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Abstract—Nowadays, modeling languages like UML are essen-
tial in the design of complex software systems and also start
to enter the domain of hardware and hardware/software co-
design. Due to shortening time-to-market demands, “first time
right” requirements have thereby to be satisfied. In this paper,
we propose an approach that makes use of Boolean satisfiability
for verifying UML/OCL models. We describe how the respective
components of a verification problem, namely system states of a
UML model, OCL constraints, and the actual verification task,
can be encoded and afterwards automatically solved using an off-
the-shelf SAT solver. Experiments show that our approach can
solve verification tasks significantly faster than previous methods
while still supporting a large variety of UML/OCL constructs.

I. INTRODUCTION

Modeling languages like the Unified Modeling Lan-
guage (UML) have been established to specify the require-
ments and the design of software systems [13]. Moreover,
due to the increasing complexity of nowadays hardware sys-
tems, researchers also started to investigate the application
of UML in the design of integrated circuits [11]. In the
context of hardware/software co-design, a whole system is
specified first. Then, the respective partitioning into software
and hardware parts is done after first performance checks on
a prototypical implementation have been carried out. For all
these purposes, UML models provide an appropriate level of
abstraction hiding concrete implementation details but being
expressive enough to specify a complex system. Additionally,
the Object Constraint Language (OCL) is typically used to
extend UML models by textual constraints. OCL constraints
enable the specification of complex system requirements by
defining properties and relations between the respective parts
of a model.
Detecting design flaws in early stages of development is

very important, since adapting an abstract UML model is
cheaper than making changes within a final product. In partic-
ular, due to shortening time-to-market demands, this requires
computer-aided approaches for validating or even verifying a
system specification in context of UML and OCL.
As one step in this direction, the UML-based Specification

Environment (USE) provides well-established methods that
can be applied e.g. to automatically generate test cases for
the respective models [7]. However, most of these methods
are based on enumeration, i.e. in the worst case USE requires
a traversal of the complete search space. As a result, for large
models the approach runs into complexity problems.
To face quality assurance problems, in the last years re-

searchers began to exploit formal methods for the verifica-
tion of UML models. Approaches based on theorem provers
like PVS [9] and HOL-OCL/Isabelle [3] have been applied.
However, these approaches usually need manual interaction.
Besides that, they often require a strong formal background
of the designer.
As a consequence, researchers started to investigate the

application of fully automatic proof engines. A method based

on Constraint Satisfaction Problems (CSP) has been intro-
duced in [4]. Other CSP methods [10] as well as description
logic [2], [14] have been considered, but cannot be applied to
the verification of UML models since they do not support OCL
constraints. In [12], the CQC method is used for verifying
UML/OCL models, but the method requires a manual trans-
lation. Another approach is based on Alloy [8], a modeling
language based on relational logic. In [1] it has been shown
how UML verification tasks can be transformed into this
language. Afterwards, the Alloy analyzer can be applied to
solve the problem. However, as already discussed in [1], UML
and Alloy are using completely different design philosophies
so that many UML/OCL constructs cannot be supported.
In this paper, we propose an alternative automatic approach

for verifying UML/OCL models that supports a large variety
of UML/OCL constructs (as e.g. in USE) while still exploiting
formal methods to accelerate the verification process (as
e.g. in Alloy). Techniques of Boolean satisfiability (SAT) are
thereby applied. In the past, SAT already has been successfully
applied e.g. in the domain of electronic design automation [6].
In this work, we transfer these achievements to the verification
of UML/OCL models. We show how UML system states,
OCL constraints, and the respective verification tasks can
be encoded as a SAT instance. Well-developed off-the-shelf
SAT solvers (e.g. [5]) are applied to efficiently solve the
resulting SAT instance. Thus, UML models can be checked
significantly faster than by enumerative methods, while still a
large variety of OCL constraints is supported. This is also
experimentally confirmed by applying different verification
tasks to UML/OCL models. More precisely, consistency and
independence can be checked magnitudes faster in comparison
to USE. In comparison to Alloy, more complex verification
tasks can be tackled.

