RevVis: Visualization of Structures
and Properties in Reversible Circuits

Robert Wille!2, Jannis Stoppe?,
Eleonora Schoénborn®, Kamalika Datta3, and Rolf Drechsler!-2

! Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
3 Department of Information Technology, Bengal Engineering, Shibpur, India
{rwille, jstoppe,eleonora,drechsle}@informatik.uni-bremen.de
kdatta.iitkgp@gmail.com
www.informatik.uni-bremen.de/agra/eng/revvis.php

Abstract. The recent interest in reversible computation led to plenty
of (automatic) approaches for the design of the corresponding circuits.
While this automation is desired in order to provide a proper support
for the design of complex functionality, often a manual consideration and
human intuition enable improvements or provide new ideas for design so-
lutions. However, this manual interaction requires a good understanding
of the structure or the properties of a reversible cascade which, with in-
creasing circuit size, becomes harder to grasp. Visualization techniques
that abstract irrelevant details and focus on intuitively displaying im-
portant structures or properties provide a solution to this problem and
have already successfully been applied in other domains such as design
of conventional software, hardware debugging, or Boolean satisfiability.
In this work, we introduce RevVis, a graphical interface which visualizes
structures and properties of reversible circuits. RevVis collects relevant
data of a given reversible cascade and presents it in a simple but intuitive
fashion. By this, RevVis unveils information on characteristic structures
and properties of reversible circuits that could be utilized for further
optimization. A case study demonstrates this by considering circuits ob-
tained from several synthesis approaches.

1 Introduction

Motivated by applications e.g. in quantum computation [1], low-power design [2],
or encoder and decoder design [3], research in reversible computation received
significant interest in the past. While rather small circuits have (manually) been
considered at the beginning, a recent strive for automated and scalable methods
supporting the design of several thousand gate circuits can be observed today.
This resulted in plenty of (automated) approaches for the synthesis and opti-
mization of reversible circuits in the recent past (see e.g. [4,5] for overviews).
Most of them are based on a particular genuine idea, e.g. reversible transforma-
tions at a truth-table description, the utilization of proper data structures such
as ESOPs, decision diagrams, etc., or the application of templates. But besides
that, also human intuition often led to ideas for new strategies to be exploited
or enabled further improvements which could not be detected by a machine.

N S 5
AP S PNAEERASY N4
P ® SADEwuEL il
S SRS INEIUE BaseSuul Y s 1o
%% LA SR 2OE 08¢ EY R SAP SUPAL SURA TP .S o51® ENSPS S
@ + oo or S e a14d S

D

Fig. 1. Existing netlist visualization of reversible circuits

However, getting a good intuition of a considered circuit requires a deep
technical understanding of how design approaches actually realize the respective
circuits. Moreover, these approaches may generate circuits with certain struc-
tures and properties that are often neither obvious to the developer nor to the
user of the design method. Consequently, possible potential in terms of better
synthesis or optimization may often not fully be exploited.

In fact, relevant instances of any kind are often equipped with some inter-
nal (sometimes hidden) structures or properties that are unknown to the de-
veloper and/or designer [6]. One way to unveil these information is to provide
a different intuition about a circuit. This can be accomplished by visualization
technologies. However, existing visualization schemes for reversible circuits are
basically limited to simple netlist representations in which all gates are only ar-
ranged in a cascade where black circles and @ respectively represent control and
target lines of the gates. In particular for larger circuits, these netlists do not
provide a proper intuition of the structure and possible properties of reversible
circuits. As an example, consider the netlist visualization of a circuit realizing
a division and shown in Fig. 1 (realized by the HDL-based synthesis approach
proposed in [7]). Although this circuit is composed of less than 100 gates, it is
almost impossible to recognize certain structures and/or properties from this
netlist visualization.

