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Abstract—Due to ever increasing design sizes more efficient
tools for Automatic Test Pattern Generation (ATPG) are needed.
The application of the Boolean satisfiability problem (SAT) to
ATPG has been shown to be a robust alternative to traditional
ATPG techniques. A major challenge of research in the field of
SAT-based ATPG is to obtain a robust algorithm which can solve
hard SAT instances reliably without slowing down easy-to-solve
SAT instances. This is particular important, since easy-to-solve
SAT instances form the majority of an ATPG run. This paper
proposes two structural heuristics. The first one uses testability
measurements to obtain an improved initial variable order, while
the second heuristic prunes many easy-to-test faults by finding
easy-to-control paths. Experimental results on large industrial
designs confirm that the proposed methodologies result in a
significant overall speed-up.

I. INTRODUCTION

According to Moore’s law, the size of integrated circuits
doubles every 18 months. This continuous growth requires
a constant improvement of state-of-the-art Electronic Design
Automation (EDA) tools. The post-production test is a vital
step in the design flow. It ensures the functional correctness
of the produced chips. This step is very important to guarantee
high quality.

In practice, a fault model is usually used to abstract from the
physical defects. To test the circuit for correctness with respect
to the applied fault model, test patterns have to be computed.
In this work, the stuck-at fault model [6] is used. To generate a
test pattern for a stuck-at fault, there exist many sophisticated
algorithms. If there is a test pattern for a particular fault F ,
then F is called testable; otherwise F is called untestable.

The D-algorithm [29] was the first algorithm that traversed
the search space by backtracking. Improvements concerning
decision strategies as well as propagation and justification
were given in PODEM [18] and FAN [16]. Further algorithms
are Socrates [30] and Hannibal [23]. All these algorithms have
in common that they directly work on the circuit structure.

In contrast, there also exist approaches based on Boolean
satisfiability [24], [31], [26], [32], [17], [11]. Due to the
lack of efficient SAT solvers, the early approaches did not
become popular. The improvements made for solving SAT in
the last decade [27], [28], [19], [15], [4], however, resulted in
a renewed interest in this topic. Recent research work shows
that SAT-based ATPG can be successfully applied to large
industrial circuits [11].

SAT-based ATPG consists of two separate stages: first a
SAT instance is generated and second this instance is solved.
In contrast to, e.g. SAT-based verification, a large number of
instances has to be solved. Most of them are easily solvable,
however, there also exist very huge and very hard ones. A
major challenge of SAT-based ATPG research is thus to obtain
a robust framework in which hard instances can be solved
reliably without slowing down the classification of easy-to-
test faults.

This paper proposes two structural heuristics that aim for
speeding up the entire ATPG process and enhancing the
robustness. The first heuristic incorporates testability measure-
ments used for decision making in traditional ATPG. These
measurements are applied to obtain an improved initial vari-
able order for the decision heuristic of the SAT solver. This, in
particular, accelerates the search for a test pattern for hard-to-
test faults. However, a performance improvement for easy-to-
test faults cannot be observed. As a disadvantage, overhead
is caused by the decreasing diversity of the generated test
patterns. To overcome this drawback, a metric is introduced to
determine dynamically which order should be used. By this,
the advantages of both, the default initial variable order and
the proposed order are exploited.

The robustness of the ATPG process is further increased
by the second technique. A structural heuristic is applied in
a preprocessing step (prior to the SAT instance generation)
to find easy-to-control paths quickly and such prunes many
easy-to-test faults. In this approach, testability measurements
are used to guide the heuristic.

The rest of this paper is organized as follows. The next
section gives a brief introduction into state-of-the-art SAT-
based ATPG algorithms. Section III presents the basic idea and
introduces testability measurements. The structural heuristics
are proposed and discussed in Section IV. Experimental results
are given in Section V and finally the paper is concluded in
Section VI.

II. RELATED WORK

This section gives a brief overview on state-of-the-art SAT-
based ATPG. To get further insight into this topic, see e.g. [12].
For a general overview on the ATPG problem and the classical
algorithms to solve it, we refer to e.g. [7].

