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Abstract—Motivated by its promising applications e.g. for
database search or factorization, significant progress has been
made in the development of automated design methods for quan-
tum circuits. But in order to keep up with recent physical de-
velopments in this domain, new technological constraints have to
be considered. Limited interaction distance between gate qubits
is one of the most common of these constraints. This led to the
development of several strategies aiming at making a given quan-
tum circuit nearest neighbor-compliant by inserting SWAP gates
into the existing structure. Usually these strategies are of heuris-
tic nature. In this work, we present an exact approach that en-
ables nearest neighbor-compliance by inserting a minimal num-
ber of SWAP gates. Experiments demonstrate the applicability of
the approach which enabled a comparison of results obtained by
heuristic methods to the actual optimum.

I. INTRODUCTION

Quantum computation is an emerging technology that en-
ables the computation of many relevant problems in less com-
plexity than conventional computing paradigms [1]. Promi-
nent examples how quantum circuits outperform conventional
solutions include Shor’s algorithm for factorization [2] and
Groover’s database search [3]. For these applications, the re-
spective circuit netlists have manually been derived. But with
the increasing interest in this technology, researchers also be-
gan to develop automatic solutions for the design of this kind
of circuits. This led to a significant amount of contributions
particularly for the automatic synthesis of corresponding cir-
cuit structures. Approaches addressing quantum circuits di-
rectly [4, 5, 6, 7, 8] or exploiting synthesis methods for re-
versible circuits [9, 10, 11] in combination with proper tech-
nology mapping schemes [12, 13] have been proposed for this
purpose.

At the same time, the development of physical realizations
for quantum computations continued. This led to new tech-
nological constraints which have to be considered by these
synthesis methods. The emerge of so called nearest neigh-
bor quantum circuits is one of the most common ones. The
quantum gates of these circuits are restricted to work on ad-
jacent circuit signals. While this can easily be achieved by
inserting SWAP gates that move the respective gate signals to-
gether until they become adjacent, the precise fashion how this
is accomplished has a significant effect on the overall costs of
the resulting circuit. Accordingly, many approaches improving
the SWAP gate insertion for nearest neighbor quantum circuits
have been proposed [14, 15, 16, 17, 18]. However, almost all
of them are of heuristic nature, i.e. do not guarantee an optimal
solution. All this is discussed in more detail later in Section III.

In this work, we are addressing this problem. A SWAP gate
insertion scheme for nearest neighbor quantum circuits is pre-
sented which keeps the actual number of SWAP gates to be in-
serted optimal. For this purpose, we are exploiting the deduc-

tive power of solvers for Pseudo Boolean Optimization (PBO).
We are formulating the question which permutations of cir-
cuit signals shall be established in order to make all gates of a
given quantum circuit adjacent as an satisfiability instance. Af-
terwards, we apply a cost function to be minimized which in-
corporates the respective costs of the respectively chosen per-
mutation. By this, a PBO solver not only determines a possi-
ble SWAP insertion, but the one with the minimal number of
SWAP gates.

Experiments illustrate that, considering the exponential
complexity of the addressed problem, the proposed solution
indeed is able to efficiently generate optimal results for many
quantum circuits. Circuits composed of up to 6 circuit lines
or up to 17 non-unary quantum gates can be handled. By this,
we were able to prove that previously proposed (heuristic) ap-
proaches already determined the minimal number of SWAP
gate insertions for some benchmarks. Nevertheless, also an
example is shown where these heuristic results can still be fur-
ther improved.

The remainder of this paper is structured as follows: Sec-
tion II provides a basic introduction into quantum circuits and
Pseudo Boolean Optimization before the SWAP gate insertion
for nearest neighbor quantum circuits including existing ap-
proaches is reviewed in Section III. The proposed optimal ap-
proach is then presented in detail in Section IV and evaluated
in Section V. Finally, the paper is concluded in Section VI.

II. BACKGROUND

In order to keep the paper self-contained, this section briefly
reviews the basics on the considered circuit technology as well
as the solving method utilized to tackle the addressed research
problem.