As a consequence, advanced visualization techniques are required that go
beyond the straight-forward representation of a circuit as a netlist. They should
mask irrelevant details as deemed necessary and, in turn, explicitly focus on
highlighting the desired structures and properties. In other domains, such visu-
alization techniques have already successfully been applied. For example:

— In the conventional software design, visualizations such as the CodeCity [8]
are well known. Here, different software classes are placed as “buildings”
within an artificial representation of a city. Depending on their properties,
e.g. their number of attributes, methods, or lines of code, the ground size or
the height of the “buildings” differ. Structural interrelation between classes
is e.g. emphasized by placing the corresponding “buildings” in the same
“district”. Fig. 2a shows such a visualization taken from [8]. Unproportional
looking “buildings” immediately pinpoint the designer to problematic classes
in the software project. The visualization reveals classes that are too complex
in terms of code and may better be split into subclasses or are not well-
balanced in terms of their number of attributes to number of methods ratio.

(a) SW design (CodeCity) (b) HW debuging (c) SAT solving
Fig. 2. Visualization technologies in other domains

— In the domain of debugging (conventional) hardware, so called error can-
didates are explicitly highlighted in the netlist [9]. They represent logic el-
ements within the circuit that may explain an erroneous behavior. Fig. 2b
shows such a visualization (taken from [9]). By this, the designer is explicitly
pinpointed to possible reasons for the incorrect behavior and does not have
to consider all gates of the circuit at once. Furthermore, by lapping several
of such layers, the designer is provided with an intuitive representation of
the circuit as well as possible explanations for the error which aids him/her
during the debugging process.

— Solvers for Boolean satisfiability (so called SAT solvers [10]) have been shown
to be very powerful and, hence, find practical applications e.g. in domains like
verification. However, although these approaches are able to efficiently solve
instances composed of hundreds of thousands of variables and constraints,
much smaller instances remain unsolvable within generous time limits. Un-
derstanding what makes a SAT instance hard or not has also been investi-
gated using visualization technologies [11]. For this purpose, instances have
been represented by graphs as shown in Fig. 2¢ (taken from [11]), where nodes
represent the variables of the instance and edges the constraints over them.
Using a visualization like this intuitively unveils connected sub-functions, im-
portant and less important literals, etc. This provides a better understanding
about how instances could be solved in a more efficient fashion.

Motivated by these success stories, the application of visualization technolo-
gies in the domain of reversible circuit design is investigated in this work. For
this purpose, we present the tool RevVis, a graphical interface that intuitively
visualizes the structure and properties of reversible circuits. For a selected set
of metrics and objectives which are relevant in the design of reversible circuits,
corresponding data is collected and, afterwards, visualized in a simple fashion.
The application of RevVis has been evaluated in a thorough case study involv-
ing several synthesis approaches that have been proposed in the past. From the
different visualizations some already known structures and properties could be
confirmed. Beyond that also new characteristics could be unveiled. They may
be exploited in the future to further finetune these approaches and to develop
corresponding new optimization schemes for the resulting circuits.

The remainder of this paper is structured as follows. The next section briefly
reviews reversible circuits and some of the metrics that are considered in the fol-
lowing. Section 3 introduces RevVis and, in particular, the visualizations of the
selected metrics and objectives. Afterwards, these visualizations are applied for
circuits generated by several synthesis approaches. Possible conclusions drawn
from that are discussed in Section 4. The paper is eventually concluded in Sec-
tion 5.

2 Background

This section briefly reviews reversible circuits as well as some of their properties
which will be considered later in this paper. In general, reversible logic deals
with Boolean functions which are reversible. A function f : B™ — B™ over the
variables X := {z1,...,2,} is said to be reversible if (1) its number of inputs
and outputs is equal (i.e. n = m) and (2) it represents a bijective, i.e. one-
to-one, mapping. A reversible circuit G is composed of a cascade of reversible
gates G = g192 - . . gr Where g; represents a reversible gate. In the past, various
reversible gates such as the Toffoli gate [12], Fredkin gate [13], or Peres gate [14]
have been investigated. In the context of this work, we focus on Multiple Control
Toffoli gates which are known to be universal.

