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Abstract— Quantum circuits established themselves as a
promising emerging technology and, hence, attracted consider-
able attention in the domain of computer-aided design. As a
result, many approaches for synthesis of corresponding netlists
have been proposed in the last decade. However, as the design of
quantum circuits faces serious obstacles caused by phenomena
such as superposition, entanglement, and phase shifts, automatic
synthesis still represents a significant challenge. In this paper, we
propose an automatic synthesis approach for quantum circuits
that implement Clifford Group operations. These circuits are
essential for many quantum applications and cover core as-
pects of quantum functionality. The proposed approach exploits
specific properties of the unitary transformation matrices that
are associated to quantum operations. Furthermore, Quantum
Multiple-Valued Decision Diagrams (QMDDs) are employed for
an efficient representation of these matrices. Experimental results
confirm that this enables a compact realization of the respective
quantum functionality.

I. INTRODUCTION

Quantum computation provides a new way of computation
based on so called qubits [1]. In contrast to conventional
bits, qubits do not only allow to represent the (Boolean)
basis states 0 and 1, but also superpositions of both. By
this, qubits can represent multiple states at the same time
which enables massive parallelism. By additionally exploiting
further quantum mechanical phenomena such as phase shifts
or entanglement, quantum computation enables asymptotical
speed-ups for many problems (e.g. database search or integer
factorization). Driven by these prospects as well as recent
accomplishments in the physical design of corresponding
devices (e.g. [2]), quantum circuits established themselves
as a promising emerging technology and, hence, attracted
considerable attention in the domain of computer-aided design.

However, in order to formalize the above mentioned phe-
nomena, states of qubits are modelled as vectors in high-
dimensional Hilbert spaces and are manipulated by quan-
tum operations which can be described by unitary matrices
– possibly including complex numbers. This already poses
serious challenges to the representation, but even more to
the development of proper and efficient methods for quantum
circuit synthesis. By this, we mean the task of determining a
cascade of building blocks (so called quantum gates) whose
sequential application to the qubits realizes a given quantum
operation.

As a special case, there are many existing synthesis ap-
proaches for Boolean reversible circuits (i.e. permutation ma-
trices), see e.g. [3], [4], [5], [6], [7], [8], [9]. In the last
decade, these approaches became very efficient and allow
for synthesis of rather complex (Boolean) functionality. Since
many important quantum algorithms such as Grover’s search
algorithm [10] or Shor’s factorization algorithm [11] include

a substantial Boolean component, these are vital techniques
for quantum circuit synthesis. Especially, since the resulting
circuits can be mapped to elementary quantum gates using
methods such as [12], [13], [14].

However, they do not allow for the realization of more gen-
eral quantum functionality. For this matter, several approaches
have been proposed, all of which rely on the fact that one-
qubit gates together with the controlled NOT (CNOT) gate
form a universal gate library that is sufficient to realize any
given unitary matrix [12]. In fact, determining corresponding
quantum circuits has a rich history (see e.g. [12], [15], [16],
[17], [18], [19]). The drawback of these generic approaches is
that they lead to a significant amount of gates (even for a small
number of qubits) and that they rely on a set of arbitrary one-
qubit gates. The latter poses a severe obstacle since, in physical
realizations, these must be approximated by a restricted set of
gates, in particular when fault tolerant methods are applied [1].

In this work, we provide an alternative synthesis approach
that considers synthesis of quantum circuits implementing
Clifford Group operations. By this, we avoid relying on a
generic gate library and, instead, can realize quantum func-
tionality with a precise and established set of gates including
Hadamard, Phase, and CNOT gates which can be implemented
in a fault tolerant way [20]. At the same time, this restricts the
applicability of our approach (arbitrary unitary matrices are not
supported). However, Clifford group circuits are essential for
many quantum applications and cover core aspects of quantum
functionality such as superposition, entanglement, and phase
shifts [21]. Moreover, their functionality is sufficient for vari-
ous quantum applications, particularly as stabilizer circuits for
error-correcting codes [22], but also for the realization of the
Greenberger-Horne-Zeilinger experiment [23], for quantum
teleportation [24], or dense quantum coding [25].