A. SAT-based ATPG

To compute a test pattern for a stuck-at fault F , an assign-
ment to the inputs has to be found that guarantees at least
one different output value at the correct circuit and the faulty
circuit. Classical algorithms work directly on a circuit structure
to either obtain a test pattern or to prove that no test pattern
exists.

The ATPG problem, however, can also be seen as a the
following decision problem. “Given a circuit C and a fault F .
Is there a test pattern that makes F observable?” This problem
can be transformed into a Boolean satisfiability problem, i.e. a
Boolean formula.1 This formula is satisfiable if, and only
if, the fault is testable. A test pattern – if it exists – can
be derived directly from the satisfying assignment of those
variables corresponding to the primary inputs. Any SAT solver
can be used to solve the problem.

1The ATPG problem is – as well as the SAT problem – NP-complete.
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Fig. 1: Extraction of the influenced circuit parts

Modern SAT solvers work on instances given in Conjunctive
Normal Form (CNF). A CNF is a conjunction of clauses, a
clause is a disjunction of literals and a literal is a positive or
negative occurrence of a Boolean variable. A CNF is satisfied
if all clauses are satisfied; a clause is satisfied if at least one of
its literals is satisfied; a positive or negative literal is satisfied
if the variable is assigned positively or negatively, respectively.

Although the use of SAT to effectively solve circuit-oriented
problems has been studied in detail in the last years, SAT-
based ATPG is very special. SAT-based approaches for, e.g.,
equivalence checking [21] or model checking [3] usually have
to solve only one or few difficult problem instances. One
SAT-based ATPG run, however, contains thousands of SAT
instances. Most of them can be solved quite easily within
a runtime of only a few CPU milliseconds. However, there
also occur hard-to-solve instances requiring several minutes of
CPU time. Furthermore, the CNF sizes can vary significantly.
Instances with less than one hundred variables, on the one
hand, and more than one million variables, on the other hand,
can occur for the same benchmark circuit. Thus, a SAT-
based ATPG framework has to be very robust in terms of
solving SAT instances. For example, preprocessing methods
as proposed in [14] are not feasible for SAT-based ATPG.
The overhead on small, easy-to-solve instances would be too
large.

Another interesting fact is that in SAT-based ATPG, unsat-
isfiability, i.e. untestability, can often be proven much more
easily than satisfiability, i.e. testability [34]. This can be
explained as follows. The reason for untestability is often due
to redundancy in the circuit, located close to the fault site,
or due to restrictions to the primary inputs. In both cases, the
SAT solver may be able to find an unsatisfiable core [20], [38]
just by propagation steps, i.e. no decision has to be made. If
untestability cannot be proven this immediately, the reason will
most likely be found very soon anyway due to the inherent
powerful conflict analysis. Incorporating SAT techniques to
accelerate proving unsatisfiability, e.g. as described in [36],
where unobservability constraints are encoded in the SAT
instance, cannot be applied beneficially in SAT-based ATPG.

Finding a test pattern, however, is often more complex [33].
This is due to the stopping criterion of modern SAT solvers.
A SAT instance is proven to be satisfiable if, and only if, all
variables are assigned and no conflict occurred. Assigning all
variables can be a very time-consuming step, especially for
circuit parts containing many reconvergences.

B. Circuit-to-CNF Conversion
Consider the schematically depicted circuit in Figure 1.

Here, a brief overview on the circuit-to-CNF conversion is

given.
After the fault location has been marked, the fault site’s out-

put cone is traversed by a depth first search. This determines all
Primary Outputs (POs) that are structurally influenced by the
fault, i.e. all POs where a difference between the faulty circuit
and the faultless circuit could be observed. The transitive fanin
of these POs influences the detection of the fault and must be
marked, too. To generate the SAT instance for the given fault,
this part of the circuit has to be considered.

As introduced in [31], two Boolean variables gc and gf are
assigned to each gate g in order to represent the gate’s value
in the correct circuit and in the faulty circuit, respectively.2 A
gate’s CNF is generated by building its characteristic function.
The conjunction of all CNFs results in the CNF for the
circuit [35].