A Toffoli gate is composed of a (possibly empty) set of control lines
C ={x;,...,z;,} C X as well as a single target line z; € X \ C' and maps
(1,...,2n) to (z1,...,2j-1,2; B Ti, ... Tiy, Tj41,.-.,Tpn). In other words, the
logic value on the target line gets inverted if all the control inputs are at logic 1;
otherwise the value on the target is passed as it is. In addition to the (positive)
control lines as defined above, Toffoli gates may also be composed of negative
control lines. The functionality of such gates is the same as defined above, except
that the value on the target line is inverted if all values on positive control lines
are assigned 1 and all values on negative control lines are assigned 0. Fig. 3a
exemplarily shows a reversible circuit composed of eight Toffoli gates.

In a reversible circuit, sometimes an input line is fed with a constant logic
value (0 or 1). Such circuit lines are denoted to have constant inputs. Similarly,
circuit lines with so called garbage outputs may exist, i.e. circuit lines whose
output value is a don’t care. Garbage outputs may e.g. be needed in order to
make an irreversible function reversible (see e.g. [15, 16]). The circuit from Fig. 3a
has two constant inputs and two garbage outputs.

Finally, the moving rule for reversible circuits is partially considered in this
work: Two adjacent gates g; and go with control lines C7 and Cy as well as
target lines ¢; and tq, respectively, can be interchanged if C; N {t2} = @ and
Con{t1} =0, i.e. if none of the target lines of one gate is a control line of
the other gate. Moving gates through the circuit enables further optimizations,
e.g. it allows to remove or merge redundant gates (see e.g. [17-20]). Hence, the
movability of a gate is an important metric. Consider a reversible gate sequence
G = ¢1g2...gk. For every gate g;(1 < i < k), the movability of the gate is
the number of possible gate positions j (j # ¢) such that g; can be moved to
position j according to the definition from above.

ey et

0 NV f 1

0 P f
- v O L
T2 -0 -
72 o 1

) Circuit) Const./Garb.) Structure

) Line usage) Line types f) Target blocks g) Moveability

Fig. 3. Different visualizations

3 The RevVis Tool

This section introduces the main features of the proposed visualization schemes
which have been implemented in the tool RevVis'. For a selected set of metrics
and objectives, the tool first collects information on the structure and properties
of a given reversible circuit, which are then visualized. The visualizations are
kept as simple and abstract as possible so that, even for larger designs, an intu-
itive and easy understanding is possible. In the following, the considered metrics
and objectives are introduced. Here, all visualization schemes are illustrated by
means of the reversible circuit depicted in Fig. 3a.

Constant Inputs and Garbage Outputs. Constant inputs and garbage outputs are
not only essential in order to embed irreversible functions into reversible ones (see
e.g. [15,16]), but are also heavily applied in synthesis approaches e.g. based on
ESOPs (e.g. [21]) or decision diagrams (e.g. [22]). Optimization approaches such
as introduced in [23] rely on the fact how long circuit lines with constants or
garbage are unused or not needed anymore, respectively. This is emphasized by
the first visualization scheme shown in Fig. 3b. All lines inheriting a constant or
garbage line are highlighted by black rows. The width of the rows depends on
the number of gates in the cascade in which the respective constant (garbage)
is unused (not needed anymore).

Structure of the Circuit. Reversible circuits are composed as a cascade of re-
versible gates which, in turn, are composed of control lines and target lines. Due
to this cascade structure, the structural usage of each line in a circuit may sig-
nificantly differ. This is visualized in the scheme shown in Fig. 3c. Each control

! RevVis is available at http://www.informatik.uni-bremen.de/agra/eng/revvis.php.

and target line connection is highlighted in black. Grey denotes the usage of
each circuit line, i.e. the cascade from the first gate in which this circuit line is
involved until the last gate of the cascade. White represents parts of the circuit
which are not needed for the actual computation. For example, the bottom line
of the considered circuit is only needed at the end of the cascade while all re-
maining lines are needed almost throughout the whole cascade. Although similar
to the netlist visualization, this simplified view enables a more intuitive view on
the structure of a circuit and can pinpoint to “holes” in the circuit (which can
be used e.g. as ancilliae).