This compromise on applicability enables a synthesis
methodology allowing for the realization of considerably more
compact quantum circuits. We explicitly exploit the effects of
the clearly defined gate library in order to directly modify the
given unitary matrices to be synthesized. In contrast to the pre-
viously proposed (generic) approaches and as confirmed by an
experimental evaluation, this enables a reduction of the circuit
sizes by several orders of magnitude. By additionally using
a compact data-structure, namely Quantum Multiple-valued
Decision Diagrams (QMDDs) [26], our approach enables an
efficient processing of the respective unitary matrices.

The remainder of the paper is structured as follows. In
Section II, the background of quantum computation, quantum
circuits, as well as QMDDs is briefly reviewed. Section III in-
troduces the main concepts of the proposed synthesis scheme,
while the resulting synthesis algorithm is described in detail
in Section IV. An experimental evaluation is presented in
Section V and, finally, Section VI concludes the paper.



II. BACKGROUND

This section briefly reviews the basics on quantum com-
putation and quantum circuits. Furthermore, we introduce the
basic ideas of Quantum Multiple-valued Decision Diagrams
(QMDDs), a data-structure used to efficiently represent quan-
tum functionality. For more detailed introduction, we refer
to [1], [26].

A. Quantum Computation and Circuits
Quantum systems are composed of qubits. Analogously to

conventional bits, a qubit can be in one of the computational
basis states |0〉 and |1〉, but also in a so called superposition
α|0〉 + β|1〉 for complex-valued α, β with |α|2 + |β|2 = 1.
An n-qubit quantum system can be in one of the 2n basis
states (|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉) or a superposition
of these states. Accordingly, the state of a quantum system is
represented by a state vector (of dimension 2n).

By the postulates of quantum mechanics, the evolution of a
quantum system due to a quantum operation can be described
by a unitary transformation matrix, i.e. an invertible complex-
valued matrix whose inverse is given by the adjoint matrix.

Example 1. Commonly used quantum operations include the
Hadamard operation H (setting a qubit into a superposition),
the phase shift operations S (Phase gate) and Z = S2, as
well as the NOT operation X which flips the basis states |0〉
and |1〉. The corresponding unitary matrices are defined as

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
.

Besides these operations that work on a single target qubit,
there are also controlled operations on multiple qubits. The
state of the additional control qubits determines which op-
eration is performed on the target qubit. An example is the
controlled NOT (CNOT) operation on two qubits which is
defined by 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


and applies the NOT operation to the target if the control is
in the |1〉-state.

Realizations of quantum operations are represented by
quantum gates gi which eventually form a quantum circuit
G = g1 . . . gd with 1 ≤ i ≤ d. For the purpose of visualization
each qubit is represented by a solid line and gates are arranged
in a cascade from left to right indicating the application of the
respective unitary matrices to the qubits over time.

Example 2. Fig. 1 shows the corresponding gate represen-
tations of the quantum operations specified by the matrices
from Example 1. Note that for the CNOT gate a black circle
represents the control line connection, while a “

⊕
” represents

the target line connection.

In this work, we consider the synthesis of quantum circuits
implementing Clifford Group operations. It has been shown
in [27] that each Clifford Group operation can be realized by

|x0〉 |f0〉

|x1〉 |f1〉H S Z

Fig. 1. Quantum gates.

a cascade composed of Hadamard, Phase, and CNOT gates.
Conversely, any cascade of these gates forms a Clifford Group
operation. Therefore, these gates are also called generators of
the Clifford Group.

