
Safe IP Integration Using Container Modules

Rolf Drechsler

Group for Computer Architecture
University of Bremen / DFKI

Bremen, Germany
Email: drechsler@uni-bremen.de

Ulrich Kühne

Group for Computer Architecture
University of Bremen

Bremen, Germany
Email: ulrichk@cs.uni-bremen.de

Abstract—In modern hardware and system design flows,
tight time-to-market constraints can only be met by reusing
existing code. Building blocks like floating-point units, em-
bedded processors or bus components are readily available
as Intellectual Property (IP). However, this practice of putting
together third-party components conflicts with the high quality
requirements which are common in the domain of safety-
critical systems, since the correctness of the used IP blocks
is difficult or impossible to verify. In this paper, we propose an
approach for safe IP integration by isolating suspicious blocks
inside provably safe container modules. In this way, system
level properties can be checked assuming the correct behavior
of the wrapped IP blocks. As a first step in this direction, we
show how a container module implementing a bus protocol can
be generated and verified automatically. We rely on a model-
driven design approach using a domain specific language and
model-to-text transformations.

Keywords-hardware design; system level design; safety;

I. INTRODUCTION

New electronic products are hitting the market every day,
ranging from consumer electronics like cell phones to safety-
critical embedded systems in transportation. In order to meet
time-to-market constraints and to reduce the implementation
effort, IP reuse is the key to efficient system design. By
putting together available components like processors, arith-
metic co-processors, bus components and network interfaces,
a lot of the remaining design effort is shifted to software
design and system integration. Nevertheless, the quality of
the underlying hardware is still a major issue. Even worse,
by integrating third-party components, one has to rely on
their correctness without being able to verify it.

Especially in the domain of safety-critical systems, verifi-
cation is not only applied as a post-design quality assurance,
but has become an integral part of the whole design process.
In order to master the growing complexity of hardware
designs, higher levels of abstraction have been introduced,
like the Electronic System Level (ESL) or the Formal
Specification Level (FSL [1]). By lifting the validation to
these levels, bugs and design flaws can be discovered early,
avoiding long cycles of debugging on the lower levels of
abstraction. Coverage metrics can be used to assess the
quality of the verification. As envisioned in [2], before
moving on to the next – more refined – model, complete

coverage should be achieved. Such a continuous verification
flow establishes a very high level of confidence in the
correctness of the created hardware designs.

In order to combine the benefits of IP reuse with the high
quality of a verification-driven design flow, we need to find
a way to create correct systems using possibly incorrect
components. This paradigm lifts the creation of reliable
systems from unreliable components [3] to the design level.
The latter approach takes into consideration electrical defects
due to aging and radiation and mitigates possible faults by
introducing redundancies on the gate level. However, these
techniques assume the functional correctness of the design
they are applied on.

On a higher level of abstraction, there are several tech-
niques that have been proposed to enforce security properties
on the system level [4], [5] by adding supervising compo-
nents or by adding firewalls in the communication structure
of a system on chip. But also these techniques rely on correct
components, and no formal proof is given that they really
ensure the considered properties. For the problem at hand,
they are considering the design at a too abstract level. For
instance, it is common that in embedded processors, register
outputs are directly wired to address or data outputs to
create short critical paths. While this can potentially reveal
secret register contents, this is not captured by the mentioned
security measures, since the leaking is taking place below
the transaction level. For safe IP integration, new approaches
need to be developed.

In this paper, we propose to encapsulate potentially harm-
ful IP blocks inside safe container modules. The purpose of
the containers is to provide a safe and correct interface to the
rest of the system. In this way, the overall correctness at the
system level can be established in a compositional manner
relying on the correct interfaces. A first step is the integration
of monitors at the interfaces that can passively check the
communication of the enclosed IP blocks. However, this
requires a supervisor that can react in case an error is
signaled and can reset or isolate the suspect. Therefore, on
the second level, the container would be able to filter or alter
outgoing communication in order to correct errors. Finally,
on the third and most complex level, the container would

be actively manipulating the contained module to force its
correct behavior.

In a first implementation, we have created a tool that
automatically generates a container component for IP blocks
that communicate over a bus protocol. Alongside the RTL
code, also verification IP is created that can be used to prove
the correctness of the exposed bus interface. By providing
a clean implementation of the desired protocol, also register
leaking is prevented.