Line Usage. The usage of circuit lines is additionally visualized by the scheme
shown in Fig. 3d. Here, the visualization is enriched by a color code represent-
ing the numerical usage of a circuit line. Lines highlighted red (green) represent
the circuit lines with the largest (smallest) number of control and target line
connections. Yellow patterns denote the circuit lines which lie between these ex-
tremes. White represents parts of the circuit which are not needed for the actual
computation. Information like that could e.g. be applied for nearest neighbor
optimization (see e.g. [24-27]). Here, control and target line connections always
have to be adjacent, i.e. lines which are heavily used should preferably be put
next to each other.

Line Types. The distribution of control and target line connections is an objec-
tive of the scheme shown in Fig. 3e. Here, red lines (green lines) denote circuit
lines which are entirely composed of target lines (control lines) only; yellow lines
denote circuit lines which have both control and target line connections. All
actual connections are again highlighted in black. This could provide some in-
spiration for optimization as e.g. huge parts of the circuit composed entirely
of control lines may provide some potential for reduction by factorization (see

e.g. [28]).

Target blocks. Fig. 3f shows another scheme which focuses on the target line
connections. More precisely, sub-circuits in which all gates have the same target
line are highlighted by means of grey blocks (with the target lines additionally
highlighted in black). Also this view could provide some inspiration for optimiza-
tion (in particular, if the possibly different control connections could be merged
so that such a cascade can be reduced to some few or even a single gate(s)).

Mowability. Finally, the “movability” of gates is visualized in Fig. 3g, i.e. the
applicability of the moving rule as reviewed in Section 2 is represented for each
gate. Gates highlighted red have a low movability (i.e. can hardly be moved
through the cascade), while gates highlighted green can be moved rather flexibly
through the cascade. Obviously this view is particularly helpful to investigate
optimization approaches relying on the moving rule.

0 D _
PR ¢ T el
_ _ 1 I I {3\ I I I I
= T2374 : T : : o
+x2T3T4 0 r %{Z\ T T T {6\ 1 f
T4, 1 —O— OO 1 1 -
f2 =T3z4 z3 | I 1 1 -
@2 | — | | -
_ x| 1 1 1 1 1 1
fr=ma \ L1 | | |
f2 f3 fa fs fe f

fs needs to preserve fa

(b) Resulting circuit

Fig. 4. BDD-based synthesis

4 Applying RevVis

The visualizations proposed in the last section are supposed to provide a rep-
resentation which allows to grasp a good intuition of the structure and the
properties of a given circuit. In order to illustrate that RevVis satisfies this pur-
pose, an intense case study has been conducted, in which circuits generated with
different synthesis approaches (namely BDD-based synthesis [22], ESOP-based
synthesis [21], and HDL-based synthesis [7,29]) have been investigated using
RevVis. In this section, results of these investigations are exemplarily shown
and discussed. For this purpose, first the respective synthesis approach is briefly
reviewed. Afterwards, a representative circuit (taken from RevLib [30]) is visu-
alized and corresponding observations are discussed.

4.1 Considering Circuits Obtained by BDD-based Synthesis

The Synthesis Approach BDD-based synthesis as introduced in [22] makes
use of Binary Decision Diagrams (BDDs) [31]. A BDD is a directed graph
G = (V, E) where each terminal node represents the constant 0 or 1 and each
non-terminal node represents a (sub-)function. Each non-terminal node v € V
has two succeeding nodes low(v) and high(v). If v is representing the func-
tion f and labeled with the variable z;, then the corresponding sub-functions
represented by the succeeding nodes are the co-factors fy,—o (low(v)) and f,,=1
(high(v)). Thus, a BDD naturally exposes the Shannon decomposition. Having
a BDD representing a function f as well as its sub-functions derived by Shan-
non decomposition, a reversible circuit for f can be obtained as shown by the
following example.