B. Quantum Multiple-valued Decision Diagrams
QMDDs [26] have been introduced as a means for the

efficient representation and manipulation of quantum gates
and circuits. The fundamental idea is a recursive partitioning
of the respective transformation matrix and the use of edge
and vertex weights to represent various complex-valued matrix
entries. More precisely, a transformation matrix of dimension
2n × 2n is successively partitioned into four sub-matrices of
dimension 2n−1 × 2n−1. This partitioning is represented by a
directed acyclic graph – the QMDD. The following example
illustrates main aspects.

Example 3. Fig. 2a shows a transformation matrix for which
a QMDD as shown in Fig. 2b has been built. Starting
with a single terminal vertex 1 that represents the lowest
partitioning level, i.e. single matrix entries, the next upper
level of 2× 2 matrices is represented by vertices labeled x2.
For each entry, there is an outgoing edge to the terminal vertex
with an edge weight corresponding to the respective complex
value. For simplicity, we omit edge weights equal to 1 and
indicate edges with a weight of 0 by stubs. The vertices are
normalized by dividing the weights of all outgoing edges by a
normalization factor (here: such that the “leftmost” edge with
a non-zero weight has weight 1). This factor is propagated
to referencing edges, e.g. the factor 1

2 is propagated upwards
from the x2-level to the x0-level in Fig. 2b. By this, structurally
equivalent sub-matrices are compressed to a shared vertex
(highlighted in grey in Fig. 2a and 2b, respectively). This
procedure is repeated for each level until a single vertex
labeled by x0 is created for the top level. This vertex is called
the root vertex. Finally, a possible normalization factor of this
vertex is assigned to the weight of the root edge which points
to the root vertex, but has no source.

To obtain the value of a particular matrix entry, one has to
follow the corresponding path from the root to the terminal
vertex and multiply all edge weights on this path. For example,
the matrix entry i

2 from the top right sub-matrix of Fig. 2a
(highlighted bold) can be determined as the product of the
weights on the highlighted path of the QMDD in Fig. 2b.

It can be shown that normalization as described above
enables canonical QMDD representations [26].
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Fig. 2. Matrix and QMDD representation of a 3-qubit quantum circuit.



III. MAIN CONCEPTS OF THE SYNTHESIS APPROACH

In this section, we introduce the general idea of the proposed
synthesis approach. Furthermore, we describe the effect of
the Clifford Group generators (Hadamard, Phase, CNOT)
to a given transformation matrix. Based on that, the actual
synthesis algorithm is afterwards described in Section IV.

A. General Idea
The task of synthesis is to determine a quantum circuit rep-

resenting the desired quantum functionality F given in terms
of a transformation matrix. We already know that all circuits
considered in this work can be realized by a cascade composed
of Hadamard, Phase, and CNOT gates. Therefore, applying
transformation matrices representing these gates modifies F
and for a distinct choice of these matrices we will eventually
reach the identity matrix. Hence, the main goal of the proposed
synthesis approach is to determine a sequence of quantum
gates g1 . . . gd with this property. For this purpose, we identify
the following three steps that are also illustrated in Fig. 3.

1) Eliminate superposition, i.e. apply quantum gates so that
all multiple non-zero matrix entries in rows/columns are
removed. This leads to a matrix that has a single non-
zero entry per row/column (as illustrated in Fig. 3b),
each of which has magnitude 1. Thus, the matrix is
structurally equivalent to a permutation matrix. The
corresponding circuit maps basis states to (possibly dif-
ferent) basis states and potentially applies phase shifts.

2) Diagonalize, i.e. establish the structure of a diagonal
matrix as shown in Fig. 3c. By this, the structure of the
transformation matrix is already equal to the structure of
the identity matrix, i.e. each basis state is mapped onto
itself. However, phase shifts still might be applied.

3) Eliminate phase shifts to eventually reach the identity
matrix as shown in Fig. 3d.

All gates applied in order to perform these steps lead
to a circuit realizing the inverse of the given transformaion
matrix F . Since the Hadamard and CNOT gates are their own
inverses and the inverse of the Phase gate is S3 = S · Z,
the actually desired circuit can then be derived by simply
inverting the order of all gates and replacing Phase gates by
their inverses. Alternatively, we can convert F to its inverse
in advance which is a simple operation using QMDDs.