After a brief discussion of related work, we will introduce
the general ideas of our approach in Section III. Our first
implementation is described in Section IV. We give a short
experimental evaluation in Section V before concluding the
paper.

II. RELATED WORK

In [6] and [5], Porquet et al. propose an enhanced memory
management in a SoC in order to create secure compart-
ments and allow the co-hosting of multiple applications
without interference. While the idea of compartments is
similar to our containers, their approach requires a specific
SoC architecture. Furthermore, like the security measures
presented in [4], [7], it assumes the functional correctness
of the involved modules.

On a lower level of abstraction, robustness or resilience
is the ability of a system to tolerate faults, either permanent
defects or soft errors caused by radiation events [3]. Tech-
niques have been proposed to asses [8] and improve [9],
[10] robustness. However, these methods target only a very
specific and very low level fault model, while we aim for
a more general framework to create correct systems at the
design level.

Methods to create circuits which are correct by con-
struction are presented e.g. in [11]–[13]. Starting with a
specification in a temporal logic like LTL, an automaton
is synthesized that fulfills the spec. However, the involved
algorithms have a high complexity. While we do not aim to
create full systems from scratch, we plan to investigate the
integration of these techniques with our approach, e.g. to au-
tomatically generate glue logic between different IP blocks.
The construction of monitors or checkers from assertions is
a well-known technique (see e.g. [14]) that can be integrated
in our framework.

III. GENERAL IDEA

In logistics, the use of intermodal containers (cf. Fig-
ure 1) for shipping has been established in the 1950s, and
standardized in the 1960s and 1970s. This practice has
enabled the swift handling of enormous amounts of goods
by standardized procedures worldwide. The ISO container
provides a clean interface – no matter what kind of goods
are shipped – and allows safe handling and stacking.

These shipping containers provide a good metaphor for
the safe integration of IP blocks by creating wrapper
modules: Up to a certain level, the wrapper protects the

Figure 1. 40-foot long intermodal shipping container1

environment from harmful modules inside the container. At
the same time, the interface exposed by the wrapper allows
the safe composition (“stacking”) of modules at the system
level.

The goal of the safe container approach is to automati-
cally generate wrapper modules for IP blocks that guarantee
the correct behavior to the outside world, independent of
possible design bugs in the contained module. Since the
notion of correct behavior has a very broad meaning – de-
pending on the nature of the intended behavior – there is no
single technique that will cover all aspects simultaneously.
In this paper, we have identified three levels of safety, that
entail generation and verification techniques of increasing
complexity:

1) Monitoring: Involves generating hardware checkers
that survey the interface of a contained module. In
case of a property violation, this requires a trusted
master that reacts appropriately.

2) Filtering & Altering: Allows to actively ensure certain
constraints on the exposed interface, like blocking
unauthorized or corrupted communication from a con-
tained module. For incoming signals, a possible mech-
anism in this category would involve the translation of
buggy instructions to equivalent instruction sequences
using only trusted functionality.

3) Active Manipulation: Involves the intended manipula-
tion of control signals in order to steer the contained
module to a correct behavior. This can range from a
controlled reset to the triggering of interrupts or the
injection of code for active hardware fixes.

IV. IMPLEMENTATION

As a first proof of concept, we have created a tool for
the automatic generation of safe containers for IP blocks
that are communicating over an on-chip bus. The tool is im-
plemented on top of the eclipse development environment2,
and makes use of zamiaCAD [15], an eclipse plugin for the
analysis of RTL designs, and Xtext [16], a framework for
model-driven design that allows the definition of Domain
Specific Languages (DSLs).

1 CC© BY:© C© by KMJ via Wikimedia Commons
2www.eclipse.org

IP W
B

.dsl

Container

IP W
B IF W
B

.sva

Figure 2. Overall tool flow

A. Tool Flow

The overall tool flow is illustrated in Figure 2. As input,
the target design (in VHDL) and a description of its bus
interface (in a dedicated DSL) are given. The interface de-
scription is compiled into an extended state machine, which
implements the given protocol. After analyzing the target
design, the state machine is instantiated with the correct data
types and bit widths. Furthermore, an interface module is
generated in VHDL. In the next step, the interface FSM is
wired up with the target module, forming the final container.
Additionally, verification IP is generated in the form of
System Verilog Assertions (SVA), that can be used to prove
the correct functionality of the container interface as well as
additional invariants provided in the DSL description.