Example 1. Fig. 4a shows a BDD representing the function f = ZT1ZT2T3x4 +
T1Xox3T4 + T1T2X3T4 + T1X2T324 as well as the respective co-factors resulting
from the application of the Shannon decomposition. The co-factor f; can easily
be represented by the primary input x,. Having the value of f; available, the

. o
A e

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Tl o

Fig. 5. Considering a circuit obtained by BDD-based synthesis

co-factor fo can be realized by the first two gates depicted in Fig. 4b%. By this,
respective sub-circuits can be added for all remaining co-factors until a circuit
representing the overall function f results. The remaining steps are shown in
Fig. 4b.

Observations Using RevVis Fig. 5 shows the visualizations for the circuit
moddadder_66 which has been obtained using BDD-based synthesis and works
as a proper representative for this synthesis scheme. Compared to the simple
netlist (see Fig. 5a), these visualizations unveil the clear structure of these cir-
cuits. In fact, BDD-based synthesis heavily relies on constant inputs (see Fig. 5b)
and subsequently builds up the sub-functions (i.e. the co-factors) of the BDD.
This can clearly be seen in Figs. 5¢ and 5f: New functionality is costantly build
up towards the top-right of the circuit. The primary inputs (located at the bot-
tom of the circuit) are frequently used for this purpose. This explains the intense
usage of these circuit lines (see Fig. 5d). It also shows very nicely that the usage
of the primary inputs depends on the BDD-level, e.g. the primary input repre-
sented by the root node of the BDD has a very low usage while primary inputs
represented in lower levels of the BDD are accessed more often. As shown in
Fig. 5e, all primary input lines are accessed in a read-only fashion (i.e. just con-
trol connections are applied in those circuit lines). Finally, Fig. 5g unveils that
moveability is usually rather bad in circuits generated by BDD-based synthesis.

By this, several properties of BDD-based circuits which are already known
(e.g. the huge number of constant/garbage) are confirmed. Besides that, a clearer
intuition of the actual structure and properties is provided. For example, Fig. 5b
may offer more precise hints where to merge constants and garbage (similar
to the approach presented in [23]). Fig. 5g clearly shows that e.g. optimization
approaches like template matching [17] (relying on the moving rule) are not
really suitable for BDD-based circuits. Besides that, the clear stepped structure
of the overall circuit might be exploitable for further optimizations.

2 Note that an additional circuit line is added to preserve the values of x4 and x3
which are still needed by the co-factors f3 and fi, respectively.

1st 2nd 3rd 4th 5th

T1 L L Pt L :
T2 @@
T3 [e—e lﬁl aE
0 O T T 9T 1f1
AP SIS
0\,,,L,,¢,,,\,,,LJ f3

(b) Resulting circuit

Fig. 6. ESOP-based synthesis

4.2 Considering Circuits Obtained by ESOP-based Synthesis

The Synthesis Approach ESOP-based synthesis as introduced in [21] gener-
ates a reversible circuit from a Boolean function provided as Ezclusive Sum of
Products (ESOPs). ESOPs are two-level descriptions of Boolean functions that
are represented as the exclusive disjunction (EXOR) of conjunctions of liter-
als (called products). A literal is either a Boolean variable or its negation. That
is, an ESOP is the most general form of two-level AND-EXOR expressions.