B. Effect of the Clifford Group Generators
All synthesis steps sketched above can be accomplished by a

clever sequential application of Hadamard, Phase, and CNOT
gates, the generators of the Clifford Group. But before the re-
spective algorithm is described in detail, we briefly investigate
the effect of these gates to a transformation matrix F .

For simplicity, we illustrate all operations on a 4×4 transfor-
mation matrix F over two qubits x0 and x1. The generalization
to larger matrices with more qubits is straightforward. In the
following, we write Utarget for the transformation matrix that
represents the (uncontrolled) operation of a U -gate applied
to a target qubit. Similarly, we use U control

target for a controlled
U -gate, i.e. Xx0

x1
denotes the CNOT gate with control qubit

x0 and target x1.

1
1

1

1

(a) (b) (c) (d)
Fig. 3. General scheme of the synthesis procedure.
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Fig. 4. Operation scheme of gate matrices.
Fig. 4 summarizes how the application of important Clif-

ford operations affects a given transformation matrix F with
columns 00, 01, 10, and 11, i.e. F = (00, 01, 10, 11). For our
purposes, three main effects are important:

1) Permutation of columns: The CNOT gates Xx0
x1

and Xx1
x0

lead to matrices with columns 10 and 11 or 01 and 11
being interchanged, respectively. To additionally interchange
column 00 with another one, an (uncontrolled) NOT gate (X)
can be applied. This gate can be generated with Hadamard
and Phase gates, more precisely X = H ·S ·S ·H . Hence, by
composing gates Xx0

x1
, Xx1

x0
, and Xx1

, the columns of F can
be re-arranged until any desired permutation is achieved. Note
that for larger matrices we are no longer able to achieve any
desired permutation of the columns, but we can still move a
(single) column to any desired place.

2) Reducing superposition: Hadamard gates Hx0
and Hx1

link together pairs of columns as illustrated in Fig. 4, thereby
allowing to create or reduce superposition. Hence, this oper-
ation is important for the first step of the synthesis approach
sketched above. However, reduction of superposition is only
possible for suitable pairs of columns (i.e. for 00 and 10 or
01 and 01) and only if the columns differ by no more than
signs of the entries. If other pairs need to be linked together
(e.g. 00 and 11), the corresponding columns have to be re-
arranged before. For this purpose, permutation of columns as
described above can be applied.

3) Eliminating phase shifts: Finally, Fig. 4 shows that
Phase gates Sx0

and Sx1
apply a phase shift of i to a particular

subset of columns of F . Beyond that, they do not alter the
order of the columns. Applied again, they change this phase
shift to −1 and −i successively and, finally, remove the phase
shift completely. Obviously, this is relevant for the third step
of the synthesis approach sketched above. As Phase gates also
only work on pairs of columns, we additionally might need
so called controlled Z gates defined by

Zx0
x1

= Zx1
x0

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

These apply a phase shift by −1 to a more restricted set of
columns than Phase gates (here: a single column). This gate
type can readily be constructed using Hadamard and CNOT
gates, more precisely Zx0

x1
= Hx0 ·Xx1

x0
·Hx0 .

Exploiting these effects, the sketched synthesis approach
can be realized as described next.



IV. ALGORITHM

Based on the main concepts introduced in the previous
section, we now describe the resulting synthesis approach in
detail. The approach follows the three steps from Fig. 3. Fur-
thermore, we employ QMDDs as reviewed in Section II-B as
an efficient representation of transformation matrices on which
all steps are conducted1. All steps are illustrated by a running
example, namely the transformation matrix depicted in Fig. 2a
and the corresponding QMDD depicted in Fig. 2b. We will
exploit the specific property of Clifford group transformation
matrices that all non-zero entries are multiples of a basis
weight. More precisely, there is a complex number ω such that
each non-zero entry is of the form u · ω for u ∈ {±1,±i}.
This property follows from the theory of stabilizer circuits as
discussed in [28].