II. BACKGROUND

A. UML/OCL, Class/Object Diagrams, and OCL

Classes and associations represent the main constructs in
a class diagram. Classes describe what information can be
handled within the modeled system and how the information
is structured. Attributes define the single data elements.
Furthermore, a class can contain operations as well as OCL

constraints for describing its behavior. In our approach we
focus on OCL invariants, i.e. constraints restricting the set of
valid system states by enforcing specific system properties.

A model specified in terms of a class diagram can be seen
as a template for creating a concrete system state complying
to the specification. System states are illustrated by object dia-
grams. Each element in an object diagram has a corresponding
counterpart in the class diagram. In other words: an object
is an instantiation of a specific class holding values for each
class attribute (at a particular point in time). A link connecting
objects is an instantiation of an association. A system state can
comprise any number of objects and links.
In the remainder of this paper, the set of classes specified

in a UML model is denoted by CLASS. Let c ∈ CLASS be
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Fig. 1. General flow for formal verification of UML/OCL models

a class. Then ATTc is the set of attributes of that class and
oid(c) is the set of objects in a corresponding system state.
A model is consistent, if there exists a non-empty system

state which satisfies all defined OCL invariants, i.e. no defined
system property contradicts the invariants. An invariant i is
said to be independent when no other invariants in the model
imply i. That is, the invariant i adds essential information to
the model. Checking consistency and independence are typical
verification tasks that are formally defined in [7].

B. Boolean Satisfiability

The Boolean satisfiability problem (SAT problem) is to de-
termine a satisfying assignment for a given Boolean function f
or to prove that no such assignment exists. In general, the
Boolean function f is given in Conjunctive Normal Form
(CNF), i.e. a product-of-sum representation.
In the past, several backtracking algorithms solving the

SAT problem have been proposed [5] (so called SAT solvers).
A SAT solver traverses the search space until a satisfying
assignment has been found or it can be deduced that no such
assignment is possible.
For sake of a better readability, in the remainder of the

paper SAT variables and clauses are formulated in terms of
bit-vectors and bit-vector expressions. Converting them to a
SAT instance consisting of Boolean variables and clauses is
straight-forward [15].

III. SAT-BASED VERIFICATION OF UML/OCL MODELS

In this section, the main idea of SAT-based verification
of UML/OCL models is presented. Usually, the verification
problem consists of three components: system states of a
UML model, OCL constraints (defining e.g. properties of the
model), and the respective verification task (e.g. checking for
consistency, independence). In order to solve a verification
problem using existing solve engines, the flow depicted in
Fig. 1 is applied. First the respective components are encoded.
Afterwards, the resulting instance is passed to a solve engine
which is used as a black box. As a result, either unsatisfiable
or satisfiable is returned. In case of satisfiable, additionally
an assignment to all variables of the encoding is given from
which e.g. a system state can be obtained.
As can be seen in Fig. 1, the respective components of a

UML/OCL problem are encoded independently of each other.
That is, if several verification tasks are applied, only the
encoding for the respective task has to be replaced. Using
this flow, several problems occurring in the domain of UML
system modeling can be tackled. We thereby apply a solver
of Boolean satisfiability to solve the respective instances. In
the past, these kind of solve engines already have been shown
to be efficient in several domains like e.g. electronic design
automation [6].
It should thereby be noted that OCL constraints in general

may be undecidable. However, decidability in OCL is achieved
by defining a finite solution space, i.e. considering finite
bounds for the number of objects as well as for the domains of
the attributes. These restrictions are reasonable since at least
for the concrete implementation finite bounds are applied.