Having an ESOP representing a function f : B” — B™, the ESOP-based
synthesis approach generates a circuit with n + m lines, where the first n lines
work as primary inputs, while the last m circuit lines are initialized to constant 0
and work as primary outputs. Having that, Toffoli gates are selected such that
the desired function is realized. This selection exploits the fact that a single
product z;, ...x;, of an ESOP description directly corresponds to a Toffoli gate
with control lines C' = {z;,,...,z;, }. In case of negative literals, NOT gates
or negative control lines are applied accordingly. Based on these ideas, a circuit
realizing a function given as ESOP can be derived as illustrated in the following
example.

Ezample 2. Consider the function f to be synthesized as depicted in Fig. 6a3.
The first product xz;x3 affects f; and fy. Hence, two Toffoli gates which have
target lines fi and fy and control lines C' = {x1, 23} are added (see Fig. 6b).
The third product z1T3 includes a negative literal. Thus, the Toffoli gates added
for this product have a negative control line on x3. This procedure is continued
until all products have been considered. The resulting circuit is shown in Fig. 6b.

Observations Using RevVis Fig. 7 shows the visualizations for the cir-
cuit rd73-252 which has been obtained using ESOP-based synthesis and works
as a proper representative for this synthesis scheme. Compared to the simple

3 The column on the left-hand side gives the products, where a “1” on the *" position
denotes a positive literal (i.e. x;) and a “0” denotes a negative literal (i.e. Z;),
respectively. A “—” denotes that the respective variable is not included in the product.
The right-hand side gives the primary output patterns.

- g 2

(a) Circuit (b) Const./Garb. (c) Structure

e R R e

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 7. Considering a circuit obtained by ESOP-based synthesis

netlist (see Fig. 7a), the characteristic structure is clearly unveiled thanks to
the visualizations. In particular, the distinction between input lines (which have
control connections only) and output lines (which have target connections only)
becomes evident (see Fig. 7e) and also leads to a very regular structure with
respect to target blocks (see e.g. Fig. 7f). This provides potential as it may allow
to merge gates with equal control lines but different target lines (as discussed
e.g. in [19]). Furthermore, approaches relying on the moving rule (e.g. [17]) sig-
nificantly benefit from this structure as it leads to a very high movability (see
Fig. 7g). It may also be observed that, due to the high movability of gates,
many target blocks can be merged leading to more potential for optimization.
In contrast, constant inputs are used very early in the cascade (see Fig. 7b),
i.e. there is no potential to reduce the number of constant/garbage lines using
e.g. the method proposed in [23]. Besides that, ESOP-based circuits seem to have
a rather irregular structure, i.e. the respective gate connections are distributed
rather arbitrarily (see Fig. 7c). However, it can be observed that inputs lines are
used more often than output lines (see Fig. 7d). This can be explained by the
fact that some factors may have to be applied to several functions and, hence,
identical control connections are frequently applied.

4.3 Considering Circuits Obtained by HDL-based Synthesis

The Synthesis Approach The strive for more scalable synthesis approaches
also led to the definition and consideration of a Hardware Description Lan-
guage (HDL) for reversible circuits in [7]. In order to ensure reversibility in
the description, this HDL distinguishes between reversible assignments (denoted
by @=) and not necessarily reversible binary operations (denoted by ®). The
former class of operations assigns values to a signal on the left-hand side. There-
fore, the left-hand side signal must not appear in the expression on the right-
hand side. Furthermore, only a restricted set of assignment operations exists,
namely increase (+=), decrease (-=), and bit-wise XOR (°=). These operations
preserve the reversibility (i.e. it is possible to compute these operations in both
directions). In contrast, binary operations, e.g. arithmetic, bit-wise, logical, or
relational operations, may not be reversible and, hence, can only be used in
right-hand expressions which preserve the values of the inputs. In doing so, all
computations remain reversible since the input values can be applied to reverse
any operation. For example, to describe a multiplication (i.e. a*b), a new free

(] ad (boc)
0 — Groe — Gb_@lc M

b b

c——@Fca@ob) :

0 —6 a©b —— < add. line ¥ ¥

a a O—GSG)f :Ge_éf—(]
] b d 19D] d® (e® f)

(a) Straight-forward (b) Improved

Fig. 8. HDL-based synthesis

signal ¢ must be introduced which is used to store the product (i.e. c =a*b
is applied). In comparison to common (non-reversible) languages, this forbids
statements like a=axb.