A. Eliminating Superposition
As discussed in the previous section, superposition can be

eliminated using Hadamard gates. More precisely, superposi-
tion involving a suitable pair of columns with no phase shifts
can straightforwardly be tackled using a single Hadamard gate
applied to the corresponding qubit.

Example 4. In the running example from Fig. 2a, it can be
seen that column 001 matches pairwise to column 011 (i.e. the
entries differ only by sign). Hence, applying a Hadamard gate
on qubit x1 reduces the superposition of the matrix and leads
to a matrix as shown in Fig. 5a.

However, cases might be encountered where no Hadamard
gates can be applied directly. Then, the columns have to
be re-arranged using CNOT gates and possible phase shifts
have to be removed using Phase gates. This is illustrated by
the following example before the actually applied elimination
scheme is described next.

Example 5. The resulting matrix from Fig. 5a still includes
superposition. In order to eliminate this, we need to derive
a “valid” pair of columns for which a Hadamard gate can
be applied. We choose columns 001 and 111 and first use
a CNOT gate Xx0

x1
to move column 111 to 101. Then, we

perform a Phase gate on qubit x0 to remove the phase shift to
column 001. Finally, the application of a Hadamard gate at
qubit x0 eventually eliminates all superposition in this matrix.
The resulting matrix is shown in Fig. 6a.

1Note that the proposed approach can as well be applied to alternative
representations of unitary matrices.

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 0 1√
2

0 0 0 0 0 i√
2

001 1√
2

0 0 0 0 0 −i√
2

0

010 0 0 1√
2

0 −i√
2

0 0 0

011 0 0 0 −1√
2

0 −i√
2

0 0

100 0 −i√
2

0 0 0 0 0 −1√
2

101 −i√
2

0 0 0 0 0 1√
2

0

110 0 0 −i√
2

0 1√
2

0 0 0

111 0 0 0 i√
2

0 1√
2

0 0

x1
x0

x2

(a)

x0

x1 x1

x2 x2 x2 x2

1

1√
2

i−i
−1

0 0 0
−1

0

0 0 0 0
−1

0
−1

0 0 0

(b)

Fig. 5. Running example after applying Hx1 .
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Fig. 6. Running example after eliminating superposition.

Overall, superposition can gradually be eliminated by re-
peating the following steps.

1) Determine the first two non-zero entries in the first row
and store their quotient q.

2) Rearrange the columns in such a way that their column
index only differs in one place xd. This can be done
by choosing a place xd where the indices initially differ
and applying controlled NOT gates (controlled by xd)
on any other place where the indices differ.

3) If q = ±i, perform a Phase gate on xd.
4) Afterwards, perform a Hadamard gate on xd.
Using QMDDs, these steps can be conducted efficiently.

Since the basis weight ω of a matrix can be obtained through
the weight of the root edge of its QMDD, it is easy to
check whether there is superposition in the matrix or not. The
resulting QMDD is shown in Fig. 6b.

B. Diagonalization
Once superposition has been removed from the matrix, there

is a single non-zero entry per row and column (as in Fig. 6a).
By unitarity, all of these entries and, hence, also the basis
weight must have magnitude 1, i.e. the matrix is structurally
equivalent to a permutation matrix and the corresponding
circuit maps basis states to other basis states – possibly with
phase shifts. Hence, in order to derive the structure of a
diagonal matrix, the respective columns have to be permuted
only. This can be done by applying suitable NOT and CNOT
gates. In order to determine which gates to apply, we compute
line functions fxi for each qubit xi. These denote the (logic)
formula that expresses for which inputs (columns) we get an
output |1〉 on the respective qubit.