II.A. Quantum Circuits

In contrast to conventional computation, quantum compu-
tation [1] works on qubits instead of bits. While bits allow
binary values only, qubits may assume any superposition of
them. More formally, a qubit is a two level quantum system,
described by a two dimensional complex Hilbert space. The
two orthogonal quantum states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are

used to represent the Boolean values 0 and 1. Any state of
a qubit may be written as |x〉 = α |0〉+ β |1〉 , where α and β
are complex numbers with |α|2 + |β|2 = 1.

Operations on n-qubits states are performed through multi-
plication of appropriate 2n × 2n unitary matrices. Thus, each
quantum computation is inherently reversible but manipulates
qubits rather than pure logic values. At the end of the computa-
tion, a qubit can be measured. Then, depending on the current
state of the qubit, either a 0 (with probability of |α|2) or a 1
(with probability of |β|2) returns. After the measurement the
state of the qubit is destroyed.
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Fig. 1. Quantum circuit

Quantum computations are usually represented by quantum
circuits. Here, the respective qubits are denoted by solid circuit
lines. Operations are represented by quantum gates. Table I
lists common quantum gates together with the corresponding
unitary matrices describing their operation. In order to perform
operations on more than one qubit, controlled quantum gates
are applied. These gates are composed of a target line |t〉 and
a control line |c〉 and realize the unitary operation represented
by the matrix

M =

(
1 0 0 0
0 1 0 0
0 0 U0 0

)
where U denotes the operation applied to the target line. That
is, if |c〉 = |0〉 all states remain unchanged and if |c〉 = |1〉
the operation U is applied to the target line |t〉. In all other
cases, the vector (α|c〉α|t〉, α|c〉β|t〉, β|c〉α|t〉, β|c〉β|t〉) is ap-
plied toM . In the remainder of this work, we use the following
formal notation:

Definition 1 A quantum circuit is denoted by the cas-
cade G = g1g2 . . . g|G|, where |G| denotes the total number
of gates. The number of qubits and, thus, the number of cir-
cuit lines is denoted by n. The costs of a quantum circuit are
defined by the number |G| of gates.

Example 1 Fig. 1 shows a quantum circuit composed of n = 2
circuit lines and |G| = 3 gates. This circuit gets |11〉 as input
and transforms the qubits as indicated at the circuit signals.

II.B. Pseudo Boolean Optimization

Solvers for Boolean satsifiability (SAT) and pseudo-
Boolean optimization (PBO) are core technologies utilized in
this work. Both problems are defined as follows:

Definition 2 The Boolean satisfiability problem determines
an assignment to the variables of a Boolean function
Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or proves that
no such assignment exists. The function Φ is thereby given in

Conjunctive Normal Form (CNF). Each CNF is a conjunction
of clauses where each clause is a disjunction of literals and
each literal is a propositional variable or its negation.

Definition 3 The pseudo-Boolean optimization problem de-
termines a satisfying solution for a pseudo-Boolean func-
tion Ψ : {0, 1}n → {0, 1} which – at the same time – min-
imizes an objective function F . The pseudo-Boolean func-
tion Ψ is thereby a conjunction of constraints defined by∑n
i=1 ciẋi ≥ cn, where c1 . . . , cn ∈ Z and ẋi either is a pos-

itive or a negative literal. The objective function F is defined
by F(x1, . . . , xn) =

∑n
i=1miẋi with m1, . . . ,mn ∈ Z.

Example 2 Let Φ = (x1 +x2 +x3)(x1 +x3)(x2 +x3). Then,
x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment solving
the SAT problem.

Accordingly, let Ψ = (2x1 + 3x2 + x3 ≥ 3)(2x1 + x2 ≥ 2)
and F = x1 + x2 + x3. Then, x1 = 1, x2 = 0, and x3 = 0 is
a solution to the PBO problem, satisfying Ψ and, at the same
time, minimizing F .