Having such an HDL description, synthesis approaches like introduced in [7]
generate corresponding circuits following a hierarchical scheme. That is, existing
realizations of the individual operations (i.e. building blocks) are combined so
that the desired circuit is realized. This is illustrated in Fig. 8a for the generic
operation ¢® = (a®b). First, the binary operation @ is realized (using additional
circuit lines with constant inputs). Afterwards, the intermediate result is utilized
to realize the complete statement including its reversible assignment ®&=.

This scheme has further been improved in [29]. Here, the values of interme-
diate results are reversed once they are not needed any longer (leading back to
the original constant value). Then, no new additional lines might be required to
buffer upcoming intermediate results. The general idea is briefly illustrated in
Fig. 8b by means of the generic HDL statements a® = (b®c¢) and d& = (e ® f).
First, two sub-circuits Gy and Gyg=pe are added ensuring that the first state-
ment is realized. This is equal to the procedure from Fig. 8a and leads to addi-
tional lines with constant inputs. But then, a further sub-circuit Gb_QlC is applied.
Since G;éc is the inverse of Gy, this sets the circuit lines buffering the result
of b ® ¢ back to the constant 0. As a result, these circuit lines can be reused in
order to realize the following statements as illustrated for dd=e ® f in Fig. 8b.

Observations Using RevVis Fig. 9 (Fig. 10) shows the visualizations for the
circuit mult_stmts_3bit which has been obtained using the straight-forward HDL-
based synthesis as illustrated in Fig. 8a (the improved HDL-based synthesis as
illustrated in Fig. 8b) and works as a proper representative for this synthesis
scheme. More precisely, these circuits realize three HDL-statements over 3-bit
variables. The respective cascades for each statement are separated by vertical
lines in Fig. 9 and Fig. 10. Compared to the simple netlist (see Fig. 9a and
Fig. 10a), these visualizations do not only unveil the structure and characteristics
of the respective circuits, but also the differences between the straight-forward
and optimized synthesis scheme.

(a) Circuit) Const./Garb. Structure
- ﬁ “HI.H = I
(d) Line usage) Line types (f) Target blocks (g) Moveability

Fig. 9. Considering a circuit obtained by HDL-based synthesis

N —=

) Circuit (b) Const./Garb.) Structure
=" ﬁﬂﬂlﬁm 3
- - -

(d) Line usage) Line types f) Target blocks (g Moveablhty

Fig. 10. Considering a circuit obtained by improved HDL-based synthesis

First of all, the structures sketched in Fig. 8, i.e. the building blocks for binary
operations, reversible assignments, and reversing, can also be recognized in the
visualizations (see e.g. Fig. 9c¢ and Fig. 10c¢). In particular for the improved
scheme, the symmetry resulting from reversing intermediate results is rather
obvious. Here, it can also be observed that just one set of constant circuit lines
is needed, while the straight-forward approach uses several constant circuit lines
only for a short time (compare Fig. 9b and Fig. 10b). The frequent re-use of these
lines in the improved approach is also reflected in the line usage visualization (see
Fig. 10d).

Besides that, many circuit lines only have control connections in this ex-
ample (see Figs. 9e and 10e). This is caused by the fact that the three HDL-
statements are of the form a® = (b®c¢), i.e. b and ¢ never occur on the left-hand
side of a statement. Finally, the visualization clearly unveils that HDL-based
circuits have a rather poor moveability and, hence, do not seem very suitable
for optimization schemes such as [17] (see Figs. 9g and 10g).