B. Domain Specific Language

The bus interface descriptions are given in a dedicated
DSL, that has been created using Xtext. As an example, a
bus master interface for the Wishbone [17] protocol is given
in Figure 3. In the beginning, all ports belonging to the
interface are listed. The actual data types of the respective
ports will be determined from the target module during code
generation. The central elements in the interface description
are the operations. In this simple example, only the two
operations READ and WRITE are specified. An operation
is described by means of its trigger condition – starting
the operation – and its release condition, which terminates
the operation. Furthermore, for each operation it is specified
which ports will be read or written. Following the keyword
stable, all signals are given that are required to keep
their value during the entire operation. This property –
and additional invariants specified by the user – will be
assembled to assertions (see Section IV-C).

Besides the generic specification of the protocol, design
specific constraints can also be added in the interface de-
scription. In the example in Figure 3, the expression su
reflects whether a privileged access to the lowest 1024
addresses is taking place. By adding this constraint to the
trigger condition of the write operation, such privileged write
accesses will be prohibited.

interface wb_master
ports

in CLK
in RESET
fwd in WB_DAT_I
fwd in WB_ACK_I
fwd out WB_CYC_O = 0
fwd out WB_STB_O = 0
fwd out WB_SEL_O = 0
fwd out WB_WE_O = 0
fwd out WB_DAT_O = 0
fwd out WB_ADR_O = 0

end

signal sel = WB_STB_O & WB_CYC_O
signal su = WB_ADR_O < 1024

operation READ
trigger sel & !WB_WE_O
reads WB_DAT_I
writes WB_ADR_O, WB_SEL_O
stable WB_ADR_O
invariant sel & !WB_WE_O
release WB_ACK_I

end

operation WRITE
trigger !su & sel & WB_WE_O
writes WB_DAT_O, WB_ADR_O, WB_SEL_O
stable WB_DAT_O, WB_ADR_O
invariant sel & WB_WE_O
release WB_ACK_I

end
end

Figure 3. Wishbone master interface description in DSL

READ_WB_ADR_O_stable_a: assert property
(disable iff (wb_master.RESET)
(wb_master.STATE == ‘op_READ) &&
(!ACK_I)

|=>
($stable(ADR_O))

);

Figure 4. Stability assertion for address output during read operation

C. Verification

Alongside the RTL code of the interface state machine
and the container module, also verification IP is generated
that can be used to verify the correct behavior of the
wrapped module. In particular, for every signal that has been
declared as stable in the interface description, an assertion
is generated. As an example, consider the SVA code in
Figure 4. There, it is checked that – unless a reset occurs –
during a read operation, the address output will never change
before the operation is released by an acknowledge. In a
similar way, also user defined invariants are compiled to
SVA assertions.

While the stability properties hold by construction of
the interface state machine, the assertions act as a formal
specification that can be safely relied on when the wrapped
module is used in a larger system context.

V. EVALUATION

To evaluate the proposed approach, it has been applied
to several hardware designs from OpenCores3, a website
hosting open source hardware projects of differing quality
and complexity. One of the investigated designs is called Al-
wcpu, “a light weight CPU”. This small embedded processor
implements a Wishbone master interface. It has been found
using a model checker that the CPU contains a bug, which
in some cases leads to glitches on the address output. This
can lead to register leaking. Furthermore, the effective bus
command depends on the delay of the addressed wishbone
slave, which is a serious problem and would be hard to track
down in a larger system. By enclosing the CPU inside an
automatically generated container, the glitchy bus interface is
decoupled from the outside world, and the error is corrected.
All generated assertions could be proved formally on the
container using bounded model checking.

VI. CONCLUSION

To enable the design of correct systems from partially ver-
ified components, we propose a model-driven approach that
encapsulates IP blocks inside safe container modules. These
containers are automatically generated from a specification
of the correct expected behavior. On three levels of safety,
this enables 1) the monitoring of the contained module, 2)
filtering and correction of ongoing communication and 3) the
active manipulation of the contained module to guarantee
functional correctness. In a first implementation, the first
two of these objectives have been addressed. In future work,
we plan to investigate the possible use of assume-guarantee
reasoning [18] and automatic property-based synthesis [11],
[12] for more complex scenarios.