Both, SAT and PBO, are well investigated problems. In
the past efficient solving algorithms (so called SAT solvers or
PBO solvers, respectively) have been proposed (see e.g. [19,
20]). Instead of simply traversing the complete space of as-
signments, intelligent decision heuristics, powerful learning
schemes, and efficient implication methods are thereby ap-
plied. In case of PBO, it is also common to translate the re-
spective instance into a sequence of SAT instances in order to
efficiently determine a solution. In the following, we apply
these techniques as black boxes delivering a solution for the
proposed problem formulation.

III. OPTIMIZING SWAP GATE INSERTION
FOR NEAREST NEIGHBOR QUANTUM CIRCUITS

In the past, synthesis of quantum circuits has intensely
been considered. While first quantum algorithms such as
Grover’s Search [3] or Shor’s Algorithm [2] have manually
been mapped into a circuit netlist, in the meantime also auto-
matic synthesis approaches have been presented [4, 5, 6, 7, 8].
As every quantum circuit inherently is reversible, synthesis
methods for reversible circuits [9, 10, 11] in combination with
proper mapping methods [12, 13] are utilized for this purpose,
too. However, these approaches usually assume a rather gen-
eral quantum circuit model such as reviewed in Section II.A.

At the same time, new technological constraints emerged
that should be considered by circuit designers and synthesis
tools. Among the different technological constraints, the lim-
ited interaction distance between gate qubits is one of the most
common ones. They are motivated by technologies such as ion
traps [21], nitrogen-vacancy centers in diamonds [22], quan-
tum dots emitting linear cluster states linked by linear op-
tics [23], laser manipulated quantum dots in a cavity [24], and
superconducting qubits [25] and assume that computations are
only to be performed between adjacent (i.e. nearest neighbor)
signals.

Accordingly, synthesis schemes addressing the nearest
neighbor restriction have been introduced recently. While for
specific quantum circuits such as quantum Fourier transfor-
mation [26], Shor’s Algorithm [27], quantum addition [28],
or error correction circuits [29] specialized realizations exist,
general quantum circuits are usually made nearest neighbor-
compliant by following a post-synthesis optimization scheme:
First, the desired quantum functionality is realized using
e.g. one of the synthesis approaches mentioned above. After-
wards, the resulting circuit is made nearest neighbor-compliant
by inserting so called SWAP gates.
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Fig. 2. Establishing nearest neighbor-compliance

Definition 4 A SWAP gate is a quantum gate g(qi, qj) includ-
ing two qubits qi, qj and maps (q0, . . . , qi, . . . , qj , . . . , qn−1)
to (q0, . . . , qj , . . . , qi, . . . , qn−1). That is, a SWAP gate real-
izes the exchange of two quantum values.

More precisely, adjacent SWAP gates are inserted before
each gate g with non-adjacent circuit lines in order to “move”
the control (target) line of g towards the target (control) line
until they become adjacent. Afterwards, SWAP gates are in-
serted to restore the original ordering of circuit lines.

Example 3 Consider the circuit depicted in Fig. 2(a). As can
be seen, gates g1, g4, and g5 are non-adjacent. Thus, in order
to make this circuit nearest neighbor-compliant, SWAP gates
before and behind all these gates are inserted as shown in
Fig. 2(b).

Obviously, inserting SWAP gates increases the cost of the
resulting circuits1. Moreover, the fashion in which SWAP
gates are inserted has a significant effect: The insertion of
SWAP gates as shown in Fig. 2(c) (which additionally also
exploits different orders of primary inputs/outputs) leads to a
much cheaper nearest neighbor-compliant circuit for Exam-
ple 3. Accordingly, different approaches for optimizing the
insertion of SWAP gates have been proposed in the recent past
(see e.g. [14, 15, 16, 17, 18]). For this purpose, strategies such
as the re-ordering of circuit lines, window-based heuristics, or
mapping the problem to a corresponding graph arrangement
problem were applied and evaluated. However, all of them
are of heuristic nature, i.e. do not guarantee an optimal solu-
tion. An exception might be [30] in which the determination
of an optimal number of SWAP gate insertion has briefly been
discussed by means of an exhaustive enumeration. But this ap-
proach has clearly been shown unfeasible2 and was just used
in order to motivate the application of heuristics. Furthermore,
also the approach presented in [31] guarantees optimality. But
this solution additionally allows for changing the order of the
gates so that the results obtained there are not comparable to
the previous work discussed above.