IV. SAT ENCODING

In this section, the technical contribution of this work
is introduced. That is, the concrete SAT encoding needed
to implement SAT-based verification of UML/OCL models
is described. We distinguish between the three components
already introduced in Fig. 1, namely the encoding of system
states, OCL constraints, and the respective verification tasks,
respectively. The UML/OCL model given in Fig. 2(a) is used
as a running example throughout the whole section.

A. Encoding System States of the UML Model

Verification of UML models includes – among other as-
pects – the proof of consistency and independence, i.e. system
states can consistently be generated and no OCL constraint is
redundant. In all these cases, a system state must be created.
To formulate system states of the UML model, an encoding of
objects (in particular of their respective attribute assignments)
as well as of the links between these objects is required.
Attribute assignments are thereby represented as follows:

Let a ∈ ATTc be an attribute of a class c ∈ CLASS. Then,
the assignment to this attribute for the object o ∈ oid(c) is
encoded by the bit-vector ~αo

a
∈ B

k with k = ⌈ld(n + 1)⌉.
Here, n denotes the cardinal number of the domain of a. The
extra value is needed to allow an undefined value (i.e. ⊥).
For each object to be created and for each attribute, SAT

variables for the respective bits of ~α are introduced to encode
an object diagram. The value of n depends on the type of a.
For Boolean attributes n is equal to 2. If a is an enumerated
type over four possible values (e.g. as the RegisterType shown
in Fig. 2(a)), then obviously n = 4. In case of integers, n is
set to 2l −1 which leads to a finite domain of l bit integers as
already discussed in Section III. Another special case is the
encoding of strings, which is done by abstraction. Here, n is
set to the number of possible string values that can exist in
the final system state1.
For example, consider the UML class diagram given in

Fig. 2(a). An object diagram representing a system state
including three registers and one processor has to be encoded.
Thus, variables as illustrated in Fig. 2(b) are introduced. In
this case, integers are encoded by 8 bits.
Links between objects are encoded in a similar manner: Let

there be an association between the classes c1, c2 ∈ CLASS
where e1, e2 define the respective roles. Then, for each object

o1 ∈ oid(c1) a bit-vector ~λo1

e2
∈ B

ko1 is introduced which
represents links to objects o2 ∈ oid(c2). The bit-width ko1

de-
pends on the number of objects of class c2, i.e. ko1

= |oid(c2)|.
Assigning the ith bit of ~λo1

e2
to 1 states that o1 is linked to the

ith object o′2 ∈ oid(c2), while assigning this bit to 0 states that
both o1 and o′2 are unconnected. Analogously, for each object

o2 ∈ oid(c2) a bit-vector ~λo2

e1
∈ B

ko2 with ko2
= |oid(c1)|

is introduced. Additional constraints ensure the consistency of
the semantics, e.g. they restrict the number of possible links
to given multiplicities in the UML class diagram.

For example, consider the ~λ-variables as shown in Fig. 2(b).

Let ~λ
p0
register be assigned to 100. Then, ~λr0

processor must be

assigned to 1 while ~λr1
processor and

~λr2
processor must be assigned

to 0. These assignments state, that p0 is linked to the register
r0 only.

1Note that the respective SAT variables ~α allow the representation of
2k values in total. Thus, it may be possible that values greater than the
cardinality n of the domain of the attribute can be represented. This is
prevented by explicitly excluding invalid assignments in the solution space.
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Fig. 2. An example of how to encode a given class diagram with OCL constraints as a system state using SAT

Having the encodings introduced so far, UML object dia-
grams can be created. The resulting SAT instance has to be
given to a SAT solver, that returns with a satisfying assignment
to all SAT variables if it exists. From this, the respective values
of the object attributes can be obtained. Due to the added SAT
constraints, only valid assignments are returned.