To find a difference between the correct circuit and the
faulty circuit, an additional Boolean variable gd is assigned
to each gate. If the variable gd is true, the gate’s values in
both circuits differ. Therefore, the constraint

gd = 1→ gc 6= gf

is added to the CNF in form of the two clauses

(gd + gc + gf ) · (gd + gc + gf ).

To compute a test pattern for a fault, there must be a path
from the fault site to an output, where the assignment of each
variable gd is true. Following the notation in [31], this path
is called a D-chain. Therefore, if a gate is on a D-chain,
one successor must be on a D-chain as well. This property
– encoded by the constraint

gd →
n∨

i=1

hi
d,

where the gates h1, . . . , hn denote the successors of gate g –
is also added to the CNF. Moreover, the variable gf

d , where
the gate gf represents the faulty gate, is set to true in order
to inject a difference at the fault site.

As a result, the SAT instance generated this way is satisfi-
able if, and only if, a D-chain exists, i.e. the SAT instance is
satisfiable if, and only if, the fault is testable. The same result
could be achieved by using a miter circuit [5]. However, this
construction has an important advantage. Since the correct and
the faulty circuit are connected between each gate (and not
only between the outputs as done in a miter circuit), unsatisfi-
ability, i.e. untestability, can often be proven immediately (as
explained above).

Finally, this SAT instance is given to a SAT solver. After
the classification, the CNF is completely discarded. Therefore,
the circuit-to-CNF conversion has to be done for each single
target fault and consumes a large part of the overall runtime
as already stated in [26], [33].

As explained above, unlike in other circuit-oriented prob-
lems, thousands of SAT instances have to be generated in
SAT-based ATPG. It has been shown in [26], [33] that the
time needed to generate an instance often exceeds the time
needed to solve it. The instance generation step would be
unnecessary if a circuit-based SAT solver [25], [37] is used.
However, due to our experimental studies, the application of
circuit-SAT solvers to the ATPG problem results in increased
overall runtime.

2Since the values of both circuits may differ only in the fault site’s fanout
cone, the variable gf is assigned only to gates g in this cone of influence.



TABLE I: Computation of SCOAP controllability values
Gate type contr_0 contr_1

PI 1 1
AND minhi

(hi.contr_0) + 1
P

hi
hi.contr_1 + 1

OR
P

hi
hi.contr_0 + 1 minhi

(hi.contr_1) + 1

NOT h0.contr_1 h0.contr_0

III. BASIC IDEA

After a CNF has been generated, an arbitrary SAT solver
is used to solve it. State-of-the-art SAT solvers base on the
DPLL algorithm [10], [9] and use dynamic variable ordering
heuristics [28]. These heuristics prefer variables that occurred
recently in conflicts. Due to conflict-based learning [27], the
search space can thus be pruned by running into conflicts
quickly.

The initial variable order, however, is quite straightforward:
either each variable gets the same weight or the weight
correlates with the total number of occurrences in the CNF.
The SAT solver may branch on unsuitable variables during
the beginning of the solving step. Algorithms like MINCE [1],
FORCE [2] or ACCORD [13] overcome this drawback. Those
techniques try to find an optimal (static) variable order for
solving SAT (or building BDDs) by capturing structural
properties of Boolean functions arising from real-world ap-
plications. The connectivity of variables is calculated by
examining the CNF structure. Those approaches, however,
focus on solving one hard-to-solve instance faster. For SAT-
based ATPG, where most instances are easy to solve they
produce considerable overhead. Therefore those approaches
are unsuitable for SAT-based ATPG.

The underlying problem in SAT-based ATPG is circuit-
based. Traditional ATPG algorithms like PODEM [18] or FAN
[16] use testability measurements, e.g. SCOAP [22], when a
decision has to be made. Those values can be calculated in
linear time of the number of gates during a preprocess prior
to the actual ATPG run. Testability measurements indicate how
difficult it is to control or to observe a signal, i.e. how difficult
it is to set a particular signal to 0 or 1.

The SCOAP testability measurement consists of three dif-
ferent values:

• 0-controllability – This value determines the difficulty to
justify a 0 value on this signal line.