5 Conclusions

In this work, we considered the visualization of reversible circuits. This is moti-
vated by the fact that certain structures and properties of circuits are often not
obvious to the developer or to the user. Furthermore, simple netlist representa-
tions do not provide a proper intuition and, hence, are not suitable — particularly
for circuits of larger size. In order to address this, we introduced the tool RevVis
which provides visualization layers for several metrics as well as objectives and,
by this, intuitively highlights structures and properties of reversible circuits. The
application of RevVis has been evaluated in a thorough case study involving sev-
eral synthesis approaches. This enabled a deeper discussion about both known
as well as new characteristics of the obtained circuits and, hence, the consid-
ered synthesis schemes. In the future, visualizations as proposed in this work
will be beneficial to draw conclusions from newly developed design approaches
right from the beginning as well as to gain inspiration for new synthesis and
optimization methods.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483 (2012) 187-189

3. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Design, Automation and Test
in Europe. (2012) 1036-1041

4. Drechsler, R., Wille, R.: From truth tables to programming languages: progress
in the design of reversible circuits. In: Int’l Symp. on Multi-Valued Logic. (2011)
78-85

5. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a
survey. ACM Computing Surveys 45(2) (2011)

6. Walsh, T.: Search in a small world. In: International Conference on AI (1999)
1172-1177

7. Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for
synthesis of reversible circuits. In: Forum on Specification and Design Languages.
(2010) 184-189

8. Wettel, R., Lanza, M., Robbes, R.: Software systems as cities: a controlled exper-
iment. In: International Conference on Software Engineering. (2011) 551-560

9. Siilflow, A., Wille, R., Genz, C., Fey, G., Drechsler, R.: FormED: A formal envi-
ronment for debugging. In: University Booth at the Design, Automation and Test
in Europe. (2009)

10. Eén, N., Sérensson, N.: An Extensible SAT-solver. In: Conference on Theory and
Applications of Satisfiability Testing, Springer (2003) 502-518

11. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reasoning 39(2) (2007) 219-243

12. Toffoli, T.: Reversible computing. In de Bakker, W., van Leeuwen, J., eds.:
Automata, Languages and Programming. Springer (1980) 632 Technical Memo
MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Fredkin, E., Toffoli, T.: Conservative logic. Int’l Journal of Theoretical Physics
21(3-4) (1982) 219-253

Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6) (1985)
3266-3276

Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. Trans. on
CAD 23(11) (2004) 1497-1509

Wille, R., Keszocze, O., Drechsler, R.: Determining the minimal number of lines
for large reversible circuits. In: Design, Automation and Test in Europe. (2011)
1204-1207

Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conf. (2003) 318-323

Maslov, D., Dueck, G.: Quantum circuit simplification and level compaction. Trans.
on CAD 27(3) (2008) 436-444

Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: ASP Design
Automation Conf. (2013)

Datta, K., Rathi, G., Wille, R., Sengupta, 1., Rahaman, H., Drechsler, R.: Exploit-
ing negative control lines in the optimization of reversible circuits. In: International
Conference on Reversible Computation. (2013) 209-220

Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade generation.
In: Pacific Rim Conference on Communications, Computers and Signal Processing.
(2007) 206-209

Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conf. (2009) 270-275

Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Design Automation Conf. (2010) 647652

Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quantum Information Processing 10(3) (2011) 355-377
Alfailakawi, M., Alterkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible
circuits for linear nearest neighbor realization. Quantum Information Processing
12(10) (2013) 3319-3339

Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conf. (2013) 41

Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor
quantum circuits. In: ASP Design Automation Conf. (2014) 489-494

Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding
lines. In: Int’l Symp. on Multi-Valued Logic. (2010)

Wille, R., Soeken, M., Schénborn, E., Drechsler, R.: Circuit line minimization
in the HDL-based synthesis of reversible logic. In: Annual Symposium on VLSI.
(2012) 213-218

R. Wille, D. Grofle, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-
Valued Logic, pages 220-225, 2008. RevLib is available at http://www.revlib.org.
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Trans.
on Comp. 35(8) (1986) 677-691