Example 6. We read from the current matrix in Fig. 6a that

fx0 = 001 ∨ 011 ∨ 100 ∨ 110 = x0 ⊕ x2
fx1 = 010 ∨ 011 ∨ 110 ∨ 111 = x1
fx2

= 000 ∨ 011 ∨ 100 ∨ 111 = x1 ⊕ x2

In order to achieve a diagonal structure, we need fxi = xi.
To establish this for x0, we need to XOR x2 by applying Xx2

x0
.

For x2, this can similarly be accomplished by applying Xx1
x2

and Xx2 . This leads to a matrix as shown in Fig. 7a.

It can be shown, that the line functions are always such XOR
products of the qubits. However it may happen that xi does
not appear in fxi

(but xj 6= xi does). In this case, we firstly
need to swap the qubits by applying Xxi

xj
, X

xj
xi , and Xxi

xj
.
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Fig. 7. Running example after diagonalization.

Thus, the respective gates to be applied are derived by
computing the line function for each qubit and, based on
it, successively applying NOT/CNOT gates until the desired
diagonal structure results. Using QMDDs, the line functions
can easily be computed in a compressed form (as a Binary
Decision Diagram) if the respective qubit is on the top level
of the diagram.

More precisely, the following algorithm is applied (all
variables are initially marked unvisited):

1) Pick an unvisited variable x and move it to the top of
the QMDD by variable interchange.

2) Compute the output function fx of x.
3) If fx does not depend on x, i.e. if the top vertex of

its compressed representation is not labeled by x (but
by y), perform the CNOT gates Xx

y , X
y
x , and Xx

y .
4) For each variable y 6= x on which fx depends, perform

a CNOT gate with target x and controlled by y, i.e. Xy
x .

5) Mark x as visited.
After all variables have been visited, each basis state is

mapped onto itself and, thus, a diagonal matrix structure has
been achieved. For the running example, this leads to the
QMDD as shown in Fig. 7b.

C. Eliminating Phase Shifts
Finally, possible phase shifts are eliminated, i.e. all diagonal

entries of the matrix are equalized. This is conducted by
Phase gates (performing shifts by ±i) and controlled Z gates
(performing partial shifts by −1).

Example 7. The phase shifts in the current matrix shown
in Fig. 7a can be eliminated by applying a Phase gate at
qubit x0 (Sx0 ). This transforms the values ±i to ±1. To remove
the phase shift −1 of |011〉, a controlled Z gate with target x2
and controlled by x1 (Zx1

x2
) is applied. This eventually leads

to the identity matrix and, hence, terminates the synthesis.

Note that we do not require the first entry of the diagonal
(first row, first column) to have value +1. Any complex value
of magnitude 1 is accepted and all other diagonal entries are
transformed to the same value. This leads to a matrix that
might not be the identity matrix itself, but that is equivalent
up to global phase and, hence, physically indistinguishable [1].

Since phase shifts are indicated by edge weights ±i and −1
in the QMDD, they can easily be eliminated by applying
the corresponding gate to qubits as illustrated in Fig. 8. In
order to address edges on lower levels, re-ordering of the
QMDD structure is applied. Eventually, all phase shifts can
be eliminated by “moving” the respective qubit variable to the
root level and applying the gates as shown in Fig. 8.
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Fig. 8. Removing non-trivial edge weights from a QMDD.
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Fig. 9. Resulting quantum circuit.

Overall, performing the respective steps as described above
eventually leads to the quantum gate cascade depicted in
Fig. 9. As explained in Section III-A, this realizes the inverse
of the given unitary matrix of our running example from Fig. 2.

A detailed proof for the algorithm’s convergence is available
from the authors, but will not be given here due to page
limitations.

V. EXPERIMENTAL RESULTS

The synthesis approach discussed above has been imple-
mented in C on top of the original QMDD package presented
in [26]. In this section, we evaluate the results obtained by the
approach and compare them to synthesis schemes previously
proposed in [18], [19]. To this end, arbitrary transforma-
tion matrices with up to 20 qubits (denoted arbitrary) as
well as quantum functionality taken from [22] and realizing
Shor’s 9-qubit error correcting code (denoted by 9qubitN1 and
9qubitN2), a 7-qubit encoding (denoted by 7qubitcode), as
well as an error syndrome measurement circuit for a 5-qubit
code (denoted by 5qubitcode) have been used.