In this work, we are aiming to exactly determine the best,
i.e. minimal, SWAP gate insertion in order to transform a
given circuit into a nearest neighbor-compliant representation.
For this purpose, the deductive power of solvers for Pseudo
Boolean optimization is exploited.

IV. PROPOSED SOLUTION

This section presents an exact solution to the problem
sketched above. For this purpose, first the general idea is dis-
cussed before details on the precise implementation are pre-
sented.

1In fact, different costs calculations are therefore applied in literature:
SWAP gates are either treated as elementary gates with costs of 1 or realized
through a cascade of three controlled Pauli-X gates (i.e. with costs of 3).

2The approach was aborted for almost all benchmarks due to time con-
straints.

IV.A. General Idea

Given a quantum circuitG, we are looking for a minimal in-
sertion of SWAP gates so that all gates g ofG can adjacently be
executed. As illustrated above, these SWAP gates are only ap-
plied in order to appropriately permute the order of the circuit
lines so that all functional gates of the circuit can be executed
adjacently. Hence, in order to determine the best possible in-
sertion of SWAP gates, one has to consider

• all possible permutations of circuit lines that, in principle,
can be established before each gate g of G and

• the costs (in terms of adjacent SWAP gates) that would be
needed in order to create these particular permutations.

The precise cascade of adjacent SWAP gates and, by this,
the costs for creating a particular permutation of circuit lines
can thereby be calculated using inversion vectors. For any per-
mutation π, an inversion vector ~v = (v0v1 . . . vn−1) is defined
by vi = |{e ∈ π | e > i}| and 0 ≤ i < n, i.e. the ith element
of ~v is the number of elements in π larger than i to the left of i.
Inherently, this is also the number of (adjacent) SWAP opera-
tions to be performed in order to move π(i) to i. Hence, the
total amount of SWAP gates needed for creating a particular
permutation of circuit lines can be calculated by summing up
the respective entries in the inversion vector3.

Example 4 Assume a given circuit line order (0, 1, 2, 3) shall
be permuted to (2, 3, 1, 0). The corresponding inversion vector
is ~v = (3, 2, 0, 0). Hence, 3 + 2 + 0 + 0 = 5 SWAP gates are
required in order to create this permutation.

Note thereby that this does not apply in order to permute the
circuit lines before the first gate, i.e. before g1. Here, in accor-
dance with previous work (e.g. [17, 18]), we assume the circuit
lines can arbitrarily be permuted with no additional costs just
by re-arranging the primary inputs as necessary.

Taking all that into account, a naive approach that ensures
minimality of SWAP gate insertion would work as follows:

1. Enumerately consider all possible permutations of circuit
lines for all gates of the given circuit G.

2. For each set of permutations which lead to a circuit sat-
isfying the nearest neighbor condition, calculate the costs
according to the algorithm described above.

3. After all permutations have been considered, take the one
with the smallest costs.

This requires to check all possible permutations for all gates
of the circuit, i.e. n!|G| different combinations in total. Al-
though it was shown in [30], that it is sufficient to only con-
sider the permutations between the respective control and tar-
get lines of each gate, this remains an exponential complex-
ity. Naive schemes as sketched here or discussed in [30] are

3The same principle has been applied in [30] in order to show that a
bubblesort-algorithm generates the minimum number of SWAP gates in order
to construct an arbitrary permutation.
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Fig. 3. Resulting PBO encoding for circuit from Fig. 2(a)

infeasible due to their enumerative nature and the complexity
of the problem. Hence, we propose an alternative approach
which exploits the deductive power of the state-of-the-art PBO
solvers described in Section II.B. Instead of naively enumerat-
ing all possible permutations, we are formulating the question
which permutation shall be created as an problem of Boolean
satisfiability. In addition to that, the costs of the respective
permutations are incorporated in an objective function to be
minimized. By this, a formulation results that can be passed
to a PBO solver. From the solution of this PBO instance, the
minimal SWAP insertions can be derived.