• 1-controllability – Complementary to 0-controllability,
this value determines the difficulty to justify a 1 value
on this signal line.

• observability – This value determines the difficulty to
propagate the gate’s value to an output.

In this work, only the controllability measurements are
considered. They are denoted by contr_0 and contr_1 in the
following. Table I gives an overview on how to compute those
values for a basic gate g with n predecessors. The predecessors
of g are denoted by hi with 0 ≤ i ≤ n− 1.

The following example shows the use of controllability
values in order to guide traditional ATPG engines.

Example 1: Consider the circuit depicted in Figure 2. Each
line’s controllability values are denoted as (contr_0,contr_1).

Assume, line h must be set to the value 1. To justify this
value, one of the NAND gate’s inputs has to be set to 0.
At this point, it has be decided which input is used for the
justification. Looking on the circuit structure, it can be seen
that line a would be the better choice since it is a primary
input and can be set to 0 immediately. The justification with
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Fig. 2: Example for SCOAP controllability values

line g would be more complex. This situation is also reflected
by the controllability values. The smaller the controllability
value is the easier can the signal value be justified.

In SAT-based ATPG, testability measurements are not used
so far. An approach to use them in order to guide the SAT
solver to branch on easy-to-control variables is proposed in
the following.

IV. STRUCTURAL HEURISTICS

In this section, the main contribution of this paper is given.

A. Initial Order and Polarity Heuristic
The Initial Order and Polarity Heuristic (IOPH) uses the

SCOAP controllability values described above to make sure
that the SAT solver accesses easy-to-control regions first. This
is accomplished by changing the default initial variable order.
The initial variable order depends on the activity value3 of
the variables. In this approach the initial activity value is
calculated as follows. Let k be a large constant number, e.g. the
highest SCOAP value assigned to a gate. Then, the activity
value g.a for some gate g is computed by

g.a = k −min(contr_0, contr_1)

As a result, the variables associated with a low controllability
value are initially preferred by the decision heuristic. Variables
corresponding to easy-to-control gates are thus picked by
the decision heuristic first. The polarity of this variable is
considered as well. It is assigned to the value, that is easier to
control. This approach avoids to enter hard-to-control regions
of the circuit at the beginning and increases the likelihood that
a test pattern is found quickly within an easy-to-control circuit
part. Since unsatisfiable instances are often easy to classify, the
heuristic does not slow down the solving time for those faults.
Because the IOPH only changes the initial variable order, the
influence of the controllability values decreases during the
solving process.

The following simple example illustrates the derivation of
the initial order.

Example 2: Again consider the circuit depicted in Figure 2.
The controllability values presented at the signal lines are

used to determine an initial variable order. Here, it is given by

a = 0, b = 0, c = 0, d = 0, e = 1, f = 0, h = 1, g = 1

where x = v means the variable correlated to the gate x is set
to the Boolean value v. As can be seen, this initial variable
order makes the SAT solver branch on primary inputs first and
continues with variables contained in easy-to-control regions.

3The more often and the more recently a variable occured in a conflict, the
larger is the activity value. The variable with highest activity value is chosen
to branch on.



The effectiveness of the approach is shown in Figure 3. It
presents four diagrams depicting the average SAT solving time
(on the y-axes) in relation to the size of the SAT instances,
i.e. the number of variables contained in the CNF (on the
x-axes). It can clearly be seen that the influence of the
proposed IOPH method largely depends on the number of
variables. There is only a negligible difference between the
two approaches on small SAT instances. On large CNFs, on the
other hand, there is often a wide gap in the average runtimes
for both techniques.

However, the IOPH technique contains a considerable draw-
back compared to the default heuristic. Since the testability
measurements are computed once for the entire circuit, the
initial variable orders of SAT instances for different faults
are similar. Therefore, the derived test patterns are often very
similar as well. The fault simulator4 performs very badly on
those kind of test patterns since fewer “additional” faults can
be detected. The default decision heuristic, however, produces
many “random” patterns that cover, i.e. detect, a large portion
of the fault list. Even if the average runtime for each fault
remains equal, the overall runtime of the ATPG run can slow
down due to the increased number of faults which have to be
targeted.