The results are summarized in Table I. The first column
provides the identifiers of the respective benchmarks followed
by its number of qubits. In the remaining columns, the costs,
i.e. the number of gates, of the resulting circuits are provided.
It is a common understanding that (physical) implementations
of CNOT gates are more error-prone and have greater delays
than one-qubit gates. Therefore and in accordance with the
evaluation of [18], [19], we distinguish between the number of
one-qubit gates and the number of CNOTs in Table I. Further-
more, the best available results from [18], [19] are provided
for comparison. Finally, the run-time of the proposed synthesis
approach is provided in the last column. All experiments have
been conducted on a 2.8 GHz Intel Core i7 machine with 8 GB
of main memory running Linux.

First of all, we emphasize again that the approaches pro-
posed in [18], [19] rely on a gate library composed of an
arbitrary set of one-qubit gates together with a CNOT. This
poses a severe obstacle since physical realizations and partic-
ularly fault tolerant methods impose limitations on the set of
gates that may be used. In contrast, the approach presented
here can realize the considered quantum functionality with a
precise and established set of gates including only Hadamard,
Phase, and CNOT gates2.

2Note again that the controlled Z gates applied e.g. for eliminating phase
shifts are eventually realized by a Hadamard–CNOT–Hadamard cascade.



TABLE I
EXPERIMENTAL EVALUATION

Prev. Approach [18] Prev. Approach [19] Proposed Approach
Benchmark #Qubits #CNOTs #CNOTS #one-qubit gates #CNOTS #one-qubit gates Time (s)
Arbitrary transformation matrices

arbitrary4 4 100 112 138 15 33 <0.01
arbitrary5 5 444 480 537 26 43 <0.01
arbitrary6 6 1 868 1 976 2 209 36 46 <0.01
arbitrary7 7 7 660 8 040 8 528 45 55 0.02
arbitrary8 8 31 020 32 456 33 455 61 72 <0.01
arbitrary9 9 124 844 130 408 134 415 68 61 0.03

arbitrary10 10 500 908 522 920 531 022 87 89 0.05
arbitrary11 11 2 006 700 2 094 376 2 110 669 102 98 0.10
arbitrary12 12 8 032 940 8 382 888 8 448 077 144 135 0.28
arbitrary15 15 ≈ 5.14 · 108 – – 203 173 2.37
arbitrary20 20 ≈ 5.27 · 1011 – – 217 222 26.40
Quantum functionality taken from [22]
5qubitcode 9 124 844 – – 28 28 <0.01
7qubitcode 7 7 660 – – 11 19 <0.01

9qubitN1 9 124 844 – – 8 3 <0.01
9qubitN2 17 ≈ 8.23 · 109 – – 34 4 <0.01

Benchmark: Name of benchmark – #Qubits: Number of qubits – #CNOTs: Number of CNOT gates – #one-qubit gates: Number of one-qubit gates

Besides that, Table I clearly shows that, using the proposed
method, much more efficient quantum circuits can be realized
for Clifford Group functionality compared to the more generic
approaches presented before. In fact, reductions of several
orders of magnitudes of CNOT gates can easily be obtained.

VI. CONCLUSIONS

In this work, we proposed a synthesis approach for quan-
tum circuits implementing Clifford Group operations. Clifford
group circuits are essential for many quantum applications
such as stabilizer circuits, quantum teleportation, and more. In
contrast to previous approaches for synthesis, we avoid relying
on a generic gate library and, instead, exploit the specific
effects of the Clifford Group generators to the unitary matrix to
be synthesized. Experiments confirmed that, compared to the
generic approaches presented before, quantum circuits with
several orders of magnitude less gates can be realized using
the proposed approach. Future work focuses on extending the
proposed method to address more general quantum function-
ality.
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