B. Encoding OCL Constraints

OCL consists of many “standard” operations like logical
or arithmetical expressions for which many SAT encodings
already exist (see e.g. [15]). However, since the undefined
value ⊥ may occur, we slightly extended these encodings
to support OCL. Besides that, OCL offers the possibility to
handle collections (sets, bags, sequences, ordered sets) and
corresponding operations like forAll and includes. For
these OCL constraints, respective SAT encodings have been
developed. However, due to page limitations, it is not feasible
to introduce all of them in detail. Thus, in the following we
briefly describe the encoding of the OCL constraint used in
the example.
The OCL constraint in Fig. 2(a) states that the bit-width

of all Register objects connected to an object of the class
Processor must be equal to the bit-width of that processor.
The translation of the forAll statement is basically a con-
junction of the inner expression over all connected registers.
Whether a register is connected or not can be extracted

from the variable ~λ
p0

register. For object p0 the following SAT
constraint is generated for the invariant bw:

|oid(Register)|−1
∧

i=0

[

~λ
p0

register[i] ⇒
(

~αri
bitwidth = ~α

p0

bitwidth

)]

If ~λ
p0

register[i] = 1, which means that there is a link, the inner
expression must hold to satisfy the whole SAT constraint.
Otherwise, the inner expression has no effect. The inner
expression is thereby copied for each register.

C. Encoding the Verification Tasks

Using the encodings for system states as well as for UML
constraints, verification tasks can be encoded. Together, they
can be passed to the SAT solver which solves the respective
problem. In the following, we exemplarily describe how to
encode consistency. Nevertheless, further verification tasks,
e.g. checking for independence, can be constrained similarly.
Each model M consists of a set I = {i1, . . . , in} of

invariants. An invariant i is evaluated to be true or false in
the context of a specific system state σ, denoted by σ(i). Let

TABLE I
SELECTION OF MODELS

Model #Classes #Attributes #Associations

demo 3 7 3
simple-cpu 4 6 3
arbiter 5 7 6
person 1 4 1
train 2 0 2
percom 3 3 3
ex 3 7 3
carrental 8 14 10

σ(M) be the set of all possible valid and invalid system states.
Then the consistency problem can be formulated as [7]:

∃σ ∈ σ(M) :
∧

i∈I

σ(i)

Encoding consistency in SAT, in fact, does not require any
further SAT variables or SAT constraints, respectively. Using
the encoding from above is sufficient. If the resulting SAT
instance is satisfiable, then a valid system state (showing the
consistency of the model) can be obtained from the satisfying
assignment. More precisely, attribute values can be obtained
from the assignments to ~α-variables and the links can be

obtained from the assignments to ~λ-variables, respectively.
If the SAT instance is unsatisfiable, it has been proven that
no consistent system state for the given bounds (i.e. maximal
number of objects, restricted domains) exists.

V. EXPERIMENTAL EVALUATION

Using the proposed encodings, a verification approach get-
ting a UML class diagram, OCL constraints, as well as the
verification task as input has been implemented in C++. As
underlying SAT solver, MiniSAT [5] has been used. In this
section, we experimentally evaluate SAT-based UML/OCL
model verification and compare it to previous approaches,
namely USE [7] that is based on enumeration and Alloy [1]
requiring transformation of UML/OCL using UML2Alloy.
As benchmarks, we use UML models given together with

the USE environment (see [7]). Furthermore, a UML model
representing an arbiter has been taken from [16]. Another
model (namely simple-cpu) represents a simple CPU. The
specifics of the UML models, i.e. the number of classes,
attributes, and associations, are given in Table I. For all
UML classes, appropriate OCL constraints have been writ-
ten. Consistent (independent) as well as non-consistent (non-
independent) models are thereby created, respectively.
In the following, we present the results obtained by per-

forming consistency checks and independence checks. All
experiments have been carried out on an Intel Core 2 Duo
2.2 GHz machine with 3 GB of main memory. The time-out
was set to 500 CPU seconds.