Based on those observations, an improvement that combines
the strengths of the two initial variable orders is proposed.
For this improvement, a new metric is introduced. Up to a
certain limit on the number of variables, instances will always
be solved using the default initial order. The limit should be
high enough to assure the diversity of the patterns. Beyond
that limit, instances will be divided into classes based on the
number of variables they contain. For each of those classes the
heuristic predicts which initial order is better to use. That is
done by alternately applying each initial order on the first N
encountered instances of each class. The required runtime is
stored. Note, only “non-trivial” instances, i.e. instances that
cannot be solved within 2 restarts of the SAT solver, are
taken into account for this metric. The heuristic with the lower
total time spent on SAT solving will be selected for following
instances contained in the class.

The current implementation uses the following parame-
ters. The lower limit for the number of variables is 20,000,
i.e. CNFs containing less than 20,000 variables are usually
easy to solve and do not require a special treatment of the ini-
tial order. This is confirmed by Figure 3. Furthermore, N = 10
and the range for the classes the CNFs are divided into is 1,000
variables. This improvement to the IOPH technique is denoted
by IOPH+. The experiments of ATPG runs incorporating these
techniques are shown in Section V.

B. Test Pattern Generating Heuristic
As mentioned in Section II, the time needed to generate a

SAT instance is a significant part of the overall runtime and
often even dominates it. Moreover, testable faults, i.e. satisfi-
able SAT instances, are often harder to solve than untestable
faults, i.e. unsatisfiable SAT instances. Therefore, it would be
beneficial to classify a fault without generating a CNF at all.
This section proposes a preprocessing heuristic that is able
to find a test pattern prior to the SAT instance generation by
enabling easy-to-control paths.

4After computing a test pattern, a fault simulator determines all faults
that can be detected by this particular test pattern as well. Those faults are
discarded from the fault list and do not need to be considered during the
subsequent ATPG.
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Fig. 3: Dependency between average solving time and number
of variables

As explained in Section II-B, the circuit-to-CNF conversion
is a graph algorithm working on the circuit structure. This
procedure can be modified in order to check for testability
without generating a CNF. This is accomplished by emulating
a part of the D-algorithm [29] – a classical ATPG method.
This algorithm works on the 4-valued logic

{0, 1, D, D̄}
where D denotes a difference between the value in the faulty
circuit (0) and the value in the correct circuit (1). The symbol



TABLE II: Experimental results
Default IOPH IOPH+ IOPH+ & TPGH

Circuit Targets Untest. CF ∅SAT t. Ab. Time CF ∅SAT t. Ab. Time CF ∅SAT t. Ab. Time Ab. Time Suc. rate
b17 76,493 1,958 11,935 0.33ms 0 4:21m 15,309 0.62ms 0 6:43m 11,885 0.37ms 0 4:21m 0 3:48m 19.91%
b18 264,043 2,844 30,530 0.49ms 0 14:10m 39,621 0.59ms 0 22:41m 30,770 0.49ms 0 14:00m 0 10:51m 17.03%
b20 45,461 319 7,463 0.74ms 0 3:37m 13,465 0.51ms 0 5:53m 7,489 0.73ms 0 3:31m 0 1:55m 17.41%
b21 46,156 378 7,708 0.74ms 0 3:46m 13,885 0.50ms 0 6:14m 7,727 0.73ms 0 3:39m 0 1:59m 16.55%
b22 67,540 344 9,178 0.72ms 0 4:34m 16,310 0.53ms 0 7:48m 9,152 0.71ms 0 4:24m 0 2:29m 18.22%