ACKNOWLEDGMENT

This work was supported by the Graduate School SyDe
(funded by the German Excellence Initiative within the
University of Bremen’s institutional strategy) and by the
German Research Foundation (DFG) within the Reinhart
Koselleck project under grant no. DR 287/23-1.

REFERENCES

[1] R. Drechsler, M. Soeken, and R. Wille, “Formal specification
level: Towards verification-driven design based on natural
language processing,” Forum on Specification and Design
Languages (FDL), pp. 53–58, Sep. 2012.

[2] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. Le,
J. Seiter, M. Soeken, and R. Wille, “Completeness-driven
development,” in International Conference on Graph Trans-
formations (ICGT), ser. LNCS. Springer, 2012, vol. 7562,
pp. 38–50.

[3] S. Borkar, “Designing reliable systems from unreliable com-
ponents: The challenges of transistor variability and degrada-
tion,” Micro, IEEE, vol. 25, no. 6, pp. 10–16, Nov 2005.

3www.opencores.org

[4] J. Sepúlveda, G. Gogniat, R. Pires, W. J. Chau, and M. J.
Strum, “Dynamic NoC-based architecture for MPSoC secu-
rity implementation,” in Symposium on Integrated Circuits
and Systems Design (SBCCI). ACM, 2011, pp. 197–202.

[5] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: a
secure architecture for flexible co-hosting on shared memory
MPSoCs,” in Design, Automation & Test in Europe (DATE),
2011, pp. 1–4.

[6] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment:
a new architecture for secure co-hosting on SoC,” in Interna-
tional Symposium on System-on-Chip (SOC), 2009, pp. 124–
127.

[7] J. Sepúlveda, G. Gogniat, R. Pires, W. Chau, and M. Strum,
“Security-enhanced 3D communication structure for dynamic
3D-MPSoCs protection,” in Symposium on Integrated Circuits
and Systems Design (SBCCI). IEEE, 2013, pp. 1–6.

[8] S. Frehse, G. Fey, E. Arbel, K. Yorav, and R. Drechsler,
“Complete and effective robustness checking by means of
interpolation,” in Formal Methods in Computer-Aided Design
(FMCAD), 2012, pp. 82–90.

[9] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft
error resilience,” in Design, Automation & Test in Europe
(DATE), 2007, pp. 1442–1447.

[10] S. Krishnaswamy, S. Plaza, I. L. Markov, and J. P. Hayes,
“Enhancing design robustness with reliability-aware resyn-
thesis and logic simulation,” in International Conference on
Computer-Aided Design (ICCAD). IEEE, 2007, pp. 149–154.

[11] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1)
designs,” in Verification, Model Checking, and Abstract Inter-
pretation, ser. LNCS. Springer, 2006, vol. 3855, pp. 364–
380.

[12] R. Ehlers, R. Könighofer, and G. Hofferek, “Symbolically
synthesizing small circuits,” in Formal Methods in Computer-
Aided Design (FMCAD), 2012, pp. 91–100.

[13] K. Morin-Allory, F. N. Javaheri, and D. Borrione, “Fast pro-
totyping from assertions: A pragmatic approach,” in Formal
Methods and Models for Codesign (MEMOCODE). IEEE,
2013, pp. 23–32.

[14] K. Morin-Allory, E. Gascard, and D. Borrione, “Synthesis
of property monitors for online fault detection,” Journal of
Circuits, Systems, and Computers, vol. 16, no. 6, pp. 943–
960, 2007.

[15] A. Tsepurov, G. Bartsch, R. Dorsch, M. Jenihhin, J. Raik,
and V. Tihhomirov, “A scalable model based RTL framework
zamiaCAD for static analysis,” in International Conference
on Very Large Scale Integration (VLSI-SoC), 2012, pp. 171–
176.

[16] M. Eysholdt and H. Behrens, “Xtext: Implement your lan-
guage faster than the quick and dirty way,” in ACM Interna-
tional Conference on Object Oriented Programming Systems
Languages and Applications, ser. SPLASH ’10. ACM, 2010,
pp. 307–309.

[17] OpenCores, “WISHBONE system-on-chip (SoC) intercon-
nection architecture for portable IP cores (rev. B4),” 2010.

[18] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You
assume, we guarantee: Methodology and case studies,” in
International Conference on Computer Aided Verification
(CAV), 1998, pp. 440–451.