IV.B. Implementation

In order to encode the considered problem, we distinguish
between the lines of a circuit G (denoted by l0, . . . , ln−1) and
their corresponding qubits (denoted by q0, . . . , qn−1). Initially,
each qubit corresponds to the circuit line with the same index,
i.e. qi corresponds to li for all 0 ≤ i < n. Then, before each
gate, we allow an arbitrary permutation (including the iden-
tity) which may lead to different mappings of qubits to circuit
lines. Following this, Boolean variables are introduced to the
PBO encoding representing which qubit currently corresponds
to which line.

Definition 5 Let G = g1g2 . . . g|G| be a circuit over n qubits.
Then, variables ~xki = (xki0x

k
i1 . . . x

k
in−1) with 0 ≤ k < |G|

and 0 ≤ i < n are introduced representing which qubit corre-
sponds to circuit line li initially (for k = 0) and before gate gk
(for 1 ≤ k < |G|). More precisely, a variable xkij states
whether qubit qj corresponds to the circuit line li (xkij = 1)
or not (xkij = 0).

Example 5 Consider the circuit shown in Fig. 2(a) which
works as running example throughout the remainder of
this section. Fig. 3 sketches the resulting PBO encoding.
The π-blocks denote the positions in which we allow an ar-
bitrary permutation of circuit lines. This leads to a new
qubit mapping which is represented by the corresponding
~xki -variables in Fig. 3. Here, e.g. the assignment x2

21 = 1
states that, before gate g2, the qubit q1 corresponds to circuit
line l2.

Obviously, these mappings cannot arbitrarily be made. In
fact, each circuit line must exactly correspond to one qubit and
each qubit must exactly correspond to one circuit line. In order
to ensure this, the following consistency-constraint is added to
the PBO instance:

|G|−1∧
k=0

n−1∧
i=0

(

n−1∑
j=0

xkij = 1) ∧
n−1∧
i=0

(

n−1∑
j=0

xkji = 1)


The left part of this constraint states that, for each permuta-

tion position k (0 ≤ k < |G|) and for each circuit line li, the
sum xki0 +xki1 + · · ·+xkin−1 is fixed to 1, i.e. exactly one qubit
corresponds to one circuit line. The right part of this constraint
states that, for each permutation position k (0 ≤ k < |G|) and
for each qubit qi, the sum xk0i+xk1i+ · · ·+xkn−1i is fixed to 1,
i.e. exactly one circuit line corresponds to one qubit.

Example 6 The bottom left of Fig. 3 sketches the consistency
constraint for the example from Fig. 2(a).

Next, we want to ensure that only permutations are applied
which satisfy the nearest neighbor condition on all functional
gates. As we know the control and target qubits of each gate,
this can be enforced through the ~xki -variables and the following
adjacency-constraint:

∧
gk(qc,qt)∈G

(
n−1∨
m=0

(xkmc ∧ xk(m+1)t) ∨
n−1∨
m=0

(xkmt ∧ xk(m+1)c)

)

This constraint considers all gates gk(qc, qt) from a given cir-
cuit G with control qubit qc and target qubit qt. For each of
these gates, a mapping of qubits to circuit lines is required so
that either

• the control qubit qc corresponds to a circuit line lm and the
target line qt corresponds to a directly succeeding circuit
line lm+1 (left part of the constraint) or

• the target qubit qt corresponds to a circuit line lm and the
control line qc corresponds to a directly succeeding circuit
line lm+1 (right part of the constraint).



That is, one of the possible adjacencies between the respective
qubits of these gates has to be established.

Example 7 Consider again the sketch of the encoding shown
in Fig. 3. The gate blocks represent the qubits which must be
adjacent (derived from Fig. 2(a)). Based on that, the bottom
center of Fig. 3 exemplarily shows the resulting adjacency-
constraint for gate g1 with control qubit q2 and target qubit q0.