p44k 64,105 2,385 19,566 22.88ms 0 1:40h 22,081 2.11ms 0 38:28m 20,710 2.38ms 0 35:19m 0 10:34m 66.59%
p49k 142,461 1,296 8,410 176.68ms 2,535 5:01h 4,658 92.22ms 265 1:45h 5,345 111.45ms 602 2:16h 547 1:30h 27.58%
p77k 163,310 9,181 10,347 0.03ms 0 0:22m 10,658 0.01ms 0 0:22m 10,347 0.02ms 0 0:21m 0 0:14m 7.22%
p80k 197,834 124 11,223 2.7ms 0 7:30m 26,932 1.21ms 0 11:43m 11,197 2.53ms 0 7:02m 0 2:16m 73.66%
p88k 147,742 2,640 21,638 0.14ms 0 3:31m 26,236 0.15ms 0 4:40m 21,638 0.14ms 0 3:26m 0 2:26m 54.55%
p99k 162,019 2,141 11,892 0.26ms 1 2:09m 13,380 0.38ms 1 2:46m 11,892 0.26ms 1 2:06m 1 1:28m 38.02%

p177k 268,176 13,840 27,955 27.84ms 0 3:04h 35,897 7.74ms 0 2:08h 29,760 6.91ms 0 1:29h 0 46:39m 25.02%
p456k 740,660 35,396 60,545 3.07ms 170 1:00h 65,526 1.62ms 91 51:52m 60,622 2.47ms 117 53:46m 143 48:43m 16.95%
p462k 673,465 132,249 155,910 2.09ms 13 1:35h 159,962 2.23ms 23 1:43h 156,590 2.04ms 14 1:32h 17 1:16h 10.36%
p565k 1,025,273 28,287 48,734 0.07ms 0 9:56m 49,988 0.07ms 0 10:20m 48,734 0.07ms 0 9:48m 0 9:04m 25.81%

p1330k 1,510,574 44,299 71,821 0.44ms 0 1:26h 74,727 0.38ms 0 1:30h 71,821 0.43ms 0 1:22h 0 1:10h 27.22%
p2787k 2,395,388 651,868 701,287 4.24ms 1,877 23:10h 708,708 2.23ms 1,050 19:27h 701,506 2.55ms 1,011 19:05h 1,357 19:10h 5.20%
p3327k 4,557,842 109,622 349,822 33.77ms 2,053 47:13h 366,262 40.13ms 525 54:49h 353,531 19.57ms 726 33:03h 591 9:31h 44.65%
p3852k 5,507,779 164,988 387,060 9.87ms 1,637 21:03h 414,180 2.78ms 374 14:41h 391,212 3.21ms 445 14:00h 343 7:14h 36.76%

D̄ denotes the negation of D.
The proposed approach works as follows. First, the connec-

tion containing the fault site is set to the faulty value followed
by the attempt to justify this value by backward propagation.
Second, the fault effect, i.e. the difference between both values,
is tried to be propagated to each single output. This is also
done by backward propagation.

Whenever a decision has to be made, i.e. it has to be
decided which gate input is used to justify the current value,
the easiest possibility is chosen. This is done by using the
SCOAP testability measurement. If it is possible to compute a
test pattern this way, this is done very quickly, since an easy-
to-control path is used. However, if it is not possible to prove
testability on such a path, the preprocess is stopped and the
ordinary SAT instance generation is started.

Note, since this is no backtracking algorithm, this prop-
agation approach is not complete, i.e. a solution cannot be
guaranteed. Untestable faults cannot be classified at all using
this technique. However, as will be confirmed by the experi-
mental results presented in the next section, many faults can
be pruned this way. This technique is denoted by TPGH.

V. EXPERIMENTAL RESULTS

Experimental results are given in the following. The heuris-
tics presented in Section IV were implemented as a prototype
into an ATPG framework. MiniSat v1.14 [15] was used to
solve the SAT instances.5 Two benchmark sets have been
considered: the publicly available ITC’99 benchmarks [8] and
industrial circuits provided by NXP Semiconductors Germany
GmbH, Hamburg, Germany. The names of the NXP bench-
marks indicate the number of gates roughly contained in a
circuit, e.g. the circuit p3852k consists of approximately 3.85
million gates.

All experiments (except for p3327k and p3852k) were
carried out on an AMD Athlon 64 3500+ (2.2 GHz, 3 GByte,
Linux). The two largest benchmarks, however, need more main
memory to run and thus were conducted on a Dual Dual-Core
AMD Opteron 2220 (2.8 GHz, 32 GByte, Linux). The fault
classification of one target fault is aborted after 7 MiniSat
restarts. This corresponds to 3,221 conflicts during the solving
step.