TABLE II
RESULTS OF CONSISTENCY CHECKS

Model #OCL #Obj. USE Alloy SAT

Consistent models

demo 4 8 19.52 3.00 0.05
simple-cpu 7 7 >500.00 5.00 0.01
arbiter 2 8 14.24 2.00 0.01
person 4 3 17.78 7.00 0.02
train 7 6 >500.00 N.A. 0.02
percom 6 8 2.62 N.A. 0.00
ex 7 8 20.39 5.00 0.05
carrental 8 8 >500.00 N.A. 0.01

Inconsistent models

demo 4 9 >500.00 2.00 0.02
simple-cpu 7 5 >500.00 3.00 0.01
arbiter 3 8 >500.00 4.00 0.01
person 5 3 >500.00 4.00 0.01
train 7 6 >500.00 N.A. 0.06
percom 7 8 10.72 N.A. 0.01
ex 8 8 >500.00 6.00 0.04
carrental 9 8 >500.00 N.A. 0.04

A. Consistency

In a first evaluation, the performance of the respective
approaches on consistency checks are evaluated in detail.
For this purpose, the respective models described above have
been applied to our SAT-based approach, USE, and Alloy.
The results are shown in Table II. The first column thereby
denotes the name of the model, followed by columns giving
the number of OCL constraints (#OCL) and objects (#Obj.),
respectively. Finally, the last three columns give the run-
times (in CPU seconds) for all three approaches.
As can be clearly seen, the SAT-based approach can handle

all models in less than one CPU second. In contrast, USE
either needs a significant amount of run-time or cannot check
the model within the given time-out. In particular for the
inconsistent cases, this can be explained by the enumerative
behavior of USE. To prove the inconsistency of a model (con-
sidering the discussed restrictions), all possible system states
have to be checked. Since USE does that step by step (without
any pruning techniques), it runs into complexity problems.
In comparison to Alloy, it can be seen that the SAT-based

approach is still faster; albeit not that significant. But even
more important, using Alloy the models train, percom, and
carrental cannot be applied (denoted by N.A.). This is, be-
cause UML2Alloy does not support transitive closure (used in
train and percom) and n-ary associations (used in carrental),
respectively (see also [1]).

B. Independence

In a second evaluation, independence checks are considered.
Using Alloy, independence cannot be automatically checked.
Thus, we omit Alloy in this evaluation. In contrast, USE
has mechanisms for inverting invariants and so independence
can be checked automatically using respective scripts. Using
SAT, the independence verification task can be encoded by
modifying the consistency encoding.
The resulting run-times (in CPU seconds) are given in

Table III. Also here it can be seen, that the enumerative
behavior of USE leads to large run-times (in fact, most of
the instances cannot be solved within the time-out) while the
SAT-based approach can solve these problems very fast.

VI. CONCLUSIONS

In this work, an approach for solving UML/OCL verification
problems based on Boolean satisfiability has been presented.
We described the encoding of the respective problem com-
ponents and experimentally evaluated the application of our
approach by means of consistency and independence checks.

TABLE III
RESULTS OF INDEPENDENCE EVALUATION

Model #OCL #Obj. USE SAT

Models with independent invariants

demo 2 9 >500.00 0.04
simple-cpu 7 7 >500.00 0.05
arbiter 2 8 25.26 0.05
person 4 3 >500.00 0.05
train 3 6 >500.00 0.13
percom 3 12 >500.00 0.13
ex 2 8 161.65 0.03
carrental 4 8 >500.00 0.02

Models with non-independent invariants

demo 4 9 >500.00 0.15
simple-cpu 7 7 >500.00 0.09
arbiter 3 8 >500.00 0.03
person 5 3 >500.00 0.07
train 7 6 >500.00 0.24
percom 6 12 >500.00 0.56
ex 7 8 >500.00 0.15
carrental 8 8 >500.00 0.01

In comparison to previous work, verification tasks can be
solved faster while still a significant variety of UML/OCL
constructs is supported.
The proposed encodings can be applied to further verifica-

tion problems without changing the formulation for the UML
components, i.e. system states and OCL constraints.
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