Finally, the respectively chosen permutation of circuit lines
at each position has to be extracted and the corresponding costs
for creating it has to be linked to the objective function of the
PBO instance. Again, the ~xki -variables can be exploited for this
purpose. Based on them, it can be derived what permutation is
applied before gate gk in order to change the previous circuit
line order. This can be expressed by a permutation-constraint
as follows:

|G|−1∧
k=1

(∧
π∈Π

(

n−1∧
i=0

~xk−1
i = ~xkπ(i))⇔ skπ

)

This constraint considers all possible permutations (denoted
by Π) for each position k. If the assignments of ~xk−1

i and ~xki
establish a particular permutation π ∈ Π, then a corresponding
new free variable skπ is set to 1 (encoded through ⇔). This
states that this particular permutation π has been chosen before
gate gk and, hence, the corresponding costs for it have to be
considered. This is eventually incorporated in the objective
function

min(

|G|−1∑
k=1

∑
π∈Π

cπs
k
π),

where cπ denotes the costs (in terms of adjacent SWAP gates)
for creating a permutation π using the methods described in
Section IV.A.

Example 8 The permutation-constraint and the objective
function for the running example from Fig. 2(a) are sketched
at the bottom right of Fig. 3. In particular, the constraints for
permutation π = (2, 3, 1, 0) and k = 2 are shown. As already
discussed in Example 4, creating this permutation requires 5
SWAP gates. Accordingly, costs of 5 are assumed in the objec-
tive function for this particular permutation. Furthermore, as
it is assumed that circuit lines before gate g1 can arbitrarily be
permuted with no additional costs, all variables s1

π (π ∈ Π)
are not part of the objective function.

Combining all these constraints, a PBO instance results
which is satisfiabile for all permutations of circuit lines that
lead to a nearest neighbor-compliant circuit. The precise per-
mutation to be created at position k can thereby be derived
from the assignment to the skπ variables. If skπ has been as-
signed 1 by the PBO solver, a permutation π has to be cre-
ated before gate gk. By additionally optimizing the objective
function, the PBO solver ensures a minimal number of SWAP
gates.

Example 9 Passing the PBO encoding presented
above to a PBO solver, an optimal assignment with
s0
πe
, s1
πe
, s2

(0213), s
3
πe
, s4
πe

set to 1 results (πe represents
the identity permutation). From that, the SWAP insertion
as depicted in Fig. 2(c) can be derived. This represents an
optimal solution to the SWAP insertion problem for the circuit
given in Fig. 2(a).

TABLE II
EXPERIMENTAL EVALUATION

Benchmark n |G| n!|G| Swaps Time
3_17_13 3 13 1.3 · 1010 2 0.1
4gt11_83 5 12 8.9 · 1024 6 630.1
4gt11_84 5 7 3.6 · 1014 1 8.9
4gt11-v1_85 5 7 3.6 · 1014 1 16.6
4gt13-v1_93 5 16 1.8 · 1033 6 9808.5
4mod5-v0_19 5 12 8.9 · 1024 6 489.2
4mod5-v0_20 5 8 4.3 · 1016 2 55.3
4mod5-v1_22 5 9 5.2 · 1018 3 45.5
4mod5-v1_24 5 12 8.9 · 1024 10 548.7
4mod5-v1_25 5 7 3.6 · 1014 1 11.9
alu-v0_27 5 13 1.1 · 1027 18 11705.3
alu-v1_29 5 13 1.1 · 1027 15 1685.5
alu-v4_37 5 14 1.3 · 1029 14 3669.9
decod24-v0_38 4 17 2.9 · 1023 4 23.6
decod24-v0_39 4 15 5.0 · 1020 5 19.2
decod24-v0_40 4 8 1.1 · 1011 3 0.4
decod24-v1_42 4 8 1.1 · 1011 2 0.4
decod24-v2_43 4 16 1.2 · 1022 3 7.6
decod24-v3_46 4 9 2.6 · 1012 3 0.4
graycode6_48 6 5 1.9 · 1014 0 4.5
mod5d1_63 5 11 7.4 · 1022 10 745.5
mod5d2_70 5 14 1.3 · 1029 18 3047.5
mod5mils_71 5 12 8.9 · 1024 7 735.7
QFT5 5 10 6.2 · 1020 6 2463.2
rd32-v0_66 4 12 3.7 · 1016 4 1.6
rd32-v0_67 4 8 1.1 · 1011 2 0.3
rd32-v1_68 4 12 3.7 · 1016 4 1.6
rd32-v1_69 4 8 1.1 · 1011 2 0.3

n: Number of lines |G|: Number of gates (does not include unary gates)
n!|G|: Search space/complexity Swaps: Min. number of SWAP gates
Time: Run-time in CPU seconds