5We also tried to use MiniSat v2.0, but got permanently worse results. This
can be explained by the “binary clause trick” contained in MiniSat v1.14, but
not in MiniSat v2.0.

The effectiveness of the proposed techniques is shown in
Table II. The first column presents the circuit’s name. The
number of target faults, i.e. the number of faults that have
to be considered after discarding equivalent faults (known as
fault collapsing) is given in the second column. The third
column shows the number of untestable faults in the circuit. To
evaluate the different methodologies, the number of considered
faults during ATPG (column CF), the average time needed
to solve one SAT instance (column ∅SAT t.), the number of
aborted fault classifications (column Ab.) and the total runtime
of the ATPG process (column Time) are given.

The experimental results using the default initial variable
order are presented in column Default. Comparing those with
the results incorporating the IOPH method – given in column
IOPH – it can be seen that the number of aborted fault
classifications can be reduced considerably. Furthermore, the
overall runtime is significantly influenced. On some bench-
marks, there is a slowdown observable, e.g. b18, p80k and
p3327k, whereas a significant acceleration was achieved for
example on circuits p44k, p49k and p3852k. Even if the
average solving time of one SAT instance can be decreased,
the overall solving time may slow down. As explained above,
this is due to the significantly increased number of considered
faults. This motivates the use of the proposed metric resulting
in the IOPH+ technique that is discussed in the following.

It can be seen that using the IOPH+ method (column
IOPH+) results on the one hand in a slightly increased number
of aborted faults compared to the IOPH method. Compared
to the default initial variable ordering, on the other hand, a
significant reduction can still be observed. However, the use
of the IOPH+ technique consistently results in better runtimes.
On some circuits, there is only a small acceleration. On the
other hand, speed-ups of a factor of 2.8 and 2.2 can be
achieved for the circuits p44k and p49k, respectively.

The number of aborts changes slightly when adding the
TPGH technique to the IOPH+ approach (column IOPH+ &
TPGH). The runtime, however, can largely be improved using
the IOPH+ & TPGH approach. Except for circuit p2787k,
where a small slowdown appears, all ATPG runs can be per-
formed with decreased runtime. A considerable acceleration
can be observed on most benchmarks. On circuit p44k, a
remarkable speed-up of a factor of 9.5 can be achieved.

The experimental results of the latter approach also contain
an overview on the success rate of the TPGH method which is



presented in column Suc. rate. It gives the relative number of
successful classifications using the TPGH method with respect
to all considered faults. The lowest rate can be observed at
circuit p2787k. This can be explained by the extreme low
fault coverage, i.e. the unusual large number of untestable
faults. The TPGH approach, however, aims for accelerating
the classification of testable faults. Considering circuit p44k,
2 out of 3 faults can be classified using the TPGH technique;
on circuit p80k, this number is even larger. Here, almost 3 out
of 4 fault can be classified using the preprocessing method.

To summarize, the proposed structural heuristics are able to
increase the robustness of a SAT-based ATPG framework.

VI. CONCLUSIONS

The paper presents two structural heuristics in order to speed
up SAT-based ATPG and to improve the overall robustness.
The first technique incorporates testability measurements –
known from traditional ATPG algorithms – to calculate an
initial variable order for the SAT solver’s decision heuristic.
The new initial variable order improves the performance
especially for large SAT instances. However, for easy-to-test
faults, no considerable speed-up can be observed. As a side
effect, the number of target faults grows due to the decreasing
diversity of test patterns. Therefore, a metric is introduced to
dynamically decide which variable order should be applied for
each target fault. As a result, the advantages of both variable
orders can be exploited and the overall robustness is increased.

The second method accelerates the fault classification by
finding a test pattern on the circuit structure through easy-
to-control paths prior to the actual SAT instance generation.
By this, many easy-to-test faults are pruned. The efficiency
of both approaches is confirmed by experiments conducted on
large industrial circuits.
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