from
master m2. To illustrate this case better, we denote a read
transaction (write transaction) from master mx to slave sx
as Rxy (Wxy). In the previous deadlock assertion only the
sequence (R11, W11, R22, W22) is checked for the lock
process. To increase the verification coverage of the deadlock
assertion we check the following sequences for the lock pro-
cess: (R11, W11, R22, W22), (R11, R22, W11, W22),
(R11, R22, W22, W11), (R22, W22, R11, W11),
(R22, R11, W22, W11), (R22, R11, W11, W22)

A livelock is similar to a deadlock where two or more pro-
cesses proceed accessing shared resources which are already
locked. But in the case of a livelock, they release the locked
resources permitting the other processes to continue. A simple
livelock scenario for two masters and two slaves is as follows
[5]: 1) Master1 locks the first semaphore. 2) Master2 locks the
second semaphore. 3) Master1 waits for the second semaphore.
4) Master2 waits for the first semaphore. 5) Master1 unlocks
the first semaphore. 6) Master2 unlocks the second semaphore.

TABLE II
EFFECT OF ONLINE RECOVERY

Without Recovery With Recovery

#Eating 6 3276

#Resolved Deadlock 0 77

7) Steps 1 to 6 are repeated. To implement the livelock FSM,
the deadlock pattern is enhanced to check the steps 5 and 6.

Our debug infrastructure is programmed according to race,
deadlock, and livelock debug patterns and detects the occur-
rence of each debug pattern at run-time. Table I shows the
number of times a debug pattern is detected during the simu-
lation time of one million cycles. In the random application,
the race pattern is detected 62 times. Also at run-time, this
information is sent to the corresponding masters (Figure 2).
In the application of dining philosophers, the deadlock pattern
is detected one time. In this case, after the first deadlock
detection, the group of deadlocked masters cannot proceed
with their process anymore.

As explained in Section III-C (Figure 3), the masters can
start a recovery process after the CDU has sent them the error
state. Table II indicates the effect of using the recovery process
in the masters. Without recovery process in the application of
dining philosophers, the masters in one group can eat only 6
times. After that a deadlock happens and the masters cannot
pick up their required chopsticks. However, the recovery
process of Figure 3 causes that the masters can continue their
main process even if they get into a deadlock. In this case, a
deadlock happens 77 times. But in each time, the CDU detects
the deadlock at run-time and triggers the recovery process in
the masters to recover the deadlocked network. Consequently,
the masters can eat more often (3276 times) as shown in
Table II.

V. CONCLUSION

We introduced an approach to online debug for NoC-
based multiprocessor SoCs. Our approach contains a hard-
ware infrastructure, debug redundant information, and FSMs.
Monitors, filters, and debug units are considered in our de-
bug hardware infrastructure. This infrastructure allows us to
investigate and to debug the behavior of an NoC-based SoC
at run-time. Filters and FSMs are programmed according to
the transaction-based assertions defined by TDPSL. In the
experimental results, we investigated the efficiency of our
approach for the debug patterns race, deadlock, and livelock.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] P. P. Pande, C. Grecu, A. Ivanov, R. A. Saleh, and G. D. Micheli,
“Design, synthesis, and test of networks on chips,” IEEE Design &
Test of Computers, vol. 22, no. 5, pp. 404–413, 2005.

[3] K. Goossens, B. Vermeulen, R. van Steeden, and M. T. Bennebroek,
“Transaction-based communication-centric debug,” in International
Symposium on Networks-on-Chips (NOCS), 2007, pp. 95–106.

[4] B. Vermeulen and K. Goossens, “A network-on-chip monitoring infras-
tructure for communication-centric debug of embedded multi-processor
SoCs,” in International Symposium on VLSI Design, Automation and
Test (VLSI-DAT), 2009, pp. 183 –186.

[5] A. M. Gharehbaghi and M. Fujita, “Transaction-based debugging of
system-on-chips with patterns,” in Int’l Conf. on Comp. Design, 2009,
pp. 186–192.

[6] W. Ecker, V. Esen, M. Hull, T. Steininger, and M. Velten, “Requirements
and concepts for transaction level assertions,” in Int’l Conf. on Comp.
Design, 2006, pp. 286–293.

[7] A. M. Gharehbaghi and M. Fujita, “Transaction-based post-silicon debug
of many-core system-on-chips,” in Int’l Symp. on Quality Electronic
Design, 2012, pp. 702–708.

[8] F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J. Hu, “TAB-
BackSpace: Unlimited-length trace buffers with zero additional on-chip
overhead,” in Design Automation Conf., 2011, pp. 411–416.

[9] NIRGAM NoC simulator, 2013, available online:
http://nirgam.ecs.soton.ac.uk/.

[10] OSCI TLM-2.0 Language Reference Manual, 2013, available online:
http://www.systemc.org.