V. EXPERIMENTAL EVALUATION

In this section, the results obtained with the proposed ap-
proach are presented and discussed. For this purpose, a PBO
encoder has been implemented in C++ which takes a given
quantum circuit and generates the PBO instance as described
in the previous section. Afterwards, the PBO solver clasp [20]
has been utilized for solving the resulting instance. To evalu-
ate the performance of the proposed solution, quantum circuits
from RevLib [32] as well as used in [18] have been applied.
All evaluations have been conducted on an Intel E6700 Core2
CPU with 2.7 GHz and 4 GB of memory.

The results are summarized in Table II. The first three
columns denote thereby the name of the considered bench-
marks as well as their number n of circuit lines and their num-
ber |G| of gates. Note that the latter does not include any
unary gates. As unary gates are inherently nearest neighbor-
compliant, they do not have to be considered for SWAP gate
insertion and, thus, are ignored. Column n!|G| denotes the size
of the search space and, by this, the precise complexity of the
problem for the respective benchmark. Finally, the last two
columns eventually provide the determined minimal number
of SWAP gates to be inserted as well as the run-time (in CPU
seconds) needed to obtain the result.

The results confirm the deductive power of the applied PBO
solver that helped to determine the optimal SWAP gate inser-
tion for many quantum circuits. In fact, circuits composed of
up to 6 circuit lines or up to 17 non-unary quantum gates can
be handled. In the most complex case (i.e. for 4gt13-v1_93)
1.8 · 1033 possible permutations have been considered – way
too much to be tackled by an enumerative solution. Besides
that, it can also be observed that the performance differs de-
pending on the respective circuit. For example, decod24-v2_43
and mod5d1_63 have about the same complexity. How-



TABLE III
COMPARISON TO HEURISTIC APPROACHES
Benchmark Minimal [17] [18]
3_17_13 2 12 4
4gt11_84 1 3 1
decod24-v3_46 3 4 3
QFT5 6 6 6
rd32-v0_67 2 2 2

ever, an optimal SWAP gate insertion can be determined
for decod24-v2_43 two orders of magnitude faster than for
mod5d1_63. Such differences can be applied by the different
fashions in which the PBO solver traverses the search space.

Using the proposed methodology, we were also able to prove
that previously proposed (heuristic) approaches sometimes al-
ready determined the minimal number of SWAP gate inser-
tions. Some numbers concerning this are shown in Table III
(providing a comparison to some of the results from [17, 18]4).
As can be seen, particularly the approach recently presented
in [18] was already able to determine minimal solutions for
some benchmarks. However, minimality is not guaranteed in
these approaches: As unveiled by our approach, even for the
relatively less complex example 3_17_13, a minimal solution
with half the number of SWAP gate insertions exists.

VI. CONCLUSIONS
In this work, we proposed an approach for the optimal deter-

mination of SWAP gate insertions needed to make an arbitrary
quantum circuit nearest neighbor-compliant. In order to han-
dle the exponential complexity, the deductive power of PBO
solvers has been exploited. That is, the given problem has been
encoded as a PBO instance and, afterwards, solved by a proper
solving method. Experiments confirmed the applicability of
the proposed approach. By this, it was possible to compare
results obtained by heuristic methods to the actual optimum.
Future work focuses on determining the optimal number of
SWAP gate insertions for alternative architectures, e.g. nearest
neighbor quantum circuits based on 2D architectures [33] or
relying on gate libraries particularly suited for nearest neigh-
bor constraints [34].